CMS 3D CMS Logo

PatternRecognitionbyCA.cc
Go to the documentation of this file.
1 // Author: Felice Pantaleo, Marco Rovere - felice.pantaleo@cern.ch, marco.rovere@cern.ch
2 // Date: 11/2018
3 #include <algorithm>
4 #include <set>
5 #include <vector>
6 
10 
11 #include "TrackstersPCA.h"
15 
16 using namespace ticl;
17 
18 template <typename TILES>
20  : PatternRecognitionAlgoBaseT<TILES>(conf, iC),
21  caloGeomToken_(iC.esConsumes<CaloGeometry, CaloGeometryRecord>()),
22  theGraph_(std::make_unique<HGCGraphT<TILES>>()),
23  oneTracksterPerTrackSeed_(conf.getParameter<bool>("oneTracksterPerTrackSeed")),
24  promoteEmptyRegionToTrackster_(conf.getParameter<bool>("promoteEmptyRegionToTrackster")),
25  out_in_dfs_(conf.getParameter<bool>("out_in_dfs")),
26  max_out_in_hops_(conf.getParameter<int>("max_out_in_hops")),
27  min_cos_theta_(conf.getParameter<double>("min_cos_theta")),
28  min_cos_pointing_(conf.getParameter<double>("min_cos_pointing")),
29  root_doublet_max_distance_from_seed_squared_(
30  conf.getParameter<double>("root_doublet_max_distance_from_seed_squared")),
31  etaLimitIncreaseWindow_(conf.getParameter<double>("etaLimitIncreaseWindow")),
32  skip_layers_(conf.getParameter<int>("skip_layers")),
33  max_missing_layers_in_trackster_(conf.getParameter<int>("max_missing_layers_in_trackster")),
34  check_missing_layers_(max_missing_layers_in_trackster_ < 100),
35  shower_start_max_layer_(conf.getParameter<int>("shower_start_max_layer")),
36  min_layers_per_trackster_(conf.getParameter<int>("min_layers_per_trackster")),
37  filter_on_categories_(conf.getParameter<std::vector<int>>("filter_on_categories")),
38  pid_threshold_(conf.getParameter<double>("pid_threshold")),
39  energy_em_over_total_threshold_(conf.getParameter<double>("energy_em_over_total_threshold")),
40  max_longitudinal_sigmaPCA_(conf.getParameter<double>("max_longitudinal_sigmaPCA")),
41  min_clusters_per_ntuplet_(min_layers_per_trackster_),
42  max_delta_time_(conf.getParameter<double>("max_delta_time")),
43  computeLocalTime_(conf.getParameter<bool>("computeLocalTime")),
44  siblings_maxRSquared_(conf.getParameter<std::vector<double>>("siblings_maxRSquared")){};
45 
46 template <typename TILES>
48 
49 template <typename TILES>
52  std::vector<Trackster> &result,
53  std::unordered_map<int, std::vector<int>> &seedToTracksterAssociation) {
54  // Protect from events with no seeding regions
55  if (input.regions.empty())
56  return;
57 
58  edm::EventSetup const &es = input.es;
59  const CaloGeometry &geom = es.getData(caloGeomToken_);
60  rhtools_.setGeometry(geom);
61 
63  theGraph_->clear();
65  LogDebug("HGCPatternRecoByCA") << "Making Tracksters with CA" << std::endl;
66  }
67 
71 
72  std::vector<HGCDoublet::HGCntuplet> foundNtuplets;
73  std::vector<int> seedIndices;
74  std::vector<uint8_t> layer_cluster_usage(input.layerClusters.size(), 0);
75  theGraph_->makeAndConnectDoublets(input.tiles,
76  input.regions,
77  nEtaBin,
78  nPhiBin,
79  input.layerClusters,
80  input.mask,
81  input.layerClustersTime,
82  1,
83  1,
84  min_cos_theta_,
85  min_cos_pointing_,
86  root_doublet_max_distance_from_seed_squared_,
87  etaLimitIncreaseWindow_,
88  skip_layers_,
89  rhtools_.lastLayer(isHFnose),
90  max_delta_time_,
91  rhtools_.lastLayerEE(isHFnose),
92  rhtools_.lastLayerFH(),
93  siblings_maxRSquared_);
94 
95  theGraph_->findNtuplets(foundNtuplets, seedIndices, min_clusters_per_ntuplet_, out_in_dfs_, max_out_in_hops_);
96  //#ifdef FP_DEBUG
97  const auto &doublets = theGraph_->getAllDoublets();
98  int tracksterId = -1;
99 
100  // container for holding tracksters before selection
101  result.reserve(foundNtuplets.size());
102 
103  for (auto const &ntuplet : foundNtuplets) {
104  tracksterId++;
105 
106  std::set<unsigned int> effective_cluster_idx;
107 
108  for (auto const &doublet : ntuplet) {
109  auto innerCluster = doublets[doublet].innerClusterId();
110  auto outerCluster = doublets[doublet].outerClusterId();
111 
112  effective_cluster_idx.insert(innerCluster);
113  effective_cluster_idx.insert(outerCluster);
114 
116  LogDebug("HGCPatternRecoByCA") << " New doublet " << doublet << " for trackster: " << result.size()
117  << " InnerCl " << innerCluster << " " << input.layerClusters[innerCluster].x()
118  << " " << input.layerClusters[innerCluster].y() << " "
119  << input.layerClusters[innerCluster].z() << " OuterCl " << outerCluster << " "
120  << input.layerClusters[outerCluster].x() << " "
121  << input.layerClusters[outerCluster].y() << " "
122  << input.layerClusters[outerCluster].z() << " " << tracksterId << std::endl;
123  }
124  }
125  unsigned showerMinLayerId = 99999;
126  std::vector<unsigned int> uniqueLayerIds;
127  uniqueLayerIds.reserve(effective_cluster_idx.size());
128  std::vector<std::pair<unsigned int, unsigned int>> lcIdAndLayer;
129  lcIdAndLayer.reserve(effective_cluster_idx.size());
130  for (auto const i : effective_cluster_idx) {
131  auto const &haf = input.layerClusters[i].hitsAndFractions();
132  auto layerId = rhtools_.getLayerWithOffset(haf[0].first);
133  showerMinLayerId = std::min(layerId, showerMinLayerId);
134  uniqueLayerIds.push_back(layerId);
135  lcIdAndLayer.emplace_back(i, layerId);
136  }
137  std::sort(uniqueLayerIds.begin(), uniqueLayerIds.end());
138  uniqueLayerIds.erase(std::unique(uniqueLayerIds.begin(), uniqueLayerIds.end()), uniqueLayerIds.end());
139  unsigned int numberOfLayersInTrackster = uniqueLayerIds.size();
140  if (check_missing_layers_) {
141  int numberOfMissingLayers = 0;
142  unsigned int j = showerMinLayerId;
143  unsigned int indexInVec = 0;
144  for (const auto &layer : uniqueLayerIds) {
145  if (layer != j) {
146  numberOfMissingLayers++;
147  j++;
148  if (numberOfMissingLayers > max_missing_layers_in_trackster_) {
149  numberOfLayersInTrackster = indexInVec;
150  for (auto &llpair : lcIdAndLayer) {
151  if (llpair.second >= layer) {
152  effective_cluster_idx.erase(llpair.first);
153  }
154  }
155  break;
156  }
157  }
158  indexInVec++;
159  j++;
160  }
161  }
162  if ((numberOfLayersInTrackster >= min_layers_per_trackster_) and (showerMinLayerId <= shower_start_max_layer_)) {
163  // Put back indices, in the form of a Trackster, into the results vector
164  Trackster tmp;
165  tmp.vertices().reserve(effective_cluster_idx.size());
166  tmp.vertex_multiplicity().resize(effective_cluster_idx.size(), 1);
167  //regions and seedIndices can have different size
168  //if a seeding region does not lead to any trackster
169  tmp.setSeed(input.regions[0].collectionID, seedIndices[tracksterId]);
170 
171  std::copy(std::begin(effective_cluster_idx), std::end(effective_cluster_idx), std::back_inserter(tmp.vertices()));
172  result.push_back(tmp);
173  }
174  }
176  input.layerClusters,
177  input.layerClustersTime,
178  rhtools_.getPositionLayer(rhtools_.lastLayerEE(isHFnose), isHFnose).z(),
179  rhtools_,
180  computeLocalTime_);
181 
182  theGraph_->clear();
183 }
184 
185 template <typename TILES>
186 void PatternRecognitionbyCA<TILES>::filter(std::vector<Trackster> &output,
187  const std::vector<Trackster> &inTracksters,
189  std::unordered_map<int, std::vector<int>> &seedToTracksterAssociation) {
190  auto filter_on_pids = [&](const ticl::Trackster &t) -> bool {
191  auto cumulative_prob = 0.;
192  for (auto index : filter_on_categories_) {
193  cumulative_prob += t.id_probabilities(index);
194  }
195  return (cumulative_prob <= pid_threshold_) &&
196  (t.raw_em_energy() < energy_em_over_total_threshold_ * t.raw_energy());
197  };
198 
199  std::vector<unsigned int> selectedTrackstersIds;
200  for (unsigned i = 0; i < inTracksters.size(); ++i) {
201  auto &t = inTracksters[i];
202  if (!filter_on_pids(t) and t.sigmasPCA()[0] < max_longitudinal_sigmaPCA_) {
203  selectedTrackstersIds.push_back(i);
204  }
205  }
206  output.reserve(selectedTrackstersIds.size());
207  bool isRegionalIter = !input.regions.empty() && (input.regions[0].index != -1);
208  for (unsigned i = 0; i < selectedTrackstersIds.size(); ++i) {
209  const auto &t = inTracksters[selectedTrackstersIds[i]];
210  if (isRegionalIter) {
211  seedToTracksterAssociation[t.seedIndex()].push_back(i);
212  }
213  output.push_back(t);
214  }
215 
216  // Now decide if the tracksters from the track-based iterations have to be merged
217  if (oneTracksterPerTrackSeed_) {
218  std::vector<Trackster> tmp;
219  mergeTrackstersTRK(output, input.layerClusters, tmp, seedToTracksterAssociation);
220  tmp.swap(output);
221  }
222 
223  // now adding dummy tracksters from seeds not connected to any shower in the result collection
224  // these are marked as charged hadrons with probability 1.
225  if (promoteEmptyRegionToTrackster_) {
226  emptyTrackstersFromSeedsTRK(output, seedToTracksterAssociation, input.regions[0].collectionID);
227  }
228 
230  for (auto &trackster : output) {
231  LogDebug("HGCPatternRecoByCA") << "Trackster characteristics: " << std::endl;
232  LogDebug("HGCPatternRecoByCA") << "Size: " << trackster.vertices().size() << std::endl;
233  auto counter = 0;
234  for (auto const &p : trackster.id_probabilities()) {
235  LogDebug("HGCPatternRecoByCA") << counter++ << ": " << p << std::endl;
236  }
237  }
238  }
239 }
240 template <typename TILES>
242  const std::vector<Trackster> &input,
243  const std::vector<reco::CaloCluster> &layerClusters,
244  std::vector<Trackster> &output,
245  std::unordered_map<int, std::vector<int>> &seedToTracksterAssociation) const {
246  output.reserve(input.size());
247  for (auto &thisSeed : seedToTracksterAssociation) {
248  auto &tracksters = thisSeed.second;
249  if (!tracksters.empty()) {
250  auto numberOfTrackstersInSeed = tracksters.size();
251  output.emplace_back(input[tracksters[0]]);
252  auto &outTrackster = output.back();
253  tracksters[0] = output.size() - 1;
254  auto updated_size = outTrackster.vertices().size();
255  for (unsigned int j = 1; j < numberOfTrackstersInSeed; ++j) {
256  auto &thisTrackster = input[tracksters[j]];
257  updated_size += thisTrackster.vertices().size();
259  LogDebug("HGCPatternRecoByCA") << "Updated size: " << updated_size << std::endl;
260  }
261  outTrackster.vertices().reserve(updated_size);
262  outTrackster.vertex_multiplicity().reserve(updated_size);
263  std::copy(std::begin(thisTrackster.vertices()),
264  std::end(thisTrackster.vertices()),
265  std::back_inserter(outTrackster.vertices()));
266  std::copy(std::begin(thisTrackster.vertex_multiplicity()),
267  std::end(thisTrackster.vertex_multiplicity()),
268  std::back_inserter(outTrackster.vertex_multiplicity()));
269  }
270  tracksters.resize(1);
271 
272  // Find duplicate LCs
273  auto &orig_vtx = outTrackster.vertices();
274  auto vtx_sorted{orig_vtx};
275  std::sort(std::begin(vtx_sorted), std::end(vtx_sorted));
276  for (unsigned int iLC = 1; iLC < vtx_sorted.size(); ++iLC) {
277  if (vtx_sorted[iLC] == vtx_sorted[iLC - 1]) {
278  // Clean up duplicate LCs
279  const auto lcIdx = vtx_sorted[iLC];
280  const auto firstEl = std::find(orig_vtx.begin(), orig_vtx.end(), lcIdx);
281  const auto firstPos = std::distance(std::begin(orig_vtx), firstEl);
282  auto iDup = std::find(std::next(firstEl), orig_vtx.end(), lcIdx);
283  while (iDup != orig_vtx.end()) {
284  orig_vtx.erase(iDup);
285  outTrackster.vertex_multiplicity().erase(outTrackster.vertex_multiplicity().begin() +
286  std::distance(std::begin(orig_vtx), iDup));
287  outTrackster.vertex_multiplicity()[firstPos] -= 1;
288  iDup = std::find(std::next(firstEl), orig_vtx.end(), lcIdx);
289  };
290  }
291  }
292  }
293  }
294  output.shrink_to_fit();
295 }
296 
297 template <typename TILES>
299  std::vector<Trackster> &tracksters,
300  std::unordered_map<int, std::vector<int>> &seedToTracksterAssociation,
301  const edm::ProductID &collectionID) const {
302  for (auto &thisSeed : seedToTracksterAssociation) {
303  if (thisSeed.second.empty()) {
304  Trackster t;
305  t.setRegressedEnergy(0.f);
306  t.zeroProbabilities();
308  t.setSeed(collectionID, thisSeed.first);
309  tracksters.emplace_back(t);
310  thisSeed.second.emplace_back(tracksters.size() - 1);
311  }
312  }
313 }
314 
315 template <typename TILES>
317  iDesc.add<int>("algo_verbosity", 0);
318  iDesc.add<bool>("oneTracksterPerTrackSeed", false);
319  iDesc.add<bool>("promoteEmptyRegionToTrackster", false);
320  iDesc.add<bool>("out_in_dfs", true);
321  iDesc.add<int>("max_out_in_hops", 10);
322  iDesc.add<double>("min_cos_theta", 0.915);
323  iDesc.add<double>("min_cos_pointing", -1.);
324  iDesc.add<double>("root_doublet_max_distance_from_seed_squared", 9999);
325  iDesc.add<double>("etaLimitIncreaseWindow", 2.1);
326  iDesc.add<int>("skip_layers", 0);
327  iDesc.add<int>("max_missing_layers_in_trackster", 9999);
328  iDesc.add<int>("shower_start_max_layer", 9999)->setComment("make default such that no filtering is applied");
329  iDesc.add<int>("min_layers_per_trackster", 10);
330  iDesc.add<std::vector<int>>("filter_on_categories", {0});
331  iDesc.add<double>("pid_threshold", 0.)->setComment("make default such that no filtering is applied");
332  iDesc.add<double>("energy_em_over_total_threshold", -1.)
333  ->setComment("make default such that no filtering is applied");
334  iDesc.add<double>("max_longitudinal_sigmaPCA", 9999);
335  iDesc.add<double>("max_delta_time", 3.)->setComment("nsigma");
336  iDesc.add<bool>("computeLocalTime", false);
337  iDesc.add<std::vector<double>>("siblings_maxRSquared", {6e-4, 6e-4, 6e-4});
338 }
339 
void setComment(std::string const &value)
ESGetTokenH3DDVariant esConsumes(std::string const &Record, edm::ConsumesCollector &)
Definition: DeDxTools.cc:283
T const & getData(const ESGetToken< T, R > &iToken) const noexcept(false)
Definition: EventSetup.h:119
void filter(std::vector< Trackster > &output, const std::vector< Trackster > &inTracksters, const typename PatternRecognitionAlgoBaseT< TILES >::Inputs &input, std::unordered_map< int, std::vector< int >> &seedToTracksterAssociation) override
void mergeTrackstersTRK(const std::vector< Trackster > &, const std::vector< reco::CaloCluster > &, std::vector< Trackster > &, std::unordered_map< int, std::vector< int >> &seedToTracksterAssociation) const
void emptyTrackstersFromSeedsTRK(std::vector< Trackster > &tracksters, std::unordered_map< int, std::vector< int >> &seedToTracksterAssociation, const edm::ProductID &collectionID) const
void assignPCAtoTracksters(std::vector< Trackster > &tracksters, const std::vector< reco::CaloCluster > &layerClusters, const edm::ValueMap< std::pair< float, float >> &layerClustersTime, double z_limit_em, hgcal::RecHitTools const &rhTools, bool computeLocalTime=false, bool energyWeight=true, bool clean=false, int minLayer=10, int maxLayer=10)
void find(edm::Handle< EcalRecHitCollection > &hits, DetId thisDet, std::vector< EcalRecHitCollection::const_iterator > &hit, bool debug=false)
Definition: FindCaloHit.cc:19
void makeTracksters(const typename PatternRecognitionAlgoBaseT< TILES >::Inputs &input, std::vector< Trackster > &result, std::unordered_map< int, std::vector< int >> &seedToTracksterAssociation) override
static std::string const input
Definition: EdmProvDump.cc:50
def unique(seq, keepstr=True)
Definition: tier0.py:24
double f[11][100]
ParameterDescriptionBase * add(U const &iLabel, T const &value)
PatternRecognitionbyCA(const edm::ParameterSet &conf, edm::ConsumesCollector iC)
static void fillPSetDescription(edm::ParameterSetDescription &iDesc)
static constexpr int nPhiBins
Definition: Common.h:10
Definition: output.py:1
tmp
align.sh
Definition: createJobs.py:716
#define LogDebug(id)