CMS 3D CMS Logo

Public Member Functions | Private Types | Private Member Functions

CastorFastClusterProducer Class Reference

#include <FastSimulation/ForwardDetectors/plugins/CastorFastClusterProducer.cc>

Inheritance diagram for CastorFastClusterProducer:
edm::EDProducer edm::ProducerBase edm::ProductRegistryHelper

List of all members.

Public Member Functions

 CastorFastClusterProducer (const edm::ParameterSet &)
 ~CastorFastClusterProducer ()

Private Types

typedef std::vector
< reco::CastorCluster
CastorClusterCollection
typedef ROOT::Math::RhoEtaPhiPoint ClusterPoint
typedef math::XYZPointD Point

Private Member Functions

virtual void beginRun (edm::Run &, edm::EventSetup const &)
virtual void endRun ()
double make_noise ()
virtual void produce (edm::Event &, const edm::EventSetup &)

Detailed Description

Description: <one line="" class="" summary>="">

Implementation: <Notes on="" implementation>="">

Definition at line 17 of file CastorFastClusterProducer.h.


Member Typedef Documentation

Definition at line 31 of file CastorFastClusterProducer.h.

typedef ROOT::Math::RhoEtaPhiPoint CastorFastClusterProducer::ClusterPoint [private]

Definition at line 30 of file CastorFastClusterProducer.h.

Definition at line 29 of file CastorFastClusterProducer.h.


Constructor & Destructor Documentation

CastorFastClusterProducer::CastorFastClusterProducer ( const edm::ParameterSet iConfig) [explicit]

Definition at line 55 of file CastorFastClusterProducer.cc.

{
   //register your products
   produces<CastorClusterCollection>();
   
   //now do what ever other initialization is needed

}
CastorFastClusterProducer::~CastorFastClusterProducer ( )

Definition at line 65 of file CastorFastClusterProducer.cc.

{
 
   // do anything here that needs to be done at desctruction time
   // (e.g. close files, deallocate resources etc.)

}

Member Function Documentation

void CastorFastClusterProducer::beginRun ( edm::Run run,
edm::EventSetup const &  es 
) [private, virtual]

Reimplemented from edm::EDProducer.

Definition at line 365 of file CastorFastClusterProducer.cc.

{
}
void CastorFastClusterProducer::endRun ( void  ) [private, virtual]

Definition at line 371 of file CastorFastClusterProducer.cc.

                                  {
}
double CastorFastClusterProducer::make_noise ( ) [private]

Definition at line 349 of file CastorFastClusterProducer.cc.

References query::result.

                                             {
        double result = -1.;
        TRandom3 r2(0);
        double mu_noise = 0.053; // GeV (from 1.214 ADC) per channel
        double sigma_noise = 0.027; // GeV (from 0.6168 ADC) per channel
        
        while (result < 0.) {
                result = r2.Gaus(mu_noise,sigma_noise);
        }
        
        return result;
}
void CastorFastClusterProducer::produce ( edm::Event iEvent,
const edm::EventSetup iSetup 
) [private, virtual]

Implements edm::EDProducer.

Definition at line 80 of file CastorFastClusterProducer.cc.

References a, reco::Candidate::energy(), reco::Candidate::eta(), Gamma, genParticleCandidates2GenParticles_cfi::genParticles, edm::Event::getByLabel(), i, funct::log(), L1TEmulatorMonitor_cff::p, reco::Candidate::pdgId(), reco::Candidate::phi(), funct::pow(), edm::RefVector< C, T, F >::push_back(), edm::Event::put(), csvReporter::r, dt_offlineAnalysis_common_cff::reco, ExpressReco_HICollisions_FallBack::sigma, mathSSE::sqrt(), cond::rpcobtemp::temp, tmax, and ExpressReco_HICollisions_FallBack::x.

{
   using namespace edm;
   using namespace reco;
   using namespace std;
   using namespace TMath;
   
   //
   // Make CastorCluster objects
   //
   
   //cout << "entering event" << endl;
   
   Handle<GenParticleCollection> genParticles;
   iEvent.getByLabel("genParticles", genParticles);
   
   // make pointer to towers that will be made
   auto_ptr<CastorClusterCollection> CastorClusters (new CastorClusterCollection);
   
   /*
   // declare castor array
   double castorplus [4][16]; // (0,x): Energies - (1,x): emEnergies - (2,x): hadEnergies - (3,x): phi position - eta = 5.9
   double castormin [4][16];  // (0,x): Energies - (1,x): emEnergies - (2,x): hadEnergies - (3,x): phi position - eta = -5.9
   // set phi values of array sectors and everything else to zero
   for (int j = 0; j < 16; j++) {
        castorplus[3][j] = -2.94524 + j*0.3927;
        castormin[3][j] = -2.94524 + j*0.3927;
        castorplus[0][j] = 0.;
        castormin[0][j] = 0.;
        castorplus[1][j] = 0.;
        castormin[1][j] = 0.;
        castorplus[2][j] = 0.;
        castormin[2][j] = 0.; 
        //castorplus[4][j] = 0.;
        //castormin[4][j] = 0.;
   }
   
   // declare properties vectors
   vector<double> depthplus[16];
   vector<double> depthmin[16];
   vector<double> fhotplus [16];
   vector<double> fhotmin [16];
   vector<double> energyplus [16];
   vector<double> energymin [16];
   
   for (int i=0;i<16;i++) {
        depthplus[i].clear();
        depthmin[i].clear();
        fhotplus[i].clear();
        fhotmin[i].clear();
        energyplus[i].clear();
        energymin[i].clear();
   }
   */
   
   //cout << "declared everything" << endl;
   
   // start particle loop
   for (size_t i = 0; i < genParticles->size(); ++i) {
        const Candidate & p = (*genParticles)[i];
        
        // select particles in castor
        if ( fabs(p.eta()) > 5.2 && fabs(p.eta()) < 6.6) {
        
            //cout << "found particle in castor, start calculating" << endl;
            
            // declare energies
            double gaus_E = -1.; 
            double emEnergy = 0.;
            double hadEnergy = 0.;
            //double fhot = 0.;
            //double depth = 0.;
            
            // add energies - em: if particle is e- or gamma
            if (p.pdgId() == 11 || p.pdgId() == 22) {
                
                while ( gaus_E < 0.) {
                // apply energy smearing with gaussian random generator
                TRandom3 r(0);
                // use sigma/E parametrization for the EM sections of CASTOR TB 2007 results
                double sigma = p.energy()*(sqrt(pow(0.044,2) + pow(0.513/sqrt(p.energy()),2)));
                gaus_E = r.Gaus(p.energy(),sigma);
                }
            
                // calculate electromagnetic electron/photon energy leakage
                double tmax;
                double a;
                double cte;
                if ( p.pdgId() == 11) { cte = -0.5; } else { cte = 0.5; }
                tmax = 1.0*(log(gaus_E/0.0015)+cte);
                a = tmax*0.5 + 1;
                double leakage;
                double x = 0.5*19.38;
                leakage = gaus_E - gaus_E*Gamma(a,x);
                
                // add emEnergy
                emEnergy = gaus_E - leakage;
                // add hadEnergy leakage
                hadEnergy = leakage;
                
                // make cluster
                ClusterPoint pt1;
                if (p.eta() > 0.) {ClusterPoint temp(88.5,5.9,p.phi()); pt1 = temp;}
                if (p.eta() < 0.) {ClusterPoint temp(88.5,-5.9,p.phi()); pt1 = temp;}
                Point pt2(pt1);
                CastorTowerRefVector refvector;
                CastorClusters->push_back(reco::CastorCluster(gaus_E,pt2,emEnergy,hadEnergy,emEnergy/gaus_E,0.,0.,0.,0.,refvector));
                
            } else {
            
                while (gaus_E < 0.) {
                // apply energy smearing with gaussian random generator
                TRandom3 r(0);
                // use sigma/E parametrization for the HAD sections of CASTOR TB 2007 results
                double sigma = p.energy()*(sqrt(pow(0.121,2) + pow(1.684/sqrt(p.energy()),2)));
                gaus_E = r.Gaus(p.energy(),sigma);
                }
                
                // add hadEnergy
                hadEnergy = gaus_E;
                
                // make cluster
                ClusterPoint pt1;
                if (p.eta() > 0.) {ClusterPoint temp(88.5,5.9,p.phi()); pt1 = temp;}
                if (p.eta() < 0.) {ClusterPoint temp(88.5,-5.9,p.phi()); pt1 = temp;}
                Point pt2(pt1);
                CastorTowerRefVector refvector;
                CastorClusters->push_back(reco::CastorCluster(gaus_E,pt2,0.,hadEnergy,0.,0.,0.,0.,0.,refvector));
            }
            
            /*
            // make tower
            
            // set sector
            int sector = -1;
            for (int j = 0; j < 16; j++) {
                double a = -M_PI + j*0.3927;
                double b = -M_PI + (j+1)*0.3927;
                if ( (p.phi() > a) && (p.phi() < b)) {  
                   sector = j;
                }
            }
            
            // set eta
            if (p.eta() > 0) { 
                castorplus[0][sector] = castorplus[0][sector] + gaus_E;
                castorplus[1][sector] = castorplus[1][sector] + emEnergy;
                castorplus[2][sector] = castorplus[2][sector] + hadEnergy;
                
                depthplus[sector].push_back(depth);
                fhotplus[sector].push_back(fhot);
                energyplus[sector].push_back(gaus_E);
                //cout << "filled vectors" << endl;
                //cout << "energyplus size = " << energyplus[sector].size() << endl;
                //cout << "depthplus size = " << depthplus[sector].size() << endl;
                //cout << "fhotplus size = " << fhotplus[sector].size() << endl;
                
            } else { 
                castormin[0][sector] = castormin[0][sector] + gaus_E;
                castormin[1][sector] = castormin[1][sector] + emEnergy;
                castormin[2][sector] = castormin[2][sector] + hadEnergy;
                
                
                depthmin[sector].push_back(depth);
                fhotmin[sector].push_back(fhot);
                energymin[sector].push_back(gaus_E);
                //cout << "filled vectors" << endl;
                
            }
            */
            
        }
        
   }
   
   /*
   // substract pedestals/noise
   for (int j = 0; j < 16; j++) {
        double hadnoise = 0.;
        for (int i=0;i<12;i++) {
                hadnoise = hadnoise + make_noise();
        }
        castorplus[0][j] = castorplus[0][j] - hadnoise - make_noise() - make_noise();
        castormin[0][j] = castormin[0][j] - hadnoise - make_noise() - make_noise();
        castorplus[1][j] = castorplus[1][j] - make_noise() - make_noise();
        castormin[1][j] = castormin[1][j] - make_noise() - make_noise();
        castorplus[2][j] = castorplus[2][j] - hadnoise;
        castormin[2][j] = castormin[2][j] - hadnoise; 
        
        // set possible negative values to zero
        if (castorplus[0][j] < 0.) castorplus[0][j] = 0.;
        if (castormin[0][j] < 0.) castormin[0][j] = 0.;
        if (castorplus[1][j] < 0.) castorplus[1][j] = 0.;
        if (castormin[1][j] < 0.) castormin[1][j] = 0.;
        if (castorplus[2][j] < 0.) castorplus[2][j] = 0.;
        if (castormin[2][j] < 0.) castormin[2][j] = 0.;
   }
   */
   
   /*
   // store towers from castor arrays
   // eta = 5.9
   for (int j=0;j<16;j++) {
        if (castorplus[0][j] > 0.) {
            
            double fem = 0.;
            fem = castorplus[1][j]/castorplus[0][j]; 
            ClusterPoint pt1(88.5,5.9,castorplus[3][j]);
            Point pt2(pt1); 
            
            // parametrize depth and fhot from full sim
            // get fit parameters from energy
            // get random number according to distribution with fit parameters
            double depth_mean = 0.;
            double fhot_mean = 0.;
            double sum_energy = 0.;
            
            //cout << "energyplus size = " << energyplus[j].size()<< endl;
            for (size_t p = 0; p<energyplus[j].size();p++) {
                depth_mean = depth_mean + depthplus[j][p]*energyplus[j][p];
                fhot_mean = fhot_mean + fhotplus[j][p]*energyplus[j][p];
                sum_energy = sum_energy + energyplus[j][p];
            }
            depth_mean = depth_mean/sum_energy;
            fhot_mean = fhot_mean/sum_energy;
            cout << "computed depth/fhot" << endl;
            
            
            //std::vector<CastorCell> usedCells;
            CastorCellRefVector refvector;
            CastorClusters->push_back(reco::CastorCluster(castorplus[0][j],pt2,castorplus[1][j],castorplus[2][j],fem,depth_mean,fhot_mean,refvector));  
        }
   }
   // eta = -5.9
   for (int j=0;j<16;j++) {
        if (castormin[0][j] > 0.) {
            double fem = 0.;
            fem = castormin[1][j]/castormin[0][j]; 
            ClusterPoint pt1(88.5,-5.9,castormin[3][j]);
            Point pt2(pt1); 
            
            // parametrize depth and fhot from full sim
            // get fit parameters from energy
            // get random number according to distribution with fit parameters
            double depth_mean = 0.;
            double fhot_mean = 0.;
            double sum_energy = 0.;
            
            
            for (size_t p = 0; p<energymin[j].size();p++) {
                depth_mean = depth_mean + depthmin[j][p]*energymin[j][p];
                fhot_mean = fhot_mean + fhotmin[j][p]*energymin[j][p];
                sum_energy = sum_energy + energymin[j][p];
            }
            depth_mean = depth_mean/sum_energy;
            fhot_mean = fhot_mean/sum_energy;
            
            
            //std::vector<CastorCell> usedCells;
            CastorCellRefVector refvector;
            CastorClusters->push_back(reco::CastorCluster(castormin[0][j],pt2,castormin[1][j],castormin[2][j],fem,depth_mean,fhot_mean,refvector));     
        }
   }
   */
        
   iEvent.put(CastorClusters); 
   
}