CMS 3D CMS Logo

All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
List of all members | Public Types | Public Member Functions
RKSolverTempl< T,,,, N > Class Template Referenceabstract

ABC for Runge-Kutta solvers. More...

#include <RKSolverTempl.h>

Public Types

typedef T Scalar
 
typedef RKSmallVector< T, NVector
 

Public Member Functions

virtual Vector operator() (Scalar startPar, const Vector &startState, Scalar step, const Deriv< T, N > &deriv, const Dist< T, N > &dist, Scalar eps)=0
 

Detailed Description

template<typename T, template class Deriv< typename, int >, template class Dist< typename, int >, template class StepWithPrec< typename, class, class, int >, int N>
class RKSolverTempl< T,,,, N >

ABC for Runge-Kutta solvers.

Definition at line 16 of file RKSolverTempl.h.

Member Typedef Documentation

◆ Scalar

template<typename T , template class Deriv< typename, int > , template class Dist< typename, int > , template class StepWithPrec< typename, class, class, int > , int N>
typedef T RKSolverTempl< T,,,, N >::Scalar

Definition at line 19 of file RKSolverTempl.h.

◆ Vector

template<typename T , template class Deriv< typename, int > , template class Dist< typename, int > , template class StepWithPrec< typename, class, class, int > , int N>
typedef RKSmallVector<T,N> RKSolverTempl< T,,,, N >::Vector

Definition at line 20 of file RKSolverTempl.h.

Member Function Documentation

◆ operator()()

template<typename T , template class Deriv< typename, int > , template class Dist< typename, int > , template class StepWithPrec< typename, class, class, int > , int N>
virtual Vector RKSolverTempl< T,,,, N >::operator() ( Scalar  startPar,
const Vector startState,
Scalar  step,
const Deriv< T, N > &  deriv,
const Dist< T, N > &  dist,
Scalar  eps 
)
pure virtual

Advance starting state (startPar,startState) by step. The accuracy of the result should be better than eps. The accuracy is computed as the distance (using the "dist" argument) between different internal estimates of the resulting state. The "deriv" argument computes the derivatives.