239 for (
unsigned int i = 0;
i <
layers_.size();
i++) {
245 for (
int ly = laymin; ly < laymax; ++ly) {
255 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalEEAlgo: Layer " << ly <<
":" <<
ii <<
" Front " << zi <<
", " << routF
256 <<
" Back " << zo <<
", " << rinB <<
" superlayer thickness " <<
layerThick_[
i];
262 std::vector<double> pgonZ, pgonRin, pgonRout;
265 pgonZ.emplace_back(-hthick);
266 pgonZ.emplace_back(hthick);
267 pgonRin.emplace_back(rinB);
268 pgonRin.emplace_back(rinB);
269 pgonRout.emplace_back(rmax);
270 pgonRout.emplace_back(rmax);
285 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalEEAlgo: z " << (
zz - hthick) <<
":" << (
zz + hthick) <<
" with " 286 << pgonZ.size() <<
" palnes";
287 for (
unsigned int isec = 0;
isec < pgonZ.size(); ++
isec)
289 <<
"[" <<
isec <<
"] z " << pgonZ[
isec] <<
" R " << pgonRin[
isec] <<
":" << pgonRout[
isec];
291 for (
unsigned int isec = 0;
isec < pgonZ.size(); ++
isec) {
303 <<
" sections and filled with " << matName <<
":" << &matter;
304 for (
unsigned int k = 0;
k < pgonZ.size(); ++
k)
305 edm::LogVerbatim(
"HGCalGeom") <<
"[" <<
k <<
"] z " << pgonZ[
k] <<
" R " << pgonRin[
k] <<
":" << pgonRout[
k];
315 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalEEFileAlgo: " << solid.
name() <<
" Tubs made of " << matName <<
":" 316 << &matter <<
" of dimensions " << rinB <<
":" << rins <<
", " << routF <<
":" 317 << routs <<
", " << hthick <<
", 0.0, 360.0 and position " << glog.
name()
328 <<
module.name() <<
" at " <<
r1 <<
" with no rotation";
337 <<
": thickness of all its components **** ERROR ****";
340 << thickTot <<
" of the components";
Log< level::Info, true > LogVerbatim
std::vector< double > slopeB_
std::vector< double > zFrontT_
void position(const DDLogicalPart &self, const DDLogicalPart &parent, const std::string ©no, const DDTranslation &trans, const DDRotation &rot, const DDDivision *div=nullptr)
std::vector< double > thick_
std::vector< double > layerThick_
DDMaterial is used to define and access material information.
std::vector< int > copyNumber_
std::vector< double > zFrontB_
constexpr NumType convertRadToDeg(NumType radians)
DDName is used to identify DDD entities uniquely.
std::vector< int > layerCenter_
Log< level::Error, false > LogError
std::vector< double > slopeT_
std::vector< int > layerSense_
A DDSolid represents the shape of a part.
static std::string to_string(const XMLCh *ch)
Represents a uniquely identifyable rotation matrix.
static constexpr double tol1_
U second(std::pair< T, U > const &p)
Abs< T >::type abs(const T &t)
A DDLogicalPart aggregates information concerning material, solid and sensitveness ...
std::vector< int > layerType_
static DDSolid tubs(const DDName &name, double zhalf, double rIn, double rOut, double startPhi, double deltaPhi)
static constexpr double tol2_
std::vector< int > layers_
std::vector< std::string > names_
std::vector< double > rMinFront_
void positionSensitive(const DDLogicalPart &glog, double rin, double rout, double zpos, int layertype, int layercenter, DDCompactView &cpv)
std::vector< std::string > materials_
Log< level::Warning, false > LogWarning
std::vector< double > rMaxFront_
std::pair< std::string, std::string > DDSplit(const std::string &n)
split into (name,namespace), separator = ':'
ROOT::Math::DisplacementVector3D< ROOT::Math::Cartesian3D< double > > DDTranslation
static DDSolid polyhedra(const DDName &name, int sides, double startPhi, double deltaPhi, const std::vector< double > &z, const std::vector< double > &rmin, const std::vector< double > &rmax)
Creates a polyhedra (refere to Geant3 or Geant4 documentation)