00001
00002 #include "FWCore/MessageLogger/interface/MessageLogger.h"
00003 #include "MagneticField/Engine/interface/MagneticField.h"
00004
00005 #include "Alignment/TwoBodyDecay/interface/TwoBodyDecayEstimator.h"
00006 #include "Alignment/TwoBodyDecay/interface/TwoBodyDecayModel.h"
00007 #include "Alignment/TwoBodyDecay/interface/TwoBodyDecayDerivatives.h"
00008
00009
00010 TwoBodyDecayEstimator::TwoBodyDecayEstimator( const edm::ParameterSet & config )
00011 {
00012 const edm::ParameterSet & estimatorConfig = config.getParameter< edm::ParameterSet >( "EstimatorParameters" );
00013
00014 theRobustificationConstant = estimatorConfig.getUntrackedParameter< double >( "RobustificationConstant", 1.0 );
00015 theMaxIterDiff = estimatorConfig.getUntrackedParameter< double >( "MaxIterationDifference", 1e-2 );
00016 theMaxIterations = estimatorConfig.getUntrackedParameter< int >( "MaxIterations", 100 );
00017 theUseInvariantMass = estimatorConfig.getUntrackedParameter< bool >( "UseInvariantMass", true );
00018 }
00019
00020
00021 TwoBodyDecay TwoBodyDecayEstimator::estimate( const std::vector< RefCountedLinearizedTrackState > & linTracks,
00022 const TwoBodyDecayParameters & linearizationPoint,
00023 const TwoBodyDecayVirtualMeasurement & vm ) const
00024 {
00025 if ( linTracks.size() != 2 )
00026 {
00027 edm::LogInfo( "Alignment" ) << "@SUB=TwoBodyDecayEstimator::estimate"
00028 << "Need 2 linearized tracks, got " << linTracks.size() << ".\n";
00029 return TwoBodyDecay();
00030 }
00031
00032 AlgebraicVector vecM;
00033 AlgebraicSymMatrix matG;
00034 AlgebraicMatrix matA;
00035
00036 bool check = constructMatrices( linTracks, linearizationPoint, vm, vecM, matG, matA );
00037 if ( !check ) return TwoBodyDecay();
00038
00039 AlgebraicSymMatrix matGPrime;
00040 AlgebraicSymMatrix invAtGPrimeA;
00041 AlgebraicVector vecEstimate;
00042 AlgebraicVector res;
00043
00044 int nIterations = 0;
00045 bool stopIteration = false;
00046
00047
00048 int checkInversion = 0;
00049 double chi2 = 0.;
00050 double oldChi2 = 0.;
00051 bool isValid = true;
00052
00053 while( !stopIteration )
00054 {
00055 matGPrime = matG;
00056
00057
00058 if ( nIterations > 0 )
00059 {
00060 for ( int i = 0; i < 10; i++ )
00061 {
00062 double sigma = 1./sqrt( matG[i][i] );
00063 double sigmaTimesR = sigma*theRobustificationConstant;
00064 double absRes = fabs( res[i] );
00065 if ( absRes > sigmaTimesR ) matGPrime[i][i] *= sigmaTimesR/absRes;
00066 }
00067 }
00068
00069
00070 invAtGPrimeA = ( matGPrime.similarityT(matA) ).inverse( checkInversion );
00071 if ( checkInversion != 0 )
00072 {
00073 LogDebug( "Alignment" ) << "@SUB=TwoBodyDecayEstimator::estimate"
00074 << "Matrix At*G'*A not invertible (in iteration " << nIterations
00075 << ", ifail = " << checkInversion << ").\n";
00076 isValid = false;
00077 break;
00078 }
00079 vecEstimate = invAtGPrimeA*matA.T()*matGPrime*vecM;
00080 res = matA*vecEstimate - vecM;
00081 chi2 = dot( res, matGPrime*res );
00082
00083 if ( ( nIterations > 0 ) && ( fabs( chi2 - oldChi2 ) < theMaxIterDiff ) ) stopIteration = true;
00084 if ( nIterations == theMaxIterations ) stopIteration = true;
00085
00086 oldChi2 = chi2;
00087 nIterations++;
00088 }
00089
00090 if ( isValid )
00091 {
00092 AlgebraicSymMatrix pullsCov = matGPrime.inverse( checkInversion ) - invAtGPrimeA.similarity( matA );
00093 thePulls = AlgebraicVector( matG.num_col(), 0 );
00094 for ( int i = 0; i < pullsCov.num_col(); i++ ) thePulls[i] = res[i]/sqrt( pullsCov[i][i] );
00095 }
00096
00097 theNdf = matA.num_row() - matA.num_col();
00098
00099 return TwoBodyDecay( TwoBodyDecayParameters( vecEstimate, invAtGPrimeA ), chi2, isValid );
00100 }
00101
00102
00103 bool TwoBodyDecayEstimator::constructMatrices( const std::vector< RefCountedLinearizedTrackState > & linTracks,
00104 const TwoBodyDecayParameters & linearizationPoint,
00105 const TwoBodyDecayVirtualMeasurement & vm,
00106 AlgebraicVector & vecM, AlgebraicSymMatrix & matG, AlgebraicMatrix & matA ) const
00107 {
00108
00109 PerigeeLinearizedTrackState* linTrack1 = dynamic_cast<PerigeeLinearizedTrackState*>( linTracks[0].get() );
00110 PerigeeLinearizedTrackState* linTrack2 = dynamic_cast<PerigeeLinearizedTrackState*>( linTracks[1].get() );
00111
00112 AlgebraicVector trackParam1 = asHepVector( linTrack1->predictedStateParameters() );
00113 AlgebraicVector trackParam2 = asHepVector( linTrack2->predictedStateParameters() );
00114
00115 if ( checkValues( trackParam1 ) || checkValues( trackParam2 ) || checkValues( linearizationPoint.parameters() ) ) return false;
00116
00117 AlgebraicVector vecLinParam = linearizationPoint.sub( TwoBodyDecayParameters::px,
00118 TwoBodyDecayParameters::mass );
00119
00120 double zMagField = linTrack1->track().field()->inInverseGeV( linTrack1->linearizationPoint() ).z();
00121
00122 int checkInversion = 0;
00123
00124 TwoBodyDecayDerivatives tpeDerivatives( linearizationPoint[TwoBodyDecayParameters::mass], vm.secondaryMass() );
00125 std::pair< AlgebraicMatrix, AlgebraicMatrix > derivatives = tpeDerivatives.derivatives( linearizationPoint );
00126
00127 TwoBodyDecayModel decayModel( linearizationPoint[TwoBodyDecayParameters::mass], vm.secondaryMass() );
00128 std::pair< AlgebraicVector, AlgebraicVector > linCartMomenta = decayModel.cartesianSecondaryMomenta( linearizationPoint );
00129
00130
00131 AlgebraicMatrix matA1 = asHepMatrix( linTrack1->positionJacobian() );
00132 AlgebraicMatrix matB1 = asHepMatrix( linTrack1->momentumJacobian() );
00133 AlgebraicVector vecC1 = asHepVector( linTrack1->constantTerm() );
00134
00135 AlgebraicVector curvMomentum1 = asHepVector( linTrack1->predictedStateMomentumParameters() );
00136 AlgebraicMatrix curv2cart1 = decayModel.curvilinearToCartesianJacobian( curvMomentum1, zMagField );
00137
00138 AlgebraicVector cartMomentum1 = decayModel.convertCurvilinearToCartesian( curvMomentum1, zMagField );
00139 vecC1 += matB1*( curvMomentum1 - curv2cart1*cartMomentum1 );
00140 matB1 = matB1*curv2cart1;
00141
00142 AlgebraicMatrix matF1 = derivatives.first;
00143 AlgebraicVector vecD1 = linCartMomenta.first - matF1*vecLinParam;
00144 AlgebraicVector vecM1 = trackParam1 - vecC1 - matB1*vecD1;
00145 AlgebraicSymMatrix covM1 = asHepMatrix( linTrack1->predictedStateError() );
00146
00147
00148 AlgebraicSymMatrix matG1 = covM1.inverse( checkInversion );
00149 if ( checkInversion != 0 )
00150 {
00151 LogDebug( "Alignment" ) << "@SUB=TwoBodyDecayEstimator::constructMatrices"
00152 << "Matrix covM1 not invertible.";
00153 return false;
00154 }
00155
00156
00157 AlgebraicMatrix matU1 = diagonalize( &matG1 ).T();
00158
00159
00160 AlgebraicMatrix matA2 = asHepMatrix( linTrack2->positionJacobian() );
00161 AlgebraicMatrix matB2 = asHepMatrix( linTrack2->momentumJacobian() );
00162 AlgebraicVector vecC2 = asHepVector( linTrack2->constantTerm() );
00163
00164 AlgebraicVector curvMomentum2 = asHepVector( linTrack2->predictedStateMomentumParameters() );
00165 AlgebraicMatrix curv2cart2 = decayModel.curvilinearToCartesianJacobian( curvMomentum2, zMagField );
00166
00167 AlgebraicVector cartMomentum2 = decayModel.convertCurvilinearToCartesian( curvMomentum2, zMagField );
00168 vecC2 += matB2*( curvMomentum2 - curv2cart2*cartMomentum2 );
00169 matB2 = matB2*curv2cart2;
00170
00171 AlgebraicMatrix matF2 = derivatives.second;
00172 AlgebraicVector vecD2 = linCartMomenta.second - matF2*vecLinParam;
00173 AlgebraicVector vecM2 = trackParam2 - vecC2 - matB2*vecD2;
00174 AlgebraicSymMatrix covM2 = asHepMatrix( linTrack2->predictedStateError() );
00175
00176 AlgebraicSymMatrix matG2 = covM2.inverse( checkInversion );
00177 if ( checkInversion != 0 )
00178 {
00179 LogDebug( "Alignment" ) << "@SUB=TwoBodyDecayEstimator::constructMatrices"
00180 << "Matrix covM2 not invertible.";
00181 return false;
00182 }
00183
00184
00185 AlgebraicMatrix matU2 = diagonalize( &matG2 ).T();
00186
00187
00188 vecM = AlgebraicVector( 14, 0 );
00189 vecM.sub( 1, matU1*vecM1 );
00190 vecM.sub( 6, matU2*vecM2 );
00191
00192 vecM( 11 ) = vm.primaryMass();
00193
00194 vecM.sub( 12, vm.beamSpot() );
00195
00196
00197 matG = AlgebraicSymMatrix( 14, 0 );
00198 matG.sub( 1, matG1 );
00199 matG.sub( 6, matG2 );
00200
00201 matG[10][10] = 1./( vm.primaryWidth()*vm.primaryWidth() );
00202
00203 matG.sub( 12, vm.beamSpotError().inverse( checkInversion ) );
00204
00205
00206 matA = AlgebraicMatrix( 14, 9, 0 );
00207 matA.sub( 1, 1, matU1*matA1 );
00208 matA.sub( 6, 1, matU2*matA2 );
00209 matA.sub( 1, 4, matU1*matB1*matF1 );
00210 matA.sub( 6, 4, matU2*matB2*matF2 );
00211 matA( 11, 9 ) = 1.;
00212 matA( 12, 1 ) = 1.;
00213 matA( 13, 2 ) = 1.;
00214 matA( 14, 3 ) = 1.;
00215
00216 return true;
00217 }
00218
00219
00220 bool TwoBodyDecayEstimator::checkValues( const AlgebraicVector & vec ) const
00221 {
00222 bool isNan = false;
00223 bool isInf = false;
00224
00225 for ( int i = 0; i < vec.num_col(); ++i )
00226 {
00227 isNan = isNan || std::isnan( vec[i] );
00228 isInf = isInf || std::isinf( vec[i] );
00229 }
00230
00231 return ( isNan || isInf );
00232 }