CMS 3D CMS Logo

TwoBodyDecayLinearizationPointFinder.cc
Go to the documentation of this file.
1 
5 
7  const std::vector<RefCountedLinearizedTrackState> &tracks,
8  const double primaryMass,
9  const double secondaryMass) const {
10  GlobalPoint linPoint = tracks[0]->linearizationPoint();
11  PerigeeLinearizedTrackState *linTrack1 = dynamic_cast<PerigeeLinearizedTrackState *>(tracks[0].get());
12  PerigeeLinearizedTrackState *linTrack2 = dynamic_cast<PerigeeLinearizedTrackState *>(tracks[1].get());
13  if (!linTrack1 || !linTrack2)
14  return TwoBodyDecayParameters();
15 
16  GlobalVector firstMomentum = linTrack1->predictedState().momentum();
17  GlobalVector secondMomentum = linTrack2->predictedState().momentum();
18 
19  AlgebraicVector secondaryMomentum1(3);
20  secondaryMomentum1[0] = firstMomentum.x();
21  secondaryMomentum1[1] = firstMomentum.y();
22  secondaryMomentum1[2] = firstMomentum.z();
23 
24  AlgebraicVector secondaryMomentum2(3);
25  secondaryMomentum2[0] = secondMomentum.x();
26  secondaryMomentum2[1] = secondMomentum.y();
27  secondaryMomentum2[2] = secondMomentum.z();
28 
29  AlgebraicVector primaryMomentum = secondaryMomentum1 + secondaryMomentum2;
30 
32  AlgebraicMatrix rotMat = decayModel.rotationMatrix(primaryMomentum[0], primaryMomentum[1], primaryMomentum[2]);
33  AlgebraicMatrix invRotMat = rotMat.T();
34 
35  double p = primaryMomentum.norm();
36  double pSquared = p * p;
37  double gamma = sqrt(pSquared + primaryMass * primaryMass) / primaryMass;
38  double betaGamma = p / primaryMass;
39  AlgebraicSymMatrix lorentzTransformation(4, 1);
40  lorentzTransformation[0][0] = gamma;
41  lorentzTransformation[3][3] = gamma;
42  lorentzTransformation[0][3] = -betaGamma;
43 
44  double p1 = secondaryMomentum1.norm();
45  AlgebraicVector boostedLorentzMomentum1(4);
46  boostedLorentzMomentum1[0] = sqrt(p1 * p1 + secondaryMass * secondaryMass);
47  boostedLorentzMomentum1.sub(2, invRotMat * secondaryMomentum1);
48 
49  AlgebraicVector restFrameLorentzMomentum1 = lorentzTransformation * boostedLorentzMomentum1;
50  AlgebraicVector restFrameMomentum1 = restFrameLorentzMomentum1.sub(2, 4);
51  double perp1 = sqrt(restFrameMomentum1[0] * restFrameMomentum1[0] + restFrameMomentum1[1] * restFrameMomentum1[1]);
52  double theta1 = atan2(perp1, restFrameMomentum1[2]);
53  double phi1 = atan2(restFrameMomentum1[1], restFrameMomentum1[0]);
54 
55  double p2 = secondaryMomentum2.norm();
56  AlgebraicVector boostedLorentzMomentum2(4);
57  boostedLorentzMomentum2[0] = sqrt(p2 * p2 + secondaryMass * secondaryMass);
58  boostedLorentzMomentum2.sub(2, invRotMat * secondaryMomentum2);
59 
60  AlgebraicVector restFrameLorentzMomentum2 = lorentzTransformation * boostedLorentzMomentum2;
61  AlgebraicVector restFrameMomentum2 = restFrameLorentzMomentum2.sub(2, 4);
62  double perp2 = sqrt(restFrameMomentum2[0] * restFrameMomentum2[0] + restFrameMomentum2[1] * restFrameMomentum2[1]);
63  double theta2 = atan2(perp2, restFrameMomentum2[2]);
64  double phi2 = atan2(restFrameMomentum2[1], restFrameMomentum2[0]);
65 
66  double pi = 3.141592654;
67  double relSign = -1.;
68 
69  if (phi1 < 0)
70  phi1 += 2 * pi;
71  if (phi2 < 0)
72  phi2 += 2 * pi;
73  if (phi1 > phi2)
74  relSign = 1.;
75 
76  double momentumSquared1 = secondaryMomentum1.normsq();
77  double energy1 = sqrt(secondaryMass * secondaryMass + momentumSquared1);
78  double momentumSquared2 = secondaryMomentum2.normsq();
79  double energy2 = sqrt(secondaryMass * secondaryMass + momentumSquared2);
80  double sumMomentaSquared = (secondaryMomentum1 + secondaryMomentum2).normsq();
81  double sumEnergiesSquared = (energy1 + energy2) * (energy1 + energy2);
82  double estimatedPrimaryMass = sqrt(sumEnergiesSquared - sumMomentaSquared);
83 
85  linParam[TwoBodyDecayParameters::x] = linPoint.x();
86  linParam[TwoBodyDecayParameters::y] = linPoint.y();
87  linParam[TwoBodyDecayParameters::z] = linPoint.z();
88  linParam[TwoBodyDecayParameters::px] = primaryMomentum[0];
89  linParam[TwoBodyDecayParameters::py] = primaryMomentum[1];
90  linParam[TwoBodyDecayParameters::pz] = primaryMomentum[2];
91  linParam[TwoBodyDecayParameters::theta] = 0.5 * (theta1 - theta2 + pi);
92  linParam[TwoBodyDecayParameters::phi] = 0.5 * (phi1 + phi2 + relSign * pi);
93  linParam[TwoBodyDecayParameters::mass] = estimatedPrimaryMass;
94 
95  return TwoBodyDecayParameters(linParam);
96 }
T z() const
Definition: PV3DBase.h:61
const TrajectoryStateClosestToPoint & predictedState() const
T perp2() const
Squared magnitude of transverse component.
const Double_t pi
AlgebraicMatrix rotationMatrix(double px, double py, double pz)
T x() const
Definition: PV3DBase.h:59
T y() const
Definition: PV3DBase.h:60
CLHEP::HepMatrix AlgebraicMatrix
T sqrt(T t)
Definition: SSEVec.h:23
virtual const TwoBodyDecayParameters getLinearizationPoint(const std::vector< RefCountedLinearizedTrackState > &tracks, const double primaryMass, const double secondaryMass) const
CLHEP::HepVector AlgebraicVector
CLHEP::HepSymMatrix AlgebraicSymMatrix
MPlex< T, D1, D2, N > atan2(const MPlex< T, D1, D2, N > &y, const MPlex< T, D1, D2, N > &x)
Definition: Matriplex.h:648