#include <SimG4CMS/HcalTestBeam/interface/HcalTB02Analysis.h>
Public Member Functions | |
HcalTB02Analysis (const edm::ParameterSet &p) | |
virtual void | produce (edm::Event &, const edm::EventSetup &) |
virtual | ~HcalTB02Analysis () |
Private Member Functions | |
void | clear () |
void | fillEvent (HcalTB02HistoClass &) |
void | finish () |
HcalTB02Analysis (const HcalTB02Analysis &) | |
const HcalTB02Analysis & | operator= (const HcalTB02Analysis &) |
void | update (const BeginOfEvent *evt) |
This routine will be called when the appropriate signal arrives. | |
void | update (const EndOfEvent *evt) |
This routine will be called when the appropriate signal arrives. | |
Private Attributes | |
float | E5x5Matrix |
float | E5x5MatrixN |
float | E7x7Matrix |
float | E7x7MatrixN |
std::map< int, float > | energyInCrystals |
std::map< int, float > | energyInScints |
double | eta |
std::string | fileNameTuple |
bool | hcalOnly |
HcalTB02Histo * | histo |
double | incidentEnergy |
int | maxTime |
std::vector< std::string > | names |
int | particleType |
double | phi |
double | pInit |
std::map< int, float > | primaries |
float | SEnergy |
float | SEnergyN |
float | xE3x3Matrix |
float | xE3x3MatrixN |
float | xE5x5Matrix |
float | xE5x5MatrixN |
double | xIncidentEnergy |
float | xSEnergy |
float | xSEnergyN |
Description: Analysis of 2004 Hcal Test beam simulation
Usage: A Simwatcher class and can be activated from Oscarproducer module
Definition at line 43 of file HcalTB02Analysis.h.
HcalTB02Analysis::HcalTB02Analysis | ( | const edm::ParameterSet & | p | ) |
Definition at line 45 of file HcalTB02Analysis.cc.
References edm::ParameterSet::getParameter(), edm::ParameterSet::getUntrackedParameter(), hcalOnly, histo, and names.
: histo(0) { edm::ParameterSet m_Anal = p.getParameter<edm::ParameterSet>("HcalTB02Analysis"); hcalOnly = m_Anal.getUntrackedParameter<bool>("HcalClusterOnly",true); names = m_Anal.getParameter<std::vector<std::string> >("Names"); produces<HcalTB02HistoClass>(); edm::LogInfo("HcalTBSim") << "HcalTB02Analysis:: Initialised as observer of " << "BeginOfJob/BeginOfEvent/EndOfEvent with " << "Parameter values:\n \thcalOnly = " << hcalOnly; histo = new HcalTB02Histo(m_Anal); }
HcalTB02Analysis::~HcalTB02Analysis | ( | ) | [virtual] |
Definition at line 60 of file HcalTB02Analysis.cc.
References finish(), and histo.
{ finish(); if (histo) { delete histo; histo = 0; } edm::LogInfo("HcalTBSim") << "HcalTB02Analysis is deleting"; }
HcalTB02Analysis::HcalTB02Analysis | ( | const HcalTB02Analysis & | ) | [private] |
void HcalTB02Analysis::clear | ( | void | ) | [private] |
Definition at line 415 of file HcalTB02Analysis.cc.
References E5x5Matrix, E5x5MatrixN, E7x7Matrix, E7x7MatrixN, energyInCrystals, energyInScints, eta, incidentEnergy, maxTime, particleType, phi, pInit, primaries, SEnergy, SEnergyN, xE3x3Matrix, xE3x3MatrixN, xE5x5Matrix, xE5x5MatrixN, xIncidentEnergy, xSEnergy, and xSEnergyN.
Referenced by update().
{ primaries.clear(); particleType = 0; pInit = eta = phi = incidentEnergy = 0; SEnergy = E7x7Matrix = E5x5Matrix = SEnergyN = 0; E7x7MatrixN = E5x5MatrixN = 0; energyInScints.clear(); maxTime = 0; xIncidentEnergy = 0; energyInCrystals.clear(); xSEnergy = xSEnergyN = xE5x5Matrix = xE3x3Matrix = 0; xE5x5MatrixN = xE3x3MatrixN = 0; }
void HcalTB02Analysis::fillEvent | ( | HcalTB02HistoClass & | product | ) | [private] |
Definition at line 384 of file HcalTB02Analysis.cc.
References E5x5Matrix, E5x5MatrixN, E7x7Matrix, E7x7MatrixN, energyInCrystals, energyInScints, eta, incidentEnergy, maxTime, particleType, phi, pInit, primaries, SEnergy, SEnergyN, HcalTB02HistoClass::set_E5x5(), HcalTB02HistoClass::set_E5x5N(), HcalTB02HistoClass::set_E7x7(), HcalTB02HistoClass::set_E7x7N(), HcalTB02HistoClass::set_Eentry(), HcalTB02HistoClass::set_Einit(), HcalTB02HistoClass::set_eta(), HcalTB02HistoClass::set_ETot(), HcalTB02HistoClass::set_ETotN(), HcalTB02HistoClass::set_Nprim(), HcalTB02HistoClass::set_Ntimesli(), HcalTB02HistoClass::set_NUnit(), HcalTB02HistoClass::set_partType(), HcalTB02HistoClass::set_phi(), HcalTB02HistoClass::set_xE3x3(), HcalTB02HistoClass::set_xE3x3N(), HcalTB02HistoClass::set_xE5x5(), HcalTB02HistoClass::set_xE5x5N(), HcalTB02HistoClass::set_xEentry(), HcalTB02HistoClass::set_xETot(), HcalTB02HistoClass::set_xETotN(), HcalTB02HistoClass::set_xNUnit(), xE3x3Matrix, xE3x3MatrixN, xE5x5Matrix, xE5x5MatrixN, xIncidentEnergy, xSEnergy, and xSEnergyN.
Referenced by produce().
{ //Beam information product.set_Nprim(float(primaries.size())); product.set_partType(particleType); product.set_Einit(pInit/GeV); product.set_eta(eta); product.set_phi(phi); product.set_Eentry(incidentEnergy); //Calorimeter energy product.set_ETot(SEnergy/GeV ); product.set_E7x7(E7x7Matrix/GeV ); product.set_E5x5(E5x5Matrix/GeV ); product.set_ETotN(SEnergyN/GeV); product.set_E7x7N(E7x7MatrixN/GeV ); product.set_E5x5N(E5x5MatrixN/GeV ); product.set_NUnit(float(energyInScints.size())); product.set_Ntimesli(float(maxTime)); //crystal information product.set_xEentry(xIncidentEnergy); product.set_xNUnit(float(energyInCrystals.size())); product.set_xETot(xSEnergy/GeV); product.set_xETotN(xSEnergyN/GeV); product.set_xE5x5(xE5x5Matrix/GeV); product.set_xE3x3(xE3x3Matrix/GeV); product.set_xE5x5N(xE5x5MatrixN/GeV); product.set_xE3x3N(xE3x3MatrixN/GeV); }
void HcalTB02Analysis::finish | ( | ) | [private] |
Definition at line 432 of file HcalTB02Analysis.cc.
Referenced by ~HcalTB02Analysis().
{ /* //Profile std::ofstream oFile; oFile.open("profile.dat"); float st[19] = {0.8, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.8, 1.0, 1.0}; //cm of material (brass) in front of scintillator layer i: float w[19] = {7.45, //iron ! 6.00, 6.00, 6.00, 6.00, 6.00, //brass 6.00, 6.00, 6.00, 6.00, 6.60, //brass 6.60, 6.60, 6.60, 6.60, 6.60, //brass 8.90, 20.65, 19.5}; //brass,iron ! for (int ilayer = 0; ilayer<19; ilayer++) { // Histogram mean and sigma calculated from the ROOT histos edm::LogInfo("HcalTBSim") << "Layer number: " << ilayer << " Mean = " << histo->getMean(ilayer) << " sigma = " << histo->getRMS(ilayer) << " LThick= " << w[ilayer] << " SThick= " << st[ilayer]; oFile << ilayer << " " << histo->getMean(ilayer) << " " << histo->getRMS(ilayer) << " " << w[ilayer] << " " << st[ilayer] << std::endl; } oFile.close(); */ }
const HcalTB02Analysis& HcalTB02Analysis::operator= | ( | const HcalTB02Analysis & | ) | [private] |
void HcalTB02Analysis::produce | ( | edm::Event & | e, |
const edm::EventSetup & | |||
) | [virtual] |
Implements SimProducer.
Definition at line 75 of file HcalTB02Analysis.cc.
References fillEvent(), and edm::Event::put().
{ std::auto_ptr<HcalTB02HistoClass> product(new HcalTB02HistoClass); fillEvent(*product); e.put(product); }
void HcalTB02Analysis::update | ( | const BeginOfEvent * | ) | [private, virtual] |
This routine will be called when the appropriate signal arrives.
Implements Observer< const BeginOfEvent * >.
Definition at line 82 of file HcalTB02Analysis.cc.
References clear().
{ edm::LogInfo("HcalTBSim") << "HcalTB02Analysis: =====> Begin of event = " << (*evt) ()->GetEventID(); clear(); }
void HcalTB02Analysis::update | ( | const EndOfEvent * | ) | [private, virtual] |
This routine will be called when the appropriate signal arrives.
Implements Observer< const EndOfEvent * >.
Definition at line 89 of file HcalTB02Analysis.cc.
References gather_cfg::cout, E5x5Matrix, E5x5MatrixN, E7x7Matrix, E7x7MatrixN, energyInCrystals, energyInScints, eta, Exception, HcalTB02Histo::fillAllTime(), HcalTB02Histo::fillProfile(), HcalTB02Histo::fillTransProf(), CaloG4Hit::getEM(), HcalTB02HcalNumberingScheme::getetaID(), CaloG4Hit::getHadr(), CaloG4Hit::getIncidentEnergy(), HcalTB02HcalNumberingScheme::getlayerID(), HcalTB02HcalNumberingScheme::getphiID(), CaloG4Hit::getTimeSliceID(), CaloG4Hit::getTrackID(), CaloG4Hit::getUnitID(), hcalOnly, histo, i, incidentEnergy, edm::Service< T >::isAvailable(), funct::log(), LogDebug, max(), maxTime, min, names, npart, particleType, phi, pInit, funct::pow(), primaries, SEnergy, SEnergyN, mathSSE::sqrt(), funct::tan(), theta(), cond::rpcobgas::time, xE3x3Matrix, xE3x3MatrixN, xE5x5Matrix, xE5x5MatrixN, xIncidentEnergy, and xSEnergy.
{ edm::Service<edm::RandomNumberGenerator> rng; if ( ! rng.isAvailable()) { throw cms::Exception("Configuration") << "HcalTB02Analysis requires the RandomNumberGeneratorService\n" << "which is not present in the configuration file. " << "You must add the service\n in the configuration file or " << "remove the modules that require it."; } CLHEP::RandGaussQ randGauss(rng->getEngine()); // Look for the Hit Collection LogDebug("HcalTBSim") << "HcalTB02Analysis::Fill event " << (*evt)()->GetEventID(); // access to the G4 hit collections G4HCofThisEvent* allHC = (*evt)()->GetHCofThisEvent(); int ihit = 0; // HCAL std::string sd = names[0]; int HCHCid = G4SDManager::GetSDMpointer()->GetCollectionID(sd); CaloG4HitCollection* theHCHC = (CaloG4HitCollection*) allHC->GetHC(HCHCid); HcalTB02HcalNumberingScheme *org = new HcalTB02HcalNumberingScheme(); LogDebug("HcalTBSim") << "HcalTB02Analysis :: Hit Collection for " << sd << " of ID " << HCHCid << " is obtained at " <<theHCHC; int nentries = 0; nentries = theHCHC->entries(); if (nentries==0) return; int xentries = 0; int XTALSid=0; CaloG4HitCollection* theXTHC=0; if (!hcalOnly) { // XTALS sd = names[1]; XTALSid = G4SDManager::GetSDMpointer()->GetCollectionID(sd); // assert (XTALSid != 0); theXTHC = (CaloG4HitCollection*) allHC->GetHC(XTALSid); // assert (theXTHC != 0); //HcalTB02XtalNumberingScheme *xorg = new HcalTB02XtalNumberingScheme(); LogDebug("HcalTBSim") << "HcalTB02Analysis :: Hit Collection for " << sd << " of ID " << XTALSid << " is obtained at " << theXTHC; xentries = theXTHC->entries(); if (xentries==0) return; } LogDebug("HcalTBSim") << "HcalTB02Analysis :: There are " << nentries << " HCal hits, and" << xentries << " xtal hits"; float ETot=0., xETot=0.; //float maxE = 0.; //int maxI=0, int scintID=0, xtalID=0; // HCAL if (HCHCid >= 0 && theHCHC > 0) { for ( ihit = 0; ihit < nentries; ihit++) { CaloG4Hit* aHit = (*theHCHC)[ihit]; scintID = aHit->getUnitID(); int layer = org->getlayerID(scintID); float enEm = aHit->getEM(); float enhad = aHit->getHadr(); if (layer==0) { enEm =enEm/2.; enhad=enhad/2.; } energyInScints[scintID]+= enEm + enhad; primaries[aHit->getTrackID()]+= enEm + enhad; float time = aHit->getTimeSliceID(); if (time > maxTime) maxTime=(int)time; histo->fillAllTime(time); } // // Profile // float TowerEne[8][18], TowerEneCF[8][18], LayerEne[19], EnRing[100]; for (int iphi=0 ; iphi<8; iphi++) { for (int jeta=0 ; jeta<18; jeta++) { TowerEne[iphi][jeta]=0.; TowerEneCF[iphi][jeta]=0.; } } for (int ilayer=0; ilayer<19; ilayer++) LayerEne[ilayer]=0.; for (int iring=0; iring<100; iring++) EnRing[iring]=0.; for (std::map<int,float>::iterator is = energyInScints.begin(); is!= energyInScints.end(); is++) { ETot = (*is).second; int layer = org->getlayerID((*is).first); if ( (layer!=17) && (layer!=18) ) { float eta = org->getetaID((*is).first); float phi = org->getphiID((*is).first); SEnergy += ETot; TowerEne[(int)phi][(int)eta] += ETot; TowerEneCF[(int)phi][(int)eta] += ETot*(1.+ 0.1*randGauss.fire() ); double dR=0.08727*std::sqrt( (eta-8.)*(eta-8.) + (phi-3.)*(phi-3.) ); EnRing[(int)(dR/0.01)] += ETot; } LayerEne[layer] += ETot; } for (int ilayer=0 ; ilayer<19 ; ilayer++) { histo->fillProfile(ilayer,LayerEne[ilayer]/GeV); } for (int iring=0; iring<100; iring++) histo->fillTransProf(0.01*iring+0.005,EnRing[iring]/GeV); for (int iphi=0 ; iphi<8; iphi++) { for (int jeta=0 ; jeta<18; jeta++) { //SEnergyN += TowerEneCF[iphi][jeta] + 3.2*randGauss.fire(); // LHEP SEnergyN += TowerEneCF[iphi][jeta] + 3.*randGauss.fire(); // QGSP //double dR=0.08727*sqrt( (jeta-8.)*(jeta-8.)+(iphi-3.)*(iphi-3.) ); //cout.testOut << " phi= " << iphi << " eta= " << jeta // << " TowerEne[iphi,jeta]= " << TowerEne[iphi][jeta] // << "dR= " << dR << endl; //double Rand = 3.2*randGauss.fire(); // LHEP double Rand = 3.*randGauss.fire(); // QGSP if ( (iphi>=0) && (iphi<7) ) { if ( (jeta>=5) && (jeta<12) ) { E7x7Matrix += TowerEne[iphi][jeta]; E7x7MatrixN += TowerEneCF[iphi][jeta] + Rand; if ( (iphi>=1) && (iphi<6) ) { if ( (jeta>=6) && (jeta<11) ) { E5x5Matrix += TowerEne[iphi][jeta]; E5x5MatrixN += TowerEneCF[iphi][jeta] + Rand; } } } } } } // // Find Primary info: // int trackID = 0; G4PrimaryParticle* thePrim=0; G4int nvertex = (*evt)()->GetNumberOfPrimaryVertex(); LogDebug("HcalTBSim") << "HcalTB02Analysis :: Event has " << nvertex << " vertex"; if (nvertex==0) edm::LogWarning("HcalTBSim") << "HcalTB02Analysis:: End Of Event " << "ERROR: no vertex"; for (int i = 0 ; i<nvertex; i++) { G4PrimaryVertex* avertex = (*evt)()->GetPrimaryVertex(i); if (avertex == 0) { edm::LogWarning("HcalTBSim") << "HcalTB02Analysis:: End Of Event " << "ERROR: pointer to vertex = 0"; } else { int npart = avertex->GetNumberOfParticle(); LogDebug("HcalTBSim") << "HcalTB02Analysis::Vertex number :" << i << " with " << npart << " particles"; if (thePrim==0) thePrim=avertex->GetPrimary(trackID); } } double px=0.,py=0.,pz=0.; if (thePrim != 0) { px = thePrim->GetPx(); py = thePrim->GetPy(); pz = thePrim->GetPz(); pInit = std::sqrt(pow(px,2.)+pow(py,2.)+pow(pz,2.)); if (pInit==0) { edm::LogWarning("HcalTBSim") << "HcalTB02Analysis:: End Of Event " << " ERROR: primary has p=0 "; } else { float costheta = pz/pInit; float theta = acos(std::min(std::max(costheta,float(-1.)),float(1.))); eta = -log(tan(theta/2)); if (px != 0) phi = atan(py/px); } particleType = thePrim->GetPDGcode(); } else { LogDebug("HcalTBSim") << "HcalTB02Analysis:: End Of Event ERROR: could" << " not find primary "; } CaloG4Hit* firstHit =(*theHCHC)[0]; incidentEnergy = (firstHit->getIncidentEnergy()/GeV); }// number of Hits > 0 if (!hcalOnly) { // XTALS if (XTALSid >= 0 && theXTHC > 0) { for (int xihit = 0; xihit < xentries; xihit++) { CaloG4Hit* xaHit = (*theXTHC)[xihit]; float xenEm = xaHit->getEM(); float xenhad = xaHit->getHadr(); xtalID = xaHit->getUnitID(); energyInCrystals[xtalID]+= xenEm + xenhad; } float xCrysEne[7][7]; for (int irow=0 ; irow<7; irow++) { for (int jcol=0 ; jcol<7; jcol++) { xCrysEne[irow][jcol]=0.; } } for (std::map<int,float>::iterator is = energyInCrystals.begin(); is!= energyInCrystals.end(); is++) { int xtalID = (*is).first; xETot = (*is).second; int irow = (int)(xtalID/100.); int jcol = (int)(xtalID-100.*irow); xSEnergy += xETot; xCrysEne[irow][jcol] = xETot; float dR=std::sqrt( 0.01619*0.01619*(jcol-3)*(jcol-3) + 0.01606*0.01606*(irow-3)*(irow-3) ); histo->fillTransProf(dR,xETot*1.05); if ( (irow>0) && (irow<6) ) { if ( (jcol>0) && (jcol<6) ) { xE5x5Matrix += xCrysEne[irow][jcol]; xE5x5MatrixN += xCrysEne[irow][jcol] + 108.5*randGauss.fire(); if ( (irow>1) && (irow<5) ) { if ( (jcol>1) && (jcol<5) ) { xE3x3Matrix += xCrysEne[irow][jcol]; xE3x3MatrixN += xCrysEne[irow][jcol] +108.5*randGauss.fire(); } } } } } if (!hcalOnly) { // assert(theXTHC); if ( theXTHC != 0 ) { CaloG4Hit* xfirstHit =(*theXTHC)[0]; xIncidentEnergy = xfirstHit->getIncidentEnergy()/GeV; } } }// number of Hits > 0 } int iEvt = (*evt)()->GetEventID(); if (iEvt < 10) std::cout << " Event " << iEvt << std::endl; else if ((iEvt < 100) && (iEvt%10 == 0)) std::cout << " Event " << iEvt << std::endl; else if ((iEvt < 1000) && (iEvt%100 == 0)) std::cout << " Event " << iEvt << std::endl; else if ((iEvt < 10000) && (iEvt%1000 == 0)) std::cout << " Event " << iEvt << std::endl; }
float HcalTB02Analysis::E5x5Matrix [private] |
Definition at line 82 of file HcalTB02Analysis.h.
Referenced by clear(), fillEvent(), and update().
float HcalTB02Analysis::E5x5MatrixN [private] |
Definition at line 83 of file HcalTB02Analysis.h.
Referenced by clear(), fillEvent(), and update().
float HcalTB02Analysis::E7x7Matrix [private] |
Definition at line 82 of file HcalTB02Analysis.h.
Referenced by clear(), fillEvent(), and update().
float HcalTB02Analysis::E7x7MatrixN [private] |
Definition at line 83 of file HcalTB02Analysis.h.
Referenced by clear(), fillEvent(), and update().
std::map<int,float> HcalTB02Analysis::energyInCrystals [private] |
Definition at line 78 of file HcalTB02Analysis.h.
Referenced by clear(), fillEvent(), and update().
std::map<int,float> HcalTB02Analysis::energyInScints [private] |
Definition at line 78 of file HcalTB02Analysis.h.
Referenced by clear(), fillEvent(), and update().
double HcalTB02Analysis::eta [private] |
Definition at line 81 of file HcalTB02Analysis.h.
Referenced by clear(), fillEvent(), and update().
std::string HcalTB02Analysis::fileNameTuple [private] |
Definition at line 74 of file HcalTB02Analysis.h.
bool HcalTB02Analysis::hcalOnly [private] |
Definition at line 73 of file HcalTB02Analysis.h.
Referenced by HcalTB02Analysis(), and update().
HcalTB02Histo* HcalTB02Analysis::histo [private] |
Definition at line 70 of file HcalTB02Analysis.h.
Referenced by HcalTB02Analysis(), update(), and ~HcalTB02Analysis().
double HcalTB02Analysis::incidentEnergy [private] |
Definition at line 81 of file HcalTB02Analysis.h.
Referenced by clear(), fillEvent(), and update().
float DTParametrizedDriftAlgo::maxTime [private] |
Definition at line 84 of file HcalTB02Analysis.h.
Referenced by clear(), fillEvent(), and update().
std::vector<std::string> HcalTB02Analysis::names [private] |
Definition at line 75 of file HcalTB02Analysis.h.
Referenced by HcalTB02Analysis(), and update().
int HcalTB02Analysis::particleType [private] |
Definition at line 80 of file HcalTB02Analysis.h.
Referenced by clear(), fillEvent(), and update().
double HcalTB02Analysis::phi [private] |
Definition at line 81 of file HcalTB02Analysis.h.
Referenced by clear(), fillEvent(), and update().
double HcalTB02Analysis::pInit [private] |
Definition at line 81 of file HcalTB02Analysis.h.
Referenced by clear(), fillEvent(), and update().
std::map<int,float> HcalTB02Analysis::primaries [private] |
Definition at line 79 of file HcalTB02Analysis.h.
Referenced by clear(), fillEvent(), and update().
float HcalTB02Analysis::SEnergy [private] |
Definition at line 82 of file HcalTB02Analysis.h.
Referenced by clear(), fillEvent(), and update().
float HcalTB02Analysis::SEnergyN [private] |
Definition at line 83 of file HcalTB02Analysis.h.
Referenced by clear(), fillEvent(), and update().
float HcalTB02Analysis::xE3x3Matrix [private] |
Definition at line 87 of file HcalTB02Analysis.h.
Referenced by clear(), fillEvent(), and update().
float HcalTB02Analysis::xE3x3MatrixN [private] |
Definition at line 88 of file HcalTB02Analysis.h.
Referenced by clear(), fillEvent(), and update().
float HcalTB02Analysis::xE5x5Matrix [private] |
Definition at line 87 of file HcalTB02Analysis.h.
Referenced by clear(), fillEvent(), and update().
float HcalTB02Analysis::xE5x5MatrixN [private] |
Definition at line 88 of file HcalTB02Analysis.h.
Referenced by clear(), fillEvent(), and update().
double HcalTB02Analysis::xIncidentEnergy [private] |
Definition at line 85 of file HcalTB02Analysis.h.
Referenced by clear(), fillEvent(), and update().
float HcalTB02Analysis::xSEnergy [private] |
Definition at line 86 of file HcalTB02Analysis.h.
Referenced by clear(), fillEvent(), and update().
float HcalTB02Analysis::xSEnergyN [private] |
Definition at line 86 of file HcalTB02Analysis.h.
Referenced by clear(), and fillEvent().