CMS 3D CMS Logo

List of all members | Public Types | Public Member Functions | Protected Member Functions | Protected Attributes
TMultiDimFet Class Reference

#include <TMultiDimFet.h>

Inheritance diagram for TMultiDimFet:

Public Types

enum  EMDFPolyType { kMonomials, kChebyshev, kLegendre }
 

Public Member Functions

virtual void AddRow (const Double_t *x, Double_t D, Double_t E=0)
 
virtual void AddTestRow (const Double_t *x, Double_t D, Double_t E=0)
 
void Clear (Option_t *option="") override
 
virtual Double_t Eval (const Double_t *x, const Double_t *coeff=nullptr) const
 
virtual void FindParameterization (double precision)
 
Double_t GetChi2 () const
 
const TVectorD * GetCoefficients () const
 
const TMatrixD * GetCorrelationMatrix () const
 
Double_t GetError () const
 
std::vector< Int_t > GetFunctionCodes () const
 
const TMatrixD * GetFunctions () const
 
virtual TList * GetHistograms () const
 
Double_t GetMaxAngle () const
 
Int_t GetMaxFunctions () const
 
std::vector< Int_t > GetMaxPowers () const
 
Double_t GetMaxQuantity () const
 
Int_t GetMaxStudy () const
 
Int_t GetMaxTerms () const
 
const TVectorD * GetMaxVariables () const
 
Double_t GetMeanQuantity () const
 
const TVectorD * GetMeanVariables () const
 
Double_t GetMinAngle () const
 
Double_t GetMinQuantity () const
 
Double_t GetMinRelativeError () const
 
const TVectorD * GetMinVariables () const
 
Int_t GetNCoefficients () const
 
Int_t GetNVariables () const
 
Int_t GetPolyType () const
 
std::vector< Int_t > GetPowerIndex () const
 
Double_t GetPowerLimit () const
 
std::vector< Int_t > GetPowers () const
 
Double_t GetPrecision () const
 
const TVectorD * GetQuantity () const
 
Double_t GetResidualMax () const
 
Int_t GetResidualMaxRow () const
 
Double_t GetResidualMin () const
 
Int_t GetResidualMinRow () const
 
Double_t GetResidualSumSq () const
 
Double_t GetRMS () const
 
Int_t GetSampleSize () const
 
const TVectorD * GetSqError () const
 
Double_t GetSumSqAvgQuantity () const
 
Double_t GetSumSqQuantity () const
 
Double_t GetTestError () const
 
Double_t GetTestPrecision () const
 
const TVectorD * GetTestQuantity () const
 
Int_t GetTestSampleSize () const
 
const TVectorD * GetTestSqError () const
 
const TVectorD * GetTestVariables () const
 
const TVectorD * GetVariables () const
 
Bool_t IsFolder () const override
 
virtual Double_t MakeChi2 (const Double_t *coeff=nullptr)
 
virtual void MakeCode (const char *functionName="MDF", Option_t *option="")
 
virtual void MakeHistograms (Option_t *option="A")
 
virtual void MakeMethod (const Char_t *className="MDF", Option_t *option="")
 
const TMultiDimFetoperator= (const TMultiDimFet &in)
 
void Print (Option_t *option="ps") const override
 
virtual void PrintPolynomialsSpecial (Option_t *option="m") const
 
void ReducePolynomial (double error)
 
void SetMaxAngle (Double_t angle=0)
 
void SetMaxFunctions (Int_t n)
 
void SetMaxPowers (const Int_t *powers)
 
void SetMaxStudy (Int_t n)
 
void SetMaxTerms (Int_t terms)
 
void SetMinAngle (Double_t angle=1)
 
void SetMinRelativeError (Double_t error)
 
void SetPowerLimit (Double_t limit=1e-3)
 
virtual void SetPowers (const Int_t *powers, Int_t terms)
 
 TMultiDimFet ()
 
 TMultiDimFet (const TMultiDimFet &in)=default
 
 TMultiDimFet (Int_t dimension, EMDFPolyType type=kMonomials, Option_t *option="")
 
void ZeroDoubiousCoefficients (double error)
 
 ~TMultiDimFet () override
 

Protected Member Functions

virtual Double_t EvalControl (const Int_t *powers)
 
virtual Double_t EvalFactor (Int_t p, Double_t x) const
 
virtual void MakeCandidates ()
 
virtual void MakeCoefficientErrors ()
 
virtual void MakeCoefficients ()
 
virtual void MakeCorrelation ()
 
virtual Double_t MakeGramSchmidt (Int_t function)
 
virtual void MakeNormalized ()
 
virtual void MakeParameterization ()
 
virtual void MakeRealCode (const char *filename, const char *classname, Option_t *option="")
 
virtual Bool_t Select (const Int_t *iv)
 
virtual Bool_t TestFunction (Double_t squareResidual, Double_t dResidur)
 

Protected Attributes

Double_t fChi2
 Root mean square of fit. More...
 
TVectorD fCoefficients
 Model matrix. More...
 
TVectorD fCoefficientsRMS
 
Double_t fCorrelationCoeff
 Relative precision of test. More...
 
TMatrixD fCorrelationMatrix
 Multi Correlation coefficient. More...
 
Double_t fError
 Exit code of parameterisation. More...
 
std::vector< Int_t > fFunctionCodes
 
TMatrixD fFunctions
 Control parameter. More...
 
Byte_t fHistogramMask
 List of histograms. More...
 
TList * fHistograms
 Multi Correlation coefficient. More...
 
Bool_t fIsUserFunction
 
Bool_t fIsVerbose
 
Double_t fMaxAngle
 Min angle for acepting new function. More...
 
Int_t fMaxFunctions
 Functions evaluated over sample. More...
 
Int_t fMaxFunctionsTimesNVariables
 maximum powers from fit, ex-array More...
 
std::vector< Int_t > fMaxPowers
 Min relative error accepted. More...
 
std::vector< Int_t > fMaxPowersFinal
 Norm of the evaluated functions. More...
 
Double_t fMaxQuantity
 
Double_t fMaxResidual
 Vector of the final residuals. More...
 
Int_t fMaxResidualRow
 Min redsidual value. More...
 
Int_t fMaxStudy
 acceptance code, ex-array More...
 
Int_t fMaxTerms
 Max angle for acepting new function. More...
 
TVectorD fMaxVariables
 mean value of independent variables More...
 
Double_t fMeanQuantity
 Training sample, error in quantity. More...
 
TVectorD fMeanVariables
 
Double_t fMinAngle
 Size of test sample. More...
 
Double_t fMinQuantity
 Max value of dependent quantity. More...
 
Double_t fMinRelativeError
 
Double_t fMinResidual
 Max redsidual value. More...
 
Int_t fMinResidualRow
 Row giving max residual. More...
 
TVectorD fMinVariables
 
Int_t fNCoefficients
 Sum of Square residuals. More...
 
Int_t fNVariables
 Training sample, independent variables. More...
 
TVectorD fOrthCoefficients
 
TMatrixD fOrthCurvatureMatrix
 The model coefficients. More...
 
TVectorD fOrthFunctionNorms
 As above, but orthogonalised. More...
 
TMatrixD fOrthFunctions
 max functions to study More...
 
Int_t fParameterisationCode
 Chi square of fit. More...
 
EMDFPolyType fPolyType
 Bit pattern of hisograms used. More...
 
std::vector< Int_t > fPowerIndex
 
Double_t fPowerLimit
 maximum powers, ex-array More...
 
std::vector< Int_t > fPowers
 
Double_t fPrecision
 Error from test. More...
 
TVectorD fQuantity
 
TVectorD fResiduals
 
Double_t fRMS
 Vector of RMS of coefficients. More...
 
Int_t fSampleSize
 
Bool_t fShowCorrelation
 
TVectorD fSqError
 Training sample, dependent quantity. More...
 
Double_t fSumSqAvgQuantity
 SumSquare of dependent quantity. More...
 
Double_t fSumSqQuantity
 Min value of dependent quantity. More...
 
Double_t fSumSqResidual
 Row giving min residual. More...
 
Double_t fTestCorrelationCoeff
 Correlation matrix. More...
 
Double_t fTestError
 Error from parameterization. More...
 
Double_t fTestPrecision
 Relative precision of param. More...
 
TVectorD fTestQuantity
 Size of training sample. More...
 
Int_t fTestSampleSize
 Test sample, independent variables. More...
 
TVectorD fTestSqError
 Test sample, dependent quantity. More...
 
TVectorD fTestVariables
 Test sample, Error in quantity. More...
 
TVectorD fVariables
 Sum of squares away from mean. More...
 

Detailed Description

Definition at line 36 of file TMultiDimFet.h.

Member Enumeration Documentation

◆ EMDFPolyType

Enumerator
kMonomials 
kChebyshev 
kLegendre 

Definition at line 38 of file TMultiDimFet.h.

Constructor & Destructor Documentation

◆ TMultiDimFet() [1/3]

TMultiDimFet::TMultiDimFet ( )

Definition at line 51 of file TMultiDimFet.cc.

References fHistogramMask, fHistograms, fIsUserFunction, fMaxAngle, fMaxQuantity, fMaxVariables, fMeanQuantity, fMinAngle, fMinQuantity, fMinVariables, fNVariables, fPolyType, fPowerLimit, fSampleSize, fShowCorrelation, fSumSqAvgQuantity, fSumSqQuantity, and kMonomials.

51  {
52  // Empty CTOR. Do not use
53  fMeanQuantity = 0;
54  fMaxQuantity = 0;
55  fMinQuantity = 0;
56  fSumSqQuantity = 0;
58  fPowerLimit = 1;
59 
60  fMaxAngle = 0;
61  fMinAngle = 1;
62 
63  fNVariables = 0;
64  fMaxVariables = 0;
65  fMinVariables = 0;
66  fSampleSize = 0;
67 
68  fMaxAngle = 0;
69  fMinAngle = 0;
70 
72  fShowCorrelation = kFALSE;
73 
74  fIsUserFunction = kFALSE;
75 
76  fHistograms = nullptr;
77  fHistogramMask = 0;
78 
79  //fFitter = nullptr;
80  //fgInstance = nullptr;
81 }
Double_t fMaxQuantity
Definition: TMultiDimFet.h:44
Double_t fSumSqQuantity
Min value of dependent quantity.
Definition: TMultiDimFet.h:46
Double_t fMinAngle
Size of test sample.
Definition: TMultiDimFet.h:63
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
Double_t fSumSqAvgQuantity
SumSquare of dependent quantity.
Definition: TMultiDimFet.h:47
Double_t fMinQuantity
Max value of dependent quantity.
Definition: TMultiDimFet.h:45
EMDFPolyType fPolyType
Bit pattern of hisograms used.
Definition: TMultiDimFet.h:112
Byte_t fHistogramMask
List of histograms.
Definition: TMultiDimFet.h:108
Double_t fMaxAngle
Min angle for acepting new function.
Definition: TMultiDimFet.h:64
Double_t fPowerLimit
maximum powers, ex-array
Definition: TMultiDimFet.h:68
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
Bool_t fShowCorrelation
Definition: TMultiDimFet.h:113
Double_t fMeanQuantity
Training sample, error in quantity.
Definition: TMultiDimFet.h:43
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
TList * fHistograms
Multi Correlation coefficient.
Definition: TMultiDimFet.h:107
Int_t fSampleSize
Definition: TMultiDimFet.h:55
Bool_t fIsUserFunction
Definition: TMultiDimFet.h:114

◆ TMultiDimFet() [2/3]

TMultiDimFet::TMultiDimFet ( const TMultiDimFet in)
default

◆ TMultiDimFet() [3/3]

TMultiDimFet::TMultiDimFet ( Int_t  dimension,
EMDFPolyType  type = kMonomials,
Option_t *  option = "" 
)

Definition at line 159 of file TMultiDimFet.cc.

References pat::helper::ParametrizationHelper::dimension(), fError, fHistogramMask, fHistograms, fIsUserFunction, fIsVerbose, fMaxAngle, fMaxFunctions, fMaxFunctionsTimesNVariables, fMaxPowers, fMaxPowersFinal, fMaxQuantity, fMaxVariables, fMeanQuantity, fMinAngle, fMinQuantity, fMinRelativeError, fMinVariables, fNVariables, fParameterisationCode, fPolyType, fPowerLimit, fPrecision, fSampleSize, fShowCorrelation, fSumSqAvgQuantity, fSumSqQuantity, fTestError, fTestPrecision, fTestSampleSize, das-up-to-nevents::opt, and fileinputsource_cfi::option.

160  : TNamed("multidimfit", "Multi-dimensional fit object"),
163  fVariables(dimension * 100),
167  // Constructor
168  // Second argument is the type of polynomials to use in
169  // parameterisation, one of:
170  // TMultiDimFet::kMonomials
171  // TMultiDimFet::kChebyshev
172  // TMultiDimFet::kLegendre
173  //
174  // Options:
175  // K Compute (k)correlation matrix
176  // V Be verbose
177  //
178  // Default is no options.
179  //
180 
181  //fgInstance = this;
182 
183  fMeanQuantity = 0;
184  fMaxQuantity = 0;
185  fMinQuantity = 0;
186  fSumSqQuantity = 0;
187  fSumSqAvgQuantity = 0;
188  fPowerLimit = 1;
189 
190  fMaxAngle = 0;
191  fMinAngle = 1;
192 
194  fMaxVariables = 0;
196  fMinVariables = 0;
197  fSampleSize = 0;
198  fTestSampleSize = 0;
199  fMinRelativeError = 0.01;
200  fError = 0;
201  fTestError = 0;
202  fPrecision = 0;
203  fTestPrecision = 0;
205 
206  fPolyType = type;
207  fShowCorrelation = kFALSE;
208  fIsVerbose = kFALSE;
209 
210  TString opt = option;
211  opt.ToLower();
212 
213  if (opt.Contains("k"))
214  fShowCorrelation = kTRUE;
215  if (opt.Contains("v"))
216  fIsVerbose = kTRUE;
217 
218  fIsUserFunction = kFALSE;
219 
220  fHistograms = nullptr;
221  fHistogramMask = 0;
222 
223  fMaxPowers.resize(dimension);
224  fMaxPowersFinal.resize(dimension);
225  //fFitter = nullptr;
226 }
Double_t fMaxQuantity
Definition: TMultiDimFet.h:44
Double_t fSumSqQuantity
Min value of dependent quantity.
Definition: TMultiDimFet.h:46
Double_t fMinAngle
Size of test sample.
Definition: TMultiDimFet.h:63
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
Int_t fTestSampleSize
Test sample, independent variables.
Definition: TMultiDimFet.h:61
Double_t fSumSqAvgQuantity
SumSquare of dependent quantity.
Definition: TMultiDimFet.h:47
Double_t fMinQuantity
Max value of dependent quantity.
Definition: TMultiDimFet.h:45
Int_t fParameterisationCode
Chi square of fit.
Definition: TMultiDimFet.h:97
EMDFPolyType fPolyType
Bit pattern of hisograms used.
Definition: TMultiDimFet.h:112
Byte_t fHistogramMask
List of histograms.
Definition: TMultiDimFet.h:108
Double_t fMaxAngle
Min angle for acepting new function.
Definition: TMultiDimFet.h:64
Double_t fPowerLimit
maximum powers, ex-array
Definition: TMultiDimFet.h:68
Double_t fPrecision
Error from test.
Definition: TMultiDimFet.h:101
Double_t fTestError
Error from parameterization.
Definition: TMultiDimFet.h:100
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
Bool_t fIsVerbose
Definition: TMultiDimFet.h:115
Bool_t fShowCorrelation
Definition: TMultiDimFet.h:113
TVectorD fQuantity
Definition: TMultiDimFet.h:41
Double_t fMinRelativeError
Definition: TMultiDimFet.h:66
Double_t fMeanQuantity
Training sample, error in quantity.
Definition: TMultiDimFet.h:43
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
Double_t fTestPrecision
Relative precision of param.
Definition: TMultiDimFet.h:102
TList * fHistograms
Multi Correlation coefficient.
Definition: TMultiDimFet.h:107
TVectorD fVariables
Sum of squares away from mean.
Definition: TMultiDimFet.h:49
Int_t fMaxFunctions
Functions evaluated over sample.
Definition: TMultiDimFet.h:71
Int_t fSampleSize
Definition: TMultiDimFet.h:55
Bool_t fIsUserFunction
Definition: TMultiDimFet.h:114
Double_t fError
Exit code of parameterisation.
Definition: TMultiDimFet.h:99
Int_t fMaxFunctionsTimesNVariables
maximum powers from fit, ex-array
Definition: TMultiDimFet.h:79
TVectorD fSqError
Training sample, dependent quantity.
Definition: TMultiDimFet.h:42
std::vector< Int_t > fMaxPowers
Min relative error accepted.
Definition: TMultiDimFet.h:67
TVectorD fMeanVariables
Definition: TMultiDimFet.h:51
std::vector< Int_t > fMaxPowersFinal
Norm of the evaluated functions.
Definition: TMultiDimFet.h:78
uint32_t dimension(pat::CandKinResolution::Parametrization parametrization)
Returns the number of free parameters in a parametrization (3 or 4)

◆ ~TMultiDimFet()

TMultiDimFet::~TMultiDimFet ( )
override

Definition at line 229 of file TMultiDimFet.cc.

References fHistograms.

229  {
230  if (fHistograms)
231  fHistograms->Clear("nodelete");
232  delete fHistograms;
233 }
TList * fHistograms
Multi Correlation coefficient.
Definition: TMultiDimFet.h:107

Member Function Documentation

◆ AddRow()

void TMultiDimFet::AddRow ( const Double_t *  x,
Double_t  D,
Double_t  E = 0 
)
virtual

Definition at line 236 of file TMultiDimFet.cc.

References fMaxQuantity, fMaxVariables, fMeanQuantity, fMeanVariables, fMinQuantity, fMinVariables, fNVariables, fQuantity, fSampleSize, fSqError, fSumSqQuantity, fVariables, mps_fire::i, dqmiolumiharvest::j, findQualityFiles::size, and x.

Referenced by LHCOpticsApproximator::Train().

236  {
237  // Add a row consisting of fNVariables independent variables, the
238  // known, dependent quantity, and optionally, the square error in
239  // the dependent quantity, to the training sample to be used for the
240  // parameterization.
241  // The mean of the variables and quantity is calculated on the fly,
242  // as outlined in TPrincipal::AddRow.
243  // This sample should be representive of the problem at hand.
244  // Please note, that if no error is given Poisson statistics is
245  // assumed and the square error is set to the value of dependent
246  // quantity. See also the
247  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
248  if (!x)
249  return;
250 
251  if (++fSampleSize == 1) {
252  fMeanQuantity = D;
253  fMaxQuantity = D;
254  fMinQuantity = D;
255  } else {
256  fMeanQuantity *= 1 - 1. / Double_t(fSampleSize);
257  fMeanQuantity += D / Double_t(fSampleSize);
258  fSumSqQuantity += D * D;
259 
260  if (D >= fMaxQuantity)
261  fMaxQuantity = D;
262  if (D <= fMinQuantity)
263  fMinQuantity = D;
264  }
265 
266  // If the vector isn't big enough to hold the new data, then
267  // expand the vector by half it's size.
268  Int_t size = fQuantity.GetNrows();
269  if (fSampleSize > size) {
270  fQuantity.ResizeTo(size + size / 2);
271  fSqError.ResizeTo(size + size / 2);
272  }
273 
274  // Store the value
275  fQuantity(fSampleSize - 1) = D;
276  fSqError(fSampleSize - 1) = (E == 0 ? D : E);
277 
278  // Store data point in internal vector
279  // If the vector isn't big enough to hold the new data, then
280  // expand the vector by half it's size
281  size = fVariables.GetNrows();
282  if (fSampleSize * fNVariables > size)
283  fVariables.ResizeTo(size + size / 2);
284 
285  // Increment the data point counter
286  Int_t i, j;
287  for (i = 0; i < fNVariables; i++) {
288  if (fSampleSize == 1) {
289  fMeanVariables(i) = x[i];
290  fMaxVariables(i) = x[i];
291  fMinVariables(i) = x[i];
292  } else {
293  fMeanVariables(i) *= 1 - 1. / Double_t(fSampleSize);
294  fMeanVariables(i) += x[i] / Double_t(fSampleSize);
295 
296  // Update the maximum value for this component
297  if (x[i] >= fMaxVariables(i))
298  fMaxVariables(i) = x[i];
299 
300  // Update the minimum value for this component
301  if (x[i] <= fMinVariables(i))
302  fMinVariables(i) = x[i];
303  }
304 
305  // Store the data.
306  j = (fSampleSize - 1) * fNVariables + i;
307  fVariables(j) = x[i];
308  }
309 }
size
Write out results.
Double_t fMaxQuantity
Definition: TMultiDimFet.h:44
Double_t fSumSqQuantity
Min value of dependent quantity.
Definition: TMultiDimFet.h:46
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
Double_t fMinQuantity
Max value of dependent quantity.
Definition: TMultiDimFet.h:45
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
TVectorD fQuantity
Definition: TMultiDimFet.h:41
Double_t fMeanQuantity
Training sample, error in quantity.
Definition: TMultiDimFet.h:43
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
DecomposeProduct< arg, typename Div::arg > D
Definition: Factorize.h:141
TVectorD fVariables
Sum of squares away from mean.
Definition: TMultiDimFet.h:49
Int_t fSampleSize
Definition: TMultiDimFet.h:55
TVectorD fSqError
Training sample, dependent quantity.
Definition: TMultiDimFet.h:42
TVectorD fMeanVariables
Definition: TMultiDimFet.h:51

◆ AddTestRow()

void TMultiDimFet::AddTestRow ( const Double_t *  x,
Double_t  D,
Double_t  E = 0 
)
virtual

Definition at line 312 of file TMultiDimFet.cc.

References fMaxVariables, fMinVariables, fNVariables, fTestQuantity, fTestSampleSize, fTestSqError, fTestVariables, mps_fire::i, dqmiolumiharvest::j, findQualityFiles::size, and x.

312  {
313  // Add a row consisting of fNVariables independent variables, the
314  // known, dependent quantity, and optionally, the square error in
315  // the dependent quantity, to the test sample to be used for the
316  // test of the parameterization.
317  // This sample needn't be representive of the problem at hand.
318  // Please note, that if no error is given Poisson statistics is
319  // assumed and the square error is set to the value of dependent
320  // quantity. See also the
321  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
322  if (fTestSampleSize++ == 0) {
323  fTestQuantity.ResizeTo(fNVariables);
324  fTestSqError.ResizeTo(fNVariables);
325  fTestVariables.ResizeTo(fNVariables * 100);
326  }
327 
328  // If the vector isn't big enough to hold the new data, then
329  // expand the vector by half it's size.
330  Int_t size = fTestQuantity.GetNrows();
331  if (fTestSampleSize > size) {
332  fTestQuantity.ResizeTo(size + size / 2);
333  fTestSqError.ResizeTo(size + size / 2);
334  }
335 
336  // Store the value
338  fTestSqError(fTestSampleSize - 1) = (E == 0 ? D : E);
339 
340  // Store data point in internal vector
341  // If the vector isn't big enough to hold the new data, then
342  // expand the vector by half it's size
343  size = fTestVariables.GetNrows();
345  fTestVariables.ResizeTo(size + size / 2);
346 
347  // Increment the data point counter
348  Int_t i, j;
349  for (i = 0; i < fNVariables; i++) {
350  j = fNVariables * (fTestSampleSize - 1) + i;
351  fTestVariables(j) = x[i];
352 
353  if (x[i] > fMaxVariables(i))
354  Warning("AddTestRow", "variable %d (row: %d) too large: %f > %f", i, fTestSampleSize, x[i], fMaxVariables(i));
355  if (x[i] < fMinVariables(i))
356  Warning("AddTestRow", "variable %d (row: %d) too small: %f < %f", i, fTestSampleSize, x[i], fMinVariables(i));
357  }
358 }
size
Write out results.
TVectorD fTestVariables
Test sample, Error in quantity.
Definition: TMultiDimFet.h:59
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
Int_t fTestSampleSize
Test sample, independent variables.
Definition: TMultiDimFet.h:61
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
TVectorD fTestSqError
Test sample, dependent quantity.
Definition: TMultiDimFet.h:58
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
TVectorD fTestQuantity
Size of training sample.
Definition: TMultiDimFet.h:57
DecomposeProduct< arg, typename Div::arg > D
Definition: Factorize.h:141

◆ Clear()

void TMultiDimFet::Clear ( Option_t *  option = "")
override

Definition at line 361 of file TMultiDimFet.cc.

References fCoefficients, fCoefficientsRMS, fCorrelationMatrix, fError, fFunctions, fHistograms, fIsUserFunction, fMaxAngle, fMaxFunctions, fMaxFunctionsTimesNVariables, fMaxPowers, fMaxPowersFinal, fMaxQuantity, fMaxResidual, fMaxResidualRow, fMaxStudy, fMaxTerms, fMaxVariables, fMeanQuantity, fMeanVariables, fMinAngle, fMinQuantity, fMinRelativeError, fMinResidual, fMinResidualRow, fMinVariables, fNCoefficients, fNVariables, fOrthCoefficients, fOrthCurvatureMatrix, fOrthFunctionNorms, fOrthFunctions, fPolyType, fPowerLimit, fPowers, fPrecision, fQuantity, fResiduals, fRMS, fSampleSize, fShowCorrelation, fSqError, fSumSqAvgQuantity, fSumSqQuantity, fSumSqResidual, fTestError, fTestPrecision, fTestQuantity, fTestSampleSize, fTestSqError, fTestVariables, fVariables, mps_fire::i, dqmiolumiharvest::j, kMonomials, visualization-live-secondInstance_cfg::m, dqmiodumpmetadata::n, and fileinputsource_cfi::option.

361  {
362  // Clear internal structures and variables
363  Int_t i, j, n = fNVariables, m = fMaxFunctions;
364 
365  // Training sample, dependent quantity
366  fQuantity.Zero();
367  fSqError.Zero();
368  fMeanQuantity = 0;
369  fMaxQuantity = 0;
370  fMinQuantity = 0;
371  fSumSqQuantity = 0;
372  fSumSqAvgQuantity = 0;
373 
374  // Training sample, independent variables
375  fVariables.Zero();
376  fNVariables = 0;
377  fSampleSize = 0;
378  fMeanVariables.Zero();
379  fMaxVariables.Zero();
380  fMinVariables.Zero();
381 
382  // Test sample
383  fTestQuantity.Zero();
384  fTestSqError.Zero();
385  fTestVariables.Zero();
386  fTestSampleSize = 0;
387 
388  // Functions
389  fFunctions.Zero();
390  fMaxFunctions = 0;
391  fMaxStudy = 0;
393  fOrthFunctions.Zero();
394  fOrthFunctionNorms.Zero();
395 
396  // Control parameters
397  fMinRelativeError = 0;
398  fMinAngle = 0;
399  fMaxAngle = 0;
400  fMaxTerms = 0;
401 
402  // Powers
403  for (i = 0; i < n; i++) {
404  fMaxPowers[i] = 0;
405  fMaxPowersFinal[i] = 0;
406  for (j = 0; j < m; j++)
407  fPowers[i * n + j] = 0;
408  }
409  fPowerLimit = 0;
410 
411  // Residuals
412  fMaxResidual = 0;
413  fMinResidual = 0;
414  fMaxResidualRow = 0;
415  fMinResidualRow = 0;
416  fSumSqResidual = 0;
417 
418  // Fit
419  fNCoefficients = 0;
420  fOrthCoefficients = 0;
422  fRMS = 0;
423  fCorrelationMatrix.Zero();
424  fError = 0;
425  fTestError = 0;
426  fPrecision = 0;
427  fTestPrecision = 0;
428 
429  // Coefficients
430  fCoefficients.Zero();
431  fCoefficientsRMS.Zero();
432  fResiduals.Zero();
433  fHistograms->Clear(option);
434 
435  // Options
437  fShowCorrelation = kFALSE;
438  fIsUserFunction = kFALSE;
439 }
Double_t fMaxQuantity
Definition: TMultiDimFet.h:44
TMatrixD fCorrelationMatrix
Multi Correlation coefficient.
Definition: TMultiDimFet.h:104
Double_t fSumSqQuantity
Min value of dependent quantity.
Definition: TMultiDimFet.h:46
Double_t fMinAngle
Size of test sample.
Definition: TMultiDimFet.h:63
TVectorD fTestVariables
Test sample, Error in quantity.
Definition: TMultiDimFet.h:59
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
Int_t fTestSampleSize
Test sample, independent variables.
Definition: TMultiDimFet.h:61
Double_t fSumSqAvgQuantity
SumSquare of dependent quantity.
Definition: TMultiDimFet.h:47
Double_t fMinQuantity
Max value of dependent quantity.
Definition: TMultiDimFet.h:45
Double_t fMinResidual
Max redsidual value.
Definition: TMultiDimFet.h:85
EMDFPolyType fPolyType
Bit pattern of hisograms used.
Definition: TMultiDimFet.h:112
TMatrixD fFunctions
Control parameter.
Definition: TMultiDimFet.h:70
TMatrixD fOrthFunctions
max functions to study
Definition: TMultiDimFet.h:75
Double_t fMaxAngle
Min angle for acepting new function.
Definition: TMultiDimFet.h:64
std::vector< Int_t > fPowers
Definition: TMultiDimFet.h:80
Double_t fPowerLimit
maximum powers, ex-array
Definition: TMultiDimFet.h:68
Double_t fPrecision
Error from test.
Definition: TMultiDimFet.h:101
TVectorD fCoefficientsRMS
Definition: TMultiDimFet.h:94
Int_t fMaxResidualRow
Min redsidual value.
Definition: TMultiDimFet.h:86
Double_t fTestError
Error from parameterization.
Definition: TMultiDimFet.h:100
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
Bool_t fShowCorrelation
Definition: TMultiDimFet.h:113
Int_t fMinResidualRow
Row giving max residual.
Definition: TMultiDimFet.h:87
TVectorD fTestSqError
Test sample, dependent quantity.
Definition: TMultiDimFet.h:58
TVectorD fQuantity
Definition: TMultiDimFet.h:41
Double_t fMinRelativeError
Definition: TMultiDimFet.h:66
TVectorD fOrthCoefficients
Definition: TMultiDimFet.h:91
Double_t fRMS
Vector of RMS of coefficients.
Definition: TMultiDimFet.h:95
Double_t fMeanQuantity
Training sample, error in quantity.
Definition: TMultiDimFet.h:43
TVectorD fOrthFunctionNorms
As above, but orthogonalised.
Definition: TMultiDimFet.h:76
Double_t fSumSqResidual
Row giving min residual.
Definition: TMultiDimFet.h:88
Double_t fMaxResidual
Vector of the final residuals.
Definition: TMultiDimFet.h:84
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
Double_t fTestPrecision
Relative precision of param.
Definition: TMultiDimFet.h:102
TList * fHistograms
Multi Correlation coefficient.
Definition: TMultiDimFet.h:107
Int_t fMaxTerms
Max angle for acepting new function.
Definition: TMultiDimFet.h:65
TVectorD fTestQuantity
Size of training sample.
Definition: TMultiDimFet.h:57
TVectorD fVariables
Sum of squares away from mean.
Definition: TMultiDimFet.h:49
Int_t fMaxFunctions
Functions evaluated over sample.
Definition: TMultiDimFet.h:71
Int_t fSampleSize
Definition: TMultiDimFet.h:55
Bool_t fIsUserFunction
Definition: TMultiDimFet.h:114
Double_t fError
Exit code of parameterisation.
Definition: TMultiDimFet.h:99
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90
Int_t fMaxFunctionsTimesNVariables
maximum powers from fit, ex-array
Definition: TMultiDimFet.h:79
TVectorD fSqError
Training sample, dependent quantity.
Definition: TMultiDimFet.h:42
TMatrixD fOrthCurvatureMatrix
The model coefficients.
Definition: TMultiDimFet.h:92
TVectorD fResiduals
Definition: TMultiDimFet.h:83
std::vector< Int_t > fMaxPowers
Min relative error accepted.
Definition: TMultiDimFet.h:67
TVectorD fMeanVariables
Definition: TMultiDimFet.h:51
std::vector< Int_t > fMaxPowersFinal
Norm of the evaluated functions.
Definition: TMultiDimFet.h:78
TVectorD fCoefficients
Model matrix.
Definition: TMultiDimFet.h:93
Int_t fMaxStudy
acceptance code, ex-array
Definition: TMultiDimFet.h:73

◆ Eval()

Double_t TMultiDimFet::Eval ( const Double_t *  x,
const Double_t *  coeff = nullptr 
) const
virtual

Definition at line 442 of file TMultiDimFet.cc.

References EvalFactor(), fCoefficients, fMaxVariables, fMeanQuantity, fMinVariables, fNCoefficients, fNVariables, fPowerIndex, fPowers, mps_fire::i, dqmiolumiharvest::j, AlCaHLTBitMon_ParallelJobs::p, x, and y.

Referenced by MakeChi2(), LHCOpticsApproximator::Test(), and LHCOpticsApproximator::Transport().

442  {
443  // Evaluate parameterization at point x. Optional argument coeff is
444  // a vector of coefficients for the parameterisation, fNCoefficients
445  // elements long.
446  // int fMaxFunctionsTimesNVariables = fMaxFunctions * fNVariables;
447  Double_t returnValue = fMeanQuantity;
448  Double_t term = 0;
449  Int_t i, j;
450 
451  for (i = 0; i < fNCoefficients; i++) {
452  // Evaluate the ith term in the expansion
453  term = (coeff ? coeff[i] : fCoefficients(i));
454  for (j = 0; j < fNVariables; j++) {
455  // Evaluate the factor (polynomial) in the j-th variable.
456  Int_t p = fPowers[fPowerIndex[i] * fNVariables + j];
457  Double_t y = 1 + 2. / (fMaxVariables(j) - fMinVariables(j)) * (x[j] - fMaxVariables(j));
458  term *= EvalFactor(p, y);
459  }
460  // Add this term to the final result
461  returnValue += term;
462  }
463  return returnValue;
464 }
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
std::vector< Int_t > fPowers
Definition: TMultiDimFet.h:80
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
std::vector< Int_t > fPowerIndex
Definition: TMultiDimFet.h:81
Double_t fMeanQuantity
Training sample, error in quantity.
Definition: TMultiDimFet.h:43
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90
TVectorD fCoefficients
Model matrix.
Definition: TMultiDimFet.h:93
virtual Double_t EvalFactor(Int_t p, Double_t x) const

◆ EvalControl()

Double_t TMultiDimFet::EvalControl ( const Int_t *  powers)
protectedvirtual

Definition at line 515 of file TMultiDimFet.cc.

References MillePedeFileConverter_cfg::e, geometryDiff::epsilon, fMaxPowers, fNVariables, mps_fire::i, ALPAKA_ACCELERATOR_NAMESPACE::vertexFinder::iv, and alignCSCRings::s.

Referenced by MakeCandidates(), and MakeParameterization().

515  {
516  // PRIVATE METHOD:
517  // Calculate the control parameter from the passed powers
518  Double_t s = 0;
519  Double_t epsilon = 1e-6; // a small number
520  for (Int_t i = 0; i < fNVariables; i++) {
521  if (fMaxPowers[i] != 1)
522  s += (epsilon + iv[i] - 1) / (epsilon + fMaxPowers[i] - 1);
523  }
524  return s;
525 }
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
std::vector< Int_t > fMaxPowers
Min relative error accepted.
Definition: TMultiDimFet.h:67

◆ EvalFactor()

Double_t TMultiDimFet::EvalFactor ( Int_t  p,
Double_t  x 
) const
protectedvirtual

Definition at line 528 of file TMultiDimFet.cc.

References fPolyType, mps_fire::i, kChebyshev, kLegendre, AlCaHLTBitMon_ParallelJobs::p, LaserDQM_cfg::p1, SiStripOfflineCRack_cfg::p2, chargedHadronTrackResolutionFilter_cfi::p3, alignCSCRings::r, and x.

Referenced by Eval(), and MakeGramSchmidt().

528  {
529  // PRIVATE METHOD:
530  // Evaluate function with power p at variable value x
531  Int_t i = 0;
532  Double_t p1 = 1;
533  Double_t p2 = 0;
534  Double_t p3 = 0;
535  Double_t r = 0;
536 
537  switch (p) {
538  case 1:
539  r = 1;
540  break;
541  case 2:
542  r = x;
543  break;
544  default:
545  p2 = x;
546  for (i = 3; i <= p; i++) {
547  p3 = p2 * x;
548  if (fPolyType == kLegendre)
549  p3 = ((2 * i - 3) * p2 * x - (i - 2) * p1) / (i - 1);
550  else if (fPolyType == kChebyshev)
551  p3 = 2 * x * p2 - p1;
552  p1 = p2;
553  p2 = p3;
554  }
555  r = p3;
556  }
557 
558  return r;
559 }
EMDFPolyType fPolyType
Bit pattern of hisograms used.
Definition: TMultiDimFet.h:112

◆ FindParameterization()

void TMultiDimFet::FindParameterization ( double  precision)
virtual

Definition at line 562 of file TMultiDimFet.cc.

References MakeCandidates(), MakeCoefficients(), MakeNormalized(), MakeParameterization(), hcalRecHitTable_cff::precision, and ReducePolynomial().

562  {
563  // Find the parameterization
564  //
565  // Options:
566  // None so far
567  //
568  // For detailed description of what this entails, please refer to the
569  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
570  MakeNormalized();
571  MakeCandidates();
575 }
virtual void MakeParameterization()
virtual void MakeNormalized()
virtual void MakeCandidates()
virtual void MakeCoefficients()
void ReducePolynomial(double error)

◆ GetChi2()

Double_t TMultiDimFet::GetChi2 ( ) const
inline

Definition at line 147 of file TMultiDimFet.h.

References fChi2.

147 { return fChi2; }
Double_t fChi2
Root mean square of fit.
Definition: TMultiDimFet.h:96

◆ GetCoefficients()

const TVectorD* TMultiDimFet::GetCoefficients ( ) const
inline

Definition at line 149 of file TMultiDimFet.h.

References fCoefficients.

149 { return &fCoefficients; }
TVectorD fCoefficients
Model matrix.
Definition: TMultiDimFet.h:93

◆ GetCorrelationMatrix()

const TMatrixD* TMultiDimFet::GetCorrelationMatrix ( ) const
inline

Definition at line 148 of file TMultiDimFet.h.

References fCorrelationMatrix.

148 { return &fCorrelationMatrix; }
TMatrixD fCorrelationMatrix
Multi Correlation coefficient.
Definition: TMultiDimFet.h:104

◆ GetError()

Double_t TMultiDimFet::GetError ( ) const
inline

Definition at line 150 of file TMultiDimFet.h.

References fError.

150 { return fError; }
Double_t fError
Exit code of parameterisation.
Definition: TMultiDimFet.h:99

◆ GetFunctionCodes()

std::vector<Int_t> TMultiDimFet::GetFunctionCodes ( ) const
inline

Definition at line 151 of file TMultiDimFet.h.

References fFunctionCodes.

151 { return fFunctionCodes; }
std::vector< Int_t > fFunctionCodes
Definition: TMultiDimFet.h:72

◆ GetFunctions()

const TMatrixD* TMultiDimFet::GetFunctions ( ) const
inline

Definition at line 152 of file TMultiDimFet.h.

References fFunctions.

152 { return &fFunctions; }
TMatrixD fFunctions
Control parameter.
Definition: TMultiDimFet.h:70

◆ GetHistograms()

virtual TList* TMultiDimFet::GetHistograms ( ) const
inlinevirtual

Definition at line 153 of file TMultiDimFet.h.

References fHistograms.

153 { return fHistograms; }
TList * fHistograms
Multi Correlation coefficient.
Definition: TMultiDimFet.h:107

◆ GetMaxAngle()

Double_t TMultiDimFet::GetMaxAngle ( ) const
inline

Definition at line 154 of file TMultiDimFet.h.

References fMaxAngle.

154 { return fMaxAngle; }
Double_t fMaxAngle
Min angle for acepting new function.
Definition: TMultiDimFet.h:64

◆ GetMaxFunctions()

Int_t TMultiDimFet::GetMaxFunctions ( ) const
inline

Definition at line 155 of file TMultiDimFet.h.

References fMaxFunctions.

155 { return fMaxFunctions; }
Int_t fMaxFunctions
Functions evaluated over sample.
Definition: TMultiDimFet.h:71

◆ GetMaxPowers()

std::vector<Int_t> TMultiDimFet::GetMaxPowers ( ) const
inline

Definition at line 156 of file TMultiDimFet.h.

References fMaxPowers.

156 { return fMaxPowers; }
std::vector< Int_t > fMaxPowers
Min relative error accepted.
Definition: TMultiDimFet.h:67

◆ GetMaxQuantity()

Double_t TMultiDimFet::GetMaxQuantity ( ) const
inline

Definition at line 157 of file TMultiDimFet.h.

References fMaxQuantity.

157 { return fMaxQuantity; }
Double_t fMaxQuantity
Definition: TMultiDimFet.h:44

◆ GetMaxStudy()

Int_t TMultiDimFet::GetMaxStudy ( ) const
inline

Definition at line 158 of file TMultiDimFet.h.

References fMaxStudy.

158 { return fMaxStudy; }
Int_t fMaxStudy
acceptance code, ex-array
Definition: TMultiDimFet.h:73

◆ GetMaxTerms()

Int_t TMultiDimFet::GetMaxTerms ( ) const
inline

Definition at line 159 of file TMultiDimFet.h.

References fMaxTerms.

159 { return fMaxTerms; }
Int_t fMaxTerms
Max angle for acepting new function.
Definition: TMultiDimFet.h:65

◆ GetMaxVariables()

const TVectorD* TMultiDimFet::GetMaxVariables ( ) const
inline

Definition at line 160 of file TMultiDimFet.h.

References fMaxVariables.

Referenced by LHCOpticsApproximator::ParameterOutOfRangePenalty(), and LHCOpticsApproximator::PrintInputRange().

160 { return &fMaxVariables; }
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52

◆ GetMeanQuantity()

Double_t TMultiDimFet::GetMeanQuantity ( ) const
inline

Definition at line 161 of file TMultiDimFet.h.

References fMeanQuantity.

161 { return fMeanQuantity; }
Double_t fMeanQuantity
Training sample, error in quantity.
Definition: TMultiDimFet.h:43

◆ GetMeanVariables()

const TVectorD* TMultiDimFet::GetMeanVariables ( ) const
inline

Definition at line 162 of file TMultiDimFet.h.

References fMeanVariables.

162 { return &fMeanVariables; }
TVectorD fMeanVariables
Definition: TMultiDimFet.h:51

◆ GetMinAngle()

Double_t TMultiDimFet::GetMinAngle ( ) const
inline

Definition at line 163 of file TMultiDimFet.h.

References fMinAngle.

163 { return fMinAngle; }
Double_t fMinAngle
Size of test sample.
Definition: TMultiDimFet.h:63

◆ GetMinQuantity()

Double_t TMultiDimFet::GetMinQuantity ( ) const
inline

Definition at line 164 of file TMultiDimFet.h.

References fMinQuantity.

164 { return fMinQuantity; }
Double_t fMinQuantity
Max value of dependent quantity.
Definition: TMultiDimFet.h:45

◆ GetMinRelativeError()

Double_t TMultiDimFet::GetMinRelativeError ( ) const
inline

Definition at line 165 of file TMultiDimFet.h.

References fMinRelativeError.

165 { return fMinRelativeError; }
Double_t fMinRelativeError
Definition: TMultiDimFet.h:66

◆ GetMinVariables()

const TVectorD* TMultiDimFet::GetMinVariables ( ) const
inline

Definition at line 166 of file TMultiDimFet.h.

References fMinVariables.

Referenced by LHCOpticsApproximator::ParameterOutOfRangePenalty(), and LHCOpticsApproximator::PrintInputRange().

166 { return &fMinVariables; }
TVectorD fMinVariables
Definition: TMultiDimFet.h:53

◆ GetNCoefficients()

Int_t TMultiDimFet::GetNCoefficients ( ) const
inline

Definition at line 168 of file TMultiDimFet.h.

References fNCoefficients.

168 { return fNCoefficients; }
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90

◆ GetNVariables()

Int_t TMultiDimFet::GetNVariables ( ) const
inline

Definition at line 167 of file TMultiDimFet.h.

References fNVariables.

167 { return fNVariables; }
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50

◆ GetPolyType()

Int_t TMultiDimFet::GetPolyType ( ) const
inline

Definition at line 169 of file TMultiDimFet.h.

References fPolyType.

169 { return fPolyType; }
EMDFPolyType fPolyType
Bit pattern of hisograms used.
Definition: TMultiDimFet.h:112

◆ GetPowerIndex()

std::vector<Int_t> TMultiDimFet::GetPowerIndex ( ) const
inline

Definition at line 170 of file TMultiDimFet.h.

References fPowerIndex.

170 { return fPowerIndex; }
std::vector< Int_t > fPowerIndex
Definition: TMultiDimFet.h:81

◆ GetPowerLimit()

Double_t TMultiDimFet::GetPowerLimit ( ) const
inline

Definition at line 171 of file TMultiDimFet.h.

References fPowerLimit.

171 { return fPowerLimit; }
Double_t fPowerLimit
maximum powers, ex-array
Definition: TMultiDimFet.h:68

◆ GetPowers()

std::vector<Int_t> TMultiDimFet::GetPowers ( ) const
inline

Definition at line 172 of file TMultiDimFet.h.

References fPowers.

172 { return fPowers; }
std::vector< Int_t > fPowers
Definition: TMultiDimFet.h:80

◆ GetPrecision()

Double_t TMultiDimFet::GetPrecision ( ) const
inline

Definition at line 173 of file TMultiDimFet.h.

References fPrecision.

173 { return fPrecision; }
Double_t fPrecision
Error from test.
Definition: TMultiDimFet.h:101

◆ GetQuantity()

const TVectorD* TMultiDimFet::GetQuantity ( ) const
inline

Definition at line 174 of file TMultiDimFet.h.

References fQuantity.

174 { return &fQuantity; }
TVectorD fQuantity
Definition: TMultiDimFet.h:41

◆ GetResidualMax()

Double_t TMultiDimFet::GetResidualMax ( ) const
inline

Definition at line 175 of file TMultiDimFet.h.

References fMaxResidual.

175 { return fMaxResidual; }
Double_t fMaxResidual
Vector of the final residuals.
Definition: TMultiDimFet.h:84

◆ GetResidualMaxRow()

Int_t TMultiDimFet::GetResidualMaxRow ( ) const
inline

Definition at line 177 of file TMultiDimFet.h.

References fMaxResidualRow.

177 { return fMaxResidualRow; }
Int_t fMaxResidualRow
Min redsidual value.
Definition: TMultiDimFet.h:86

◆ GetResidualMin()

Double_t TMultiDimFet::GetResidualMin ( ) const
inline

Definition at line 176 of file TMultiDimFet.h.

References fMinResidual.

176 { return fMinResidual; }
Double_t fMinResidual
Max redsidual value.
Definition: TMultiDimFet.h:85

◆ GetResidualMinRow()

Int_t TMultiDimFet::GetResidualMinRow ( ) const
inline

Definition at line 178 of file TMultiDimFet.h.

References fMinResidualRow.

178 { return fMinResidualRow; }
Int_t fMinResidualRow
Row giving max residual.
Definition: TMultiDimFet.h:87

◆ GetResidualSumSq()

Double_t TMultiDimFet::GetResidualSumSq ( ) const
inline

Definition at line 179 of file TMultiDimFet.h.

References fSumSqResidual.

179 { return fSumSqResidual; }
Double_t fSumSqResidual
Row giving min residual.
Definition: TMultiDimFet.h:88

◆ GetRMS()

Double_t TMultiDimFet::GetRMS ( ) const
inline

Definition at line 180 of file TMultiDimFet.h.

References fRMS.

180 { return fRMS; }
Double_t fRMS
Vector of RMS of coefficients.
Definition: TMultiDimFet.h:95

◆ GetSampleSize()

Int_t TMultiDimFet::GetSampleSize ( ) const
inline

Definition at line 181 of file TMultiDimFet.h.

References fSampleSize.

181 { return fSampleSize; }
Int_t fSampleSize
Definition: TMultiDimFet.h:55

◆ GetSqError()

const TVectorD* TMultiDimFet::GetSqError ( ) const
inline

Definition at line 182 of file TMultiDimFet.h.

References fSqError.

182 { return &fSqError; }
TVectorD fSqError
Training sample, dependent quantity.
Definition: TMultiDimFet.h:42

◆ GetSumSqAvgQuantity()

Double_t TMultiDimFet::GetSumSqAvgQuantity ( ) const
inline

Definition at line 183 of file TMultiDimFet.h.

References fSumSqAvgQuantity.

183 { return fSumSqAvgQuantity; }
Double_t fSumSqAvgQuantity
SumSquare of dependent quantity.
Definition: TMultiDimFet.h:47

◆ GetSumSqQuantity()

Double_t TMultiDimFet::GetSumSqQuantity ( ) const
inline

Definition at line 184 of file TMultiDimFet.h.

References fSumSqQuantity.

184 { return fSumSqQuantity; }
Double_t fSumSqQuantity
Min value of dependent quantity.
Definition: TMultiDimFet.h:46

◆ GetTestError()

Double_t TMultiDimFet::GetTestError ( ) const
inline

Definition at line 185 of file TMultiDimFet.h.

References fTestError.

185 { return fTestError; }
Double_t fTestError
Error from parameterization.
Definition: TMultiDimFet.h:100

◆ GetTestPrecision()

Double_t TMultiDimFet::GetTestPrecision ( ) const
inline

Definition at line 186 of file TMultiDimFet.h.

References fTestPrecision.

186 { return fTestPrecision; }
Double_t fTestPrecision
Relative precision of param.
Definition: TMultiDimFet.h:102

◆ GetTestQuantity()

const TVectorD* TMultiDimFet::GetTestQuantity ( ) const
inline

Definition at line 187 of file TMultiDimFet.h.

References fTestQuantity.

187 { return &fTestQuantity; }
TVectorD fTestQuantity
Size of training sample.
Definition: TMultiDimFet.h:57

◆ GetTestSampleSize()

Int_t TMultiDimFet::GetTestSampleSize ( ) const
inline

Definition at line 188 of file TMultiDimFet.h.

References fTestSampleSize.

188 { return fTestSampleSize; }
Int_t fTestSampleSize
Test sample, independent variables.
Definition: TMultiDimFet.h:61

◆ GetTestSqError()

const TVectorD* TMultiDimFet::GetTestSqError ( ) const
inline

Definition at line 189 of file TMultiDimFet.h.

References fTestSqError.

189 { return &fTestSqError; }
TVectorD fTestSqError
Test sample, dependent quantity.
Definition: TMultiDimFet.h:58

◆ GetTestVariables()

const TVectorD* TMultiDimFet::GetTestVariables ( ) const
inline

Definition at line 190 of file TMultiDimFet.h.

References fTestVariables.

190 { return &fTestVariables; }
TVectorD fTestVariables
Test sample, Error in quantity.
Definition: TMultiDimFet.h:59

◆ GetVariables()

const TVectorD* TMultiDimFet::GetVariables ( ) const
inline

Definition at line 191 of file TMultiDimFet.h.

References fVariables.

191 { return &fVariables; }
TVectorD fVariables
Sum of squares away from mean.
Definition: TMultiDimFet.h:49

◆ IsFolder()

Bool_t TMultiDimFet::IsFolder ( ) const
inlineoverride

Definition at line 194 of file TMultiDimFet.h.

194 { return kTRUE; }

◆ MakeCandidates()

void TMultiDimFet::MakeCandidates ( )
protectedvirtual

Definition at line 658 of file TMultiDimFet.cc.

References MillePedeFileConverter_cfg::e, EvalControl(), fIsUserFunction, fMaxFunctions, fMaxFunctionsTimesNVariables, fMaxPowers, fNVariables, fPowerLimit, fPowers, mps_fire::i, ALPAKA_ACCELERATOR_NAMESPACE::vertexFinder::iv, dqmiolumiharvest::j, dqmdumpme::k, MainPageGenerator::l, eventshapeDQM_cfi::order, alignCSCRings::s, Select(), and x.

Referenced by FindParameterization().

658  {
659  // PRIVATE METHOD:
660  // Create list of candidate functions for the parameterisation. See
661  // also
662  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
663  Int_t i = 0;
664  Int_t j = 0;
665  Int_t k = 0;
666 
667  // The temporary array to store the powers in. We don't need to
668  // initialize this array however.
669  Int_t *powers = new Int_t[fNVariables * fMaxFunctions];
670 
671  // store of `control variables'
672  Double_t *control = new Double_t[fMaxFunctions];
673 
674  // We've better initialize the variables
675  Int_t *iv = new Int_t[fNVariables];
676  for (i = 0; i < fNVariables; i++)
677  iv[i] = 1;
678 
679  if (!fIsUserFunction) {
680  // Number of funcs selected
681  Int_t numberFunctions = 0;
682 
683  while (kTRUE) {
684  // Get the control value for this function
685  Double_t s = EvalControl(iv);
686 
687  if (s <= fPowerLimit) {
688  // Call over-loadable method Select, as to allow the user to
689  // interfere with the selection of functions.
690  if (Select(iv)) {
691  numberFunctions++;
692 
693  // If we've reached the user defined limit of how many
694  // functions we can consider, break out of the loop
695  if (numberFunctions > fMaxFunctions)
696  break;
697 
698  // Store the control value, so we can sort array of powers
699  // later on
700  control[numberFunctions - 1] = Int_t(1.0e+6 * s);
701 
702  // Store the powers in powers array.
703  for (i = 0; i < fNVariables; i++) {
704  j = (numberFunctions - 1) * fNVariables + i;
705  powers[j] = iv[i];
706  }
707  } // if (Select())
708  } // if (s <= fPowerLimit)
709 
710  for (i = 0; i < fNVariables; i++)
711  if (iv[i] < fMaxPowers[i])
712  break;
713 
714  // If all variables have reached their maximum power, then we
715  // break out of the loop
716  if (i == fNVariables) {
717  fMaxFunctions = numberFunctions;
719  break;
720  }
721 
722  // Next power in variable i
723  iv[i]++;
724 
725  for (j = 0; j < i; j++)
726  iv[j] = 1;
727  } // while (kTRUE)
728  } else {
729  // In case the user gave an explicit function
730  for (i = 0; i < fMaxFunctions; i++) {
731  // Copy the powers to working arrays
732  for (j = 0; j < fNVariables; j++) {
733  powers[i * fNVariables + j] = fPowers[i * fNVariables + j];
734  iv[j] = fPowers[i * fNVariables + j];
735  }
736 
737  control[i] = Int_t(1.0e+6 * EvalControl(iv));
738  }
739  }
740 
741  // Now we need to sort the powers according to least `control
742  // variable'
743  Int_t *order = new Int_t[fMaxFunctions];
744  for (i = 0; i < fMaxFunctions; i++)
745  order[i] = i;
747 
748  for (i = 0; i < fMaxFunctions; i++) {
749  Double_t x = control[i];
750  Int_t l = order[i];
751  k = i;
752 
753  for (j = i; j < fMaxFunctions; j++) {
754  if (control[j] <= x) {
755  x = control[j];
756  l = order[j];
757  k = j;
758  }
759  }
760 
761  if (k != i) {
762  control[k] = control[i];
763  control[i] = x;
764  order[k] = order[i];
765  order[i] = l;
766  }
767  }
768 
769  for (i = 0; i < fMaxFunctions; i++)
770  for (j = 0; j < fNVariables; j++)
771  fPowers[i * fNVariables + j] = powers[order[i] * fNVariables + j];
772 
773  delete[] control;
774  delete[] powers;
775  delete[] order;
776  delete[] iv;
777 }
virtual Double_t EvalControl(const Int_t *powers)
std::vector< Int_t > fPowers
Definition: TMultiDimFet.h:80
Double_t fPowerLimit
maximum powers, ex-array
Definition: TMultiDimFet.h:68
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
virtual Bool_t Select(const Int_t *iv)
Int_t fMaxFunctions
Functions evaluated over sample.
Definition: TMultiDimFet.h:71
Bool_t fIsUserFunction
Definition: TMultiDimFet.h:114
Int_t fMaxFunctionsTimesNVariables
maximum powers from fit, ex-array
Definition: TMultiDimFet.h:79
std::vector< Int_t > fMaxPowers
Min relative error accepted.
Definition: TMultiDimFet.h:67

◆ MakeChi2()

Double_t TMultiDimFet::MakeChi2 ( const Double_t *  coeff = nullptr)
virtual

Definition at line 779 of file TMultiDimFet.cc.

References MillePedeFileConverter_cfg::e, Eval(), f, fChi2, fNVariables, fTestQuantity, fTestSampleSize, fTestSqError, fTestVariables, mps_fire::i, dqmiolumiharvest::j, METSkim_cff::Max, and x.

779  {
780  // Calculate Chi square over either the test sample. The optional
781  // argument coeff is a vector of coefficients to use in the
782  // evaluation of the parameterisation. If coeff == 0, then the found
783  // coefficients is used.
784  // Used my MINUIT for fit (see TMultDimFit::Fit)
785  fChi2 = 0;
786  Int_t i, j;
787  Double_t *x = new Double_t[fNVariables];
788  for (i = 0; i < fTestSampleSize; i++) {
789  // Get the stored point
790  for (j = 0; j < fNVariables; j++)
791  x[j] = fTestVariables(i * fNVariables + j);
792 
793  // Evaluate function. Scale to shifted values
794  Double_t f = Eval(x, coeff);
795 
796  // Calculate contribution to Chic square
797  fChi2 += 1. / TMath::Max(fTestSqError(i), 1e-20) * (fTestQuantity(i) - f) * (fTestQuantity(i) - f);
798  }
799 
800  // Clean up
801  delete[] x;
802 
803  return fChi2;
804 }
TVectorD fTestVariables
Test sample, Error in quantity.
Definition: TMultiDimFet.h:59
Int_t fTestSampleSize
Test sample, independent variables.
Definition: TMultiDimFet.h:61
virtual Double_t Eval(const Double_t *x, const Double_t *coeff=nullptr) const
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
Double_t fChi2
Root mean square of fit.
Definition: TMultiDimFet.h:96
TVectorD fTestSqError
Test sample, dependent quantity.
Definition: TMultiDimFet.h:58
double f[11][100]
TVectorD fTestQuantity
Size of training sample.
Definition: TMultiDimFet.h:57

◆ MakeCode()

void TMultiDimFet::MakeCode ( const char *  functionName = "MDF",
Option_t *  option = "" 
)
virtual

Definition at line 807 of file TMultiDimFet.cc.

References corrVsCorr::filename, MakeRealCode(), and fileinputsource_cfi::option.

807  {
808  // Generate the file <filename> with .C appended if argument doesn't
809  // end in .cxx or .C. The contains the implementation of the
810  // function:
811  //
812  // Double_t <funcname>(Double_t *x)
813  //
814  // which does the same as TMultiDimFet::Eval. Please refer to this
815  // method.
816  //
817  // Further, the static variables:
818  //
819  // Int_t gNVariables
820  // Int_t gNCoefficients
821  // Double_t gDMean
822  // Double_t gXMean[]
823  // Double_t gXMin[]
824  // Double_t gXMax[]
825  // Double_t gCoefficient[]
826  // Int_t gPower[]
827  //
828  // are initialized. The only ROOT header file needed is Rtypes.h
829  //
830  // See TMultiDimFet::MakeRealCode for a list of options
831 
832  TString outName(filename);
833  if (!outName.EndsWith(".C") && !outName.EndsWith(".cxx"))
834  outName += ".C";
835 
836  MakeRealCode(outName.Data(), "", option);
837 }
virtual void MakeRealCode(const char *filename, const char *classname, Option_t *option="")

◆ MakeCoefficientErrors()

void TMultiDimFet::MakeCoefficientErrors ( )
protectedvirtual

Definition at line 839 of file TMultiDimFet.cc.

References MillePedeFileConverter_cfg::e, f, fChi2, fCoefficients, fCoefficientsRMS, fFunctions, fNCoefficients, fQuantity, fSampleSize, fSqError, mps_fire::i, dqmiolumiharvest::j, dqmdumpme::k, and METSkim_cff::Max.

839  {
840  // PRIVATE METHOD:
841  // Compute the errors on the coefficients. For this to be done, the
842  // curvature matrix of the non-orthogonal functions, is computed.
843  Int_t i = 0;
844  Int_t j = 0;
845  Int_t k = 0;
846  TVectorD iF(fSampleSize);
847  TVectorD jF(fSampleSize);
849 
850  TMatrixDSym curvatureMatrix(fNCoefficients);
851 
852  // Build the curvature matrix
853  for (i = 0; i < fNCoefficients; i++) {
854  iF = TMatrixDRow(fFunctions, i);
855  for (j = 0; j <= i; j++) {
856  jF = TMatrixDRow(fFunctions, j);
857  for (k = 0; k < fSampleSize; k++)
858  curvatureMatrix(i, j) += 1 / TMath::Max(fSqError(k), 1e-20) * iF(k) * jF(k);
859  curvatureMatrix(j, i) = curvatureMatrix(i, j);
860  }
861  }
862 
863  // Calculate Chi Square
864  fChi2 = 0;
865  for (i = 0; i < fSampleSize; i++) {
866  Double_t f = 0;
867  for (j = 0; j < fNCoefficients; j++)
868  f += fCoefficients(j) * fFunctions(j, i);
869  fChi2 += 1. / TMath::Max(fSqError(i), 1e-20) * (fQuantity(i) - f) * (fQuantity(i) - f);
870  }
871 
872  // Invert the curvature matrix
873  const TVectorD diag = TMatrixDDiag_const(curvatureMatrix);
874  curvatureMatrix.NormByDiag(diag);
875 
876  TDecompChol chol(curvatureMatrix);
877  if (!chol.Decompose())
878  Error("MakeCoefficientErrors", "curvature matrix is singular");
879  chol.Invert(curvatureMatrix);
880 
881  curvatureMatrix.NormByDiag(diag);
882 
883  for (i = 0; i < fNCoefficients; i++)
884  fCoefficientsRMS(i) = TMath::Sqrt(curvatureMatrix(i, i));
885 }
edm::ErrorSummaryEntry Error
TMatrixD fFunctions
Control parameter.
Definition: TMultiDimFet.h:70
TVectorD fCoefficientsRMS
Definition: TMultiDimFet.h:94
Double_t fChi2
Root mean square of fit.
Definition: TMultiDimFet.h:96
TVectorD fQuantity
Definition: TMultiDimFet.h:41
double f[11][100]
Int_t fSampleSize
Definition: TMultiDimFet.h:55
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90
TVectorD fSqError
Training sample, dependent quantity.
Definition: TMultiDimFet.h:42
TVectorD fCoefficients
Model matrix.
Definition: TMultiDimFet.h:93

◆ MakeCoefficients()

void TMultiDimFet::MakeCoefficients ( )
protectedvirtual

Definition at line 888 of file TMultiDimFet.cc.

References cuy::col, fCoefficients, fCorrelationCoeff, fFunctions, fHistogramMask, fHistograms, HcalObjRepresent::Fill(), fMaxResidual, fMaxResidualRow, fMinResidual, fMinResidualRow, fNCoefficients, fNVariables, fOrthCoefficients, fOrthCurvatureMatrix, fPrecision, fQuantity, fResiduals, fSampleSize, fSumSqAvgQuantity, fSumSqQuantity, fSumSqResidual, fVariables, HIST_RD, HIST_RTRAI, HIST_RX, mps_fire::i, and dqmiolumiharvest::j.

Referenced by FindParameterization().

888  {
889  // PRIVATE METHOD:
890  // Invert the model matrix B, and compute final coefficients. For a
891  // more thorough discussion of what this means, please refer to the
892  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
893  //
894  // First we invert the lower triangle matrix fOrthCurvatureMatrix
895  // and store the inverted matrix in the upper triangle.
896 
897  Int_t i = 0, j = 0;
898  Int_t col = 0, row = 0;
899 
900  // Invert the B matrix
901  for (col = 1; col < fNCoefficients; col++) {
902  for (row = col - 1; row > -1; row--) {
903  fOrthCurvatureMatrix(row, col) = 0;
904  for (i = row; i <= col; i++)
906  }
907  }
908 
909  // Compute the final coefficients
910  fCoefficients.ResizeTo(fNCoefficients);
911 
912  for (i = 0; i < fNCoefficients; i++) {
913  Double_t sum = 0;
914  for (j = i; j < fNCoefficients; j++)
916  fCoefficients(i) = sum;
917  }
918 
919  // Compute the final residuals
920  fResiduals.ResizeTo(fSampleSize);
921  for (i = 0; i < fSampleSize; i++)
922  fResiduals(i) = fQuantity(i);
923 
924  for (i = 0; i < fNCoefficients; i++)
925  for (j = 0; j < fSampleSize; j++)
927 
928  // Compute the max and minimum, and squared sum of the evaluated
929  // residuals
930  fMinResidual = 10e10;
931  fMaxResidual = -10e10;
932  Double_t sqRes = 0;
933  for (i = 0; i < fSampleSize; i++) {
934  sqRes += fResiduals(i) * fResiduals(i);
935  if (fResiduals(i) <= fMinResidual) {
937  fMinResidualRow = i;
938  }
939  if (fResiduals(i) >= fMaxResidual) {
941  fMaxResidualRow = i;
942  }
943  }
944 
946  fPrecision = TMath::Sqrt(sqRes / fSumSqQuantity);
947 
948  // If we use histograms, fill some more
949  if (TESTBIT(fHistogramMask, HIST_RD) || TESTBIT(fHistogramMask, HIST_RTRAI) || TESTBIT(fHistogramMask, HIST_RX)) {
950  for (i = 0; i < fSampleSize; i++) {
951  if (TESTBIT(fHistogramMask, HIST_RD))
952  ((TH2D *)fHistograms->FindObject("res_d"))->Fill(fQuantity(i), fResiduals(i));
953  if (TESTBIT(fHistogramMask, HIST_RTRAI))
954  ((TH1D *)fHistograms->FindObject("res_train"))->Fill(fResiduals(i));
955 
956  if (TESTBIT(fHistogramMask, HIST_RX))
957  for (j = 0; j < fNVariables; j++)
958  ((TH2D *)fHistograms->FindObject(Form("res_x_%d", j)))->Fill(fVariables(i * fNVariables + j), fResiduals(i));
959  }
960  } // If histograms
961 }
Double_t fSumSqQuantity
Min value of dependent quantity.
Definition: TMultiDimFet.h:46
Double_t fSumSqAvgQuantity
SumSquare of dependent quantity.
Definition: TMultiDimFet.h:47
Double_t fMinResidual
Max redsidual value.
Definition: TMultiDimFet.h:85
TMatrixD fFunctions
Control parameter.
Definition: TMultiDimFet.h:70
#define HIST_RD
Definition: TMultiDimFet.cc:32
Byte_t fHistogramMask
List of histograms.
Definition: TMultiDimFet.h:108
Double_t fPrecision
Error from test.
Definition: TMultiDimFet.h:101
#define HIST_RX
Definition: TMultiDimFet.cc:31
Int_t fMaxResidualRow
Min redsidual value.
Definition: TMultiDimFet.h:86
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
Int_t fMinResidualRow
Row giving max residual.
Definition: TMultiDimFet.h:87
TVectorD fQuantity
Definition: TMultiDimFet.h:41
TVectorD fOrthCoefficients
Definition: TMultiDimFet.h:91
void Fill(HcalDetId &id, double val, std::vector< TH2F > &depth)
#define HIST_RTRAI
Definition: TMultiDimFet.cc:33
Double_t fSumSqResidual
Row giving min residual.
Definition: TMultiDimFet.h:88
Double_t fMaxResidual
Vector of the final residuals.
Definition: TMultiDimFet.h:84
TList * fHistograms
Multi Correlation coefficient.
Definition: TMultiDimFet.h:107
TVectorD fVariables
Sum of squares away from mean.
Definition: TMultiDimFet.h:49
Int_t fSampleSize
Definition: TMultiDimFet.h:55
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90
col
Definition: cuy.py:1009
Double_t fCorrelationCoeff
Relative precision of test.
Definition: TMultiDimFet.h:103
TMatrixD fOrthCurvatureMatrix
The model coefficients.
Definition: TMultiDimFet.h:92
TVectorD fResiduals
Definition: TMultiDimFet.h:83
TVectorD fCoefficients
Model matrix.
Definition: TMultiDimFet.h:93

◆ MakeCorrelation()

void TMultiDimFet::MakeCorrelation ( )
protectedvirtual

Definition at line 964 of file TMultiDimFet.cc.

References fCorrelationMatrix, fMeanVariables, fNVariables, fQuantity, fSampleSize, fShowCorrelation, fVariables, mps_fire::i, dqmiolumiharvest::j, dqmdumpme::k, MainPageGenerator::l, and visualization-live-secondInstance_cfg::m.

964  {
965  // PRIVATE METHOD:
966  // Compute the correlation matrix
967  if (!fShowCorrelation)
968  return;
969 
971 
972  Double_t d2 = 0;
973  Double_t ddotXi = 0; // G.Q. needs to be reinitialized in the loop over i fNVariables
974  Double_t xiNorm = 0; // G.Q. needs to be reinitialized in the loop over i fNVariables
975  Double_t xidotXj = 0; // G.Q. needs to be reinitialized in the loop over j fNVariables
976  Double_t xjNorm = 0; // G.Q. needs to be reinitialized in the loop over j fNVariables
977 
978  Int_t i, j, k, l, m; // G.Q. added m variable
979  for (i = 0; i < fSampleSize; i++)
980  d2 += fQuantity(i) * fQuantity(i);
981 
982  for (i = 0; i < fNVariables; i++) {
983  ddotXi = 0.; // G.Q. reinitialisation
984  xiNorm = 0.; // G.Q. reinitialisation
985  for (j = 0; j < fSampleSize; j++) {
986  // Index of sample j of variable i
987  k = j * fNVariables + i;
988  ddotXi += fQuantity(j) * (fVariables(k) - fMeanVariables(i));
989  xiNorm += (fVariables(k) - fMeanVariables(i)) * (fVariables(k) - fMeanVariables(i));
990  }
991  fCorrelationMatrix(i, 0) = ddotXi / TMath::Sqrt(d2 * xiNorm);
992 
993  for (j = 0; j < i; j++) {
994  xidotXj = 0.; // G.Q. reinitialisation
995  xjNorm = 0.; // G.Q. reinitialisation
996  for (k = 0; k < fSampleSize; k++) {
997  // Index of sample j of variable i
998  // l = j * fNVariables + k; // G.Q.
999  l = k * fNVariables + j; // G.Q.
1000  m = k * fNVariables + i; // G.Q.
1001  // G.Q. xidotXj += (fVariables(i) - fMeanVariables(i))
1002  // G.Q. * (fVariables(l) - fMeanVariables(j));
1003  xidotXj +=
1004  (fVariables(m) - fMeanVariables(i)) * (fVariables(l) - fMeanVariables(j)); // G.Q. modified index for Xi
1005  xjNorm += (fVariables(l) - fMeanVariables(j)) * (fVariables(l) - fMeanVariables(j));
1006  }
1007  fCorrelationMatrix(i, j + 1) = xidotXj / TMath::Sqrt(xiNorm * xjNorm);
1008  }
1009  }
1010 }
TMatrixD fCorrelationMatrix
Multi Correlation coefficient.
Definition: TMultiDimFet.h:104
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
Bool_t fShowCorrelation
Definition: TMultiDimFet.h:113
TVectorD fQuantity
Definition: TMultiDimFet.h:41
TVectorD fVariables
Sum of squares away from mean.
Definition: TMultiDimFet.h:49
Int_t fSampleSize
Definition: TMultiDimFet.h:55
TVectorD fMeanVariables
Definition: TMultiDimFet.h:51

◆ MakeGramSchmidt()

Double_t TMultiDimFet::MakeGramSchmidt ( Int_t  function)
protectedvirtual

Definition at line 1013 of file TMultiDimFet.cc.

References b, DEGRAD, MillePedeFileConverter_cfg::e, EvalFactor(), DeadROC_duringRun::f2, fFunctions, fIsUserFunction, fMinAngle, fNCoefficients, fNVariables, fOrthCoefficients, fOrthCurvatureMatrix, fOrthFunctionNorms, fOrthFunctions, fPowers, fQuantity, fSampleSize, fVariables, dqmiolumiharvest::j, dqmdumpme::k, AlCaHLTBitMon_ParallelJobs::p, and x.

Referenced by MakeParameterization().

1013  {
1014  // PRIVATE METHOD:
1015  // Make Gram-Schmidt orthogonalisation. The class description gives
1016  // a thorough account of this algorithm, as well as
1017  // references. Please refer to the
1018  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
1019 
1020  // calculate w_i, that is, evaluate the current function at data
1021  // point i
1022  Double_t f2 = 0;
1025  Int_t j = 0;
1026  Int_t k = 0;
1027 
1028  for (j = 0; j < fSampleSize; j++) {
1029  fFunctions(fNCoefficients, j) = 1;
1031  // First, however, we need to calculate f_fNCoefficients
1032  for (k = 0; k < fNVariables; k++) {
1033  Int_t p = fPowers[function * fNVariables + k];
1034  Double_t x = fVariables(j * fNVariables + k);
1036  }
1037 
1038  // Calculate f dot f in f2
1040  // Assign to w_fNCoefficients f_fNCoefficients
1042  }
1043 
1044  // the first column of w is equal to f
1045  for (j = 0; j < fNCoefficients; j++) {
1046  Double_t fdw = 0;
1047  // Calculate (f_fNCoefficients dot w_j) / w_j^2
1048  for (k = 0; k < fSampleSize; k++) {
1050  }
1051 
1053  // and subtract it from the current value of w_ij
1054  for (k = 0; k < fSampleSize; k++)
1056  }
1057 
1058  for (j = 0; j < fSampleSize; j++) {
1059  // calculate squared length of w_fNCoefficients
1061 
1062  // calculate D dot w_fNCoefficients in A
1064  }
1065 
1066  // First test, but only if didn't user specify
1067  if (!fIsUserFunction)
1068  if (TMath::Sqrt(fOrthFunctionNorms(fNCoefficients) / (f2 + 1e-10)) < TMath::Sin(fMinAngle * DEGRAD))
1069  return 0;
1070 
1071  // The result found by this code for the first residual is always
1072  // much less then the one found be MUDIFI. That's because it's
1073  // supposed to be. The cause is the improved precision of Double_t
1074  // over DOUBLE PRECISION!
1076  Double_t b = fOrthCoefficients(fNCoefficients);
1078 
1079  // Calculate the residual from including this fNCoefficients.
1080  Double_t dResidur = fOrthCoefficients(fNCoefficients) * b;
1081 
1082  return dResidur;
1083 }
Double_t fMinAngle
Size of test sample.
Definition: TMultiDimFet.h:63
TMatrixD fFunctions
Control parameter.
Definition: TMultiDimFet.h:70
TMatrixD fOrthFunctions
max functions to study
Definition: TMultiDimFet.h:75
std::vector< Int_t > fPowers
Definition: TMultiDimFet.h:80
#define DEGRAD
Definition: TMultiDimFet.cc:26
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
TVectorD fQuantity
Definition: TMultiDimFet.h:41
TVectorD fOrthCoefficients
Definition: TMultiDimFet.h:91
TVectorD fOrthFunctionNorms
As above, but orthogonalised.
Definition: TMultiDimFet.h:76
TVectorD fVariables
Sum of squares away from mean.
Definition: TMultiDimFet.h:49
Int_t fSampleSize
Definition: TMultiDimFet.h:55
double b
Definition: hdecay.h:120
Bool_t fIsUserFunction
Definition: TMultiDimFet.h:114
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90
TMatrixD fOrthCurvatureMatrix
The model coefficients.
Definition: TMultiDimFet.h:92
virtual Double_t EvalFactor(Int_t p, Double_t x) const

◆ MakeHistograms()

void TMultiDimFet::MakeHistograms ( Option_t *  option = "A")
virtual

Definition at line 1086 of file TMultiDimFet.cc.

References fHistogramMask, fHistograms, fMaxQuantity, fMaxVariables, fMeanQuantity, fMinQuantity, fMinVariables, fNVariables, HIST_DORIG, HIST_DSHIF, HIST_RD, HIST_RTEST, HIST_RTRAI, HIST_RX, HIST_XNORM, HIST_XORIG, mps_fire::i, das-up-to-nevents::opt, and fileinputsource_cfi::option.

1086  {
1087  // Make histograms of the result of the analysis. This message
1088  // should be sent after having read all data points, but before
1089  // finding the parameterization
1090  //
1091  // Options:
1092  // A All the below
1093  // X Original independent variables
1094  // D Original dependent variables
1095  // N Normalised independent variables
1096  // S Shifted dependent variables
1097  // R1 Residuals versus normalised independent variables
1098  // R2 Residuals versus dependent variable
1099  // R3 Residuals computed on training sample
1100  // R4 Residuals computed on test sample
1101  //
1102  // For a description of these quantities, refer to
1103  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
1104  TString opt(option);
1105  opt.ToLower();
1106 
1107  if (opt.Length() < 1)
1108  return;
1109 
1110  if (!fHistograms)
1111  fHistograms = new TList;
1112 
1113  // Counter variable
1114  Int_t i = 0;
1115 
1116  // Histogram of original variables
1117  if (opt.Contains("x") || opt.Contains("a")) {
1118  SETBIT(fHistogramMask, HIST_XORIG);
1119  for (i = 0; i < fNVariables; i++)
1120  if (!fHistograms->FindObject(Form("x_%d_orig", i)))
1121  fHistograms->Add(
1122  new TH1D(Form("x_%d_orig", i), Form("Original variable # %d", i), 100, fMinVariables(i), fMaxVariables(i)));
1123  }
1124 
1125  // Histogram of original dependent variable
1126  if (opt.Contains("d") || opt.Contains("a")) {
1127  SETBIT(fHistogramMask, HIST_DORIG);
1128  if (!fHistograms->FindObject("d_orig"))
1129  fHistograms->Add(new TH1D("d_orig", "Original Quantity", 100, fMinQuantity, fMaxQuantity));
1130  }
1131 
1132  // Histograms of normalized variables
1133  if (opt.Contains("n") || opt.Contains("a")) {
1134  SETBIT(fHistogramMask, HIST_XNORM);
1135  for (i = 0; i < fNVariables; i++)
1136  if (!fHistograms->FindObject(Form("x_%d_norm", i)))
1137  fHistograms->Add(new TH1D(Form("x_%d_norm", i), Form("Normalized variable # %d", i), 100, -1, 1));
1138  }
1139 
1140  // Histogram of shifted dependent variable
1141  if (opt.Contains("s") || opt.Contains("a")) {
1142  SETBIT(fHistogramMask, HIST_DSHIF);
1143  if (!fHistograms->FindObject("d_shifted"))
1144  fHistograms->Add(
1145  new TH1D("d_shifted", "Shifted Quantity", 100, fMinQuantity - fMeanQuantity, fMaxQuantity - fMeanQuantity));
1146  }
1147 
1148  // Residual from training sample versus independent variables
1149  if (opt.Contains("r1") || opt.Contains("a")) {
1150  SETBIT(fHistogramMask, HIST_RX);
1151  for (i = 0; i < fNVariables; i++)
1152  if (!fHistograms->FindObject(Form("res_x_%d", i)))
1153  fHistograms->Add(new TH2D(Form("res_x_%d", i),
1154  Form("Computed residual versus x_%d", i),
1155  100,
1156  -1,
1157  1,
1158  35,
1161  }
1162 
1163  // Residual from training sample versus. dependent variable
1164  if (opt.Contains("r2") || opt.Contains("a")) {
1165  SETBIT(fHistogramMask, HIST_RD);
1166  if (!fHistograms->FindObject("res_d"))
1167  fHistograms->Add(new TH2D("res_d",
1168  "Computed residuals vs Quantity",
1169  100,
1172  35,
1175  }
1176 
1177  // Residual from training sample
1178  if (opt.Contains("r3") || opt.Contains("a")) {
1179  SETBIT(fHistogramMask, HIST_RTRAI);
1180  if (!fHistograms->FindObject("res_train"))
1181  fHistograms->Add(new TH1D("res_train",
1182  "Computed residuals over training sample",
1183  100,
1186  }
1187  if (opt.Contains("r4") || opt.Contains("a")) {
1188  SETBIT(fHistogramMask, HIST_RTEST);
1189  if (!fHistograms->FindObject("res_test"))
1190  fHistograms->Add(new TH1D("res_test",
1191  "Distribution of residuals from test",
1192  100,
1195  }
1196 }
Double_t fMaxQuantity
Definition: TMultiDimFet.h:44
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
Double_t fMinQuantity
Max value of dependent quantity.
Definition: TMultiDimFet.h:45
#define HIST_RD
Definition: TMultiDimFet.cc:32
Byte_t fHistogramMask
List of histograms.
Definition: TMultiDimFet.h:108
#define HIST_DSHIF
Definition: TMultiDimFet.cc:30
#define HIST_RX
Definition: TMultiDimFet.cc:31
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
Double_t fMeanQuantity
Training sample, error in quantity.
Definition: TMultiDimFet.h:43
#define HIST_RTRAI
Definition: TMultiDimFet.cc:33
#define HIST_XNORM
Definition: TMultiDimFet.cc:29
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
#define HIST_DORIG
Definition: TMultiDimFet.cc:28
TList * fHistograms
Multi Correlation coefficient.
Definition: TMultiDimFet.h:107
#define HIST_XORIG
Definition: TMultiDimFet.cc:27
#define HIST_RTEST
Definition: TMultiDimFet.cc:34

◆ MakeMethod()

void TMultiDimFet::MakeMethod ( const Char_t *  className = "MDF",
Option_t *  option = "" 
)
virtual

Definition at line 1199 of file TMultiDimFet.cc.

References data-class-funcs::classname, MakeRealCode(), and fileinputsource_cfi::option.

1199  {
1200  // Generate the file <classname>MDF.cxx which contains the
1201  // implementation of the method:
1202  //
1203  // Double_t <classname>::MDF(Double_t *x)
1204  //
1205  // which does the same as TMultiDimFet::Eval. Please refer to this
1206  // method.
1207  //
1208  // Further, the public static members:
1209  //
1210  // Int_t <classname>::fgNVariables
1211  // Int_t <classname>::fgNCoefficients
1212  // Double_t <classname>::fgDMean
1213  // Double_t <classname>::fgXMean[] //[fgNVariables]
1214  // Double_t <classname>::fgXMin[] //[fgNVariables]
1215  // Double_t <classname>::fgXMax[] //[fgNVariables]
1216  // Double_t <classname>::fgCoefficient[] //[fgNCoeffficents]
1217  // Int_t <classname>::fgPower[] //[fgNCoeffficents*fgNVariables]
1218  //
1219  // are initialized, and assumed to exist. The class declaration is
1220  // assumed to be in <classname>.h and assumed to be provided by the
1221  // user.
1222  //
1223  // See TMultiDimFet::MakeRealCode for a list of options
1224  //
1225  // The minimal class definition is:
1226  //
1227  // class <classname> {
1228  // public:
1229  // Int_t <classname>::fgNVariables; // Number of variables
1230  // Int_t <classname>::fgNCoefficients; // Number of terms
1231  // Double_t <classname>::fgDMean; // Mean from training sample
1232  // Double_t <classname>::fgXMean[]; // Mean from training sample
1233  // Double_t <classname>::fgXMin[]; // Min from training sample
1234  // Double_t <classname>::fgXMax[]; // Max from training sample
1235  // Double_t <classname>::fgCoefficient[]; // Coefficients
1236  // Int_t <classname>::fgPower[]; // Function powers
1237  //
1238  // Double_t Eval(Double_t *x);
1239  // };
1240  //
1241  // Whether the method <classname>::Eval should be static or not, is
1242  // up to the user.
1243 
1244  MakeRealCode(Form("%sMDF.cxx", classname), classname, option);
1245 }
virtual void MakeRealCode(const char *filename, const char *classname, Option_t *option="")

◆ MakeNormalized()

void TMultiDimFet::MakeNormalized ( )
protectedvirtual

Definition at line 1248 of file TMultiDimFet.cc.

References fHistogramMask, fHistograms, HcalObjRepresent::Fill(), fMaxQuantity, fMaxVariables, fMeanQuantity, fMeanVariables, fMinQuantity, fMinVariables, fNVariables, fQuantity, fSampleSize, fSumSqAvgQuantity, fVariables, HIST_DORIG, HIST_DSHIF, HIST_XNORM, HIST_XORIG, mps_fire::i, dqmiolumiharvest::j, dqmdumpme::k, and FastTimerService_cff::range.

Referenced by FindParameterization().

1248  {
1249  // PRIVATE METHOD:
1250  // Normalize data to the interval [-1;1]. This is needed for the
1251  // classes method to work.
1252 
1253  Int_t i = 0;
1254  Int_t j = 0;
1255  Int_t k = 0;
1256 
1257  for (i = 0; i < fSampleSize; i++) {
1258  if (TESTBIT(fHistogramMask, HIST_DORIG))
1259  ((TH1D *)fHistograms->FindObject("d_orig"))->Fill(fQuantity(i));
1260 
1263 
1264  if (TESTBIT(fHistogramMask, HIST_DSHIF))
1265  ((TH1D *)fHistograms->FindObject("d_shifted"))->Fill(fQuantity(i));
1266 
1267  for (j = 0; j < fNVariables; j++) {
1268  Double_t range = 1. / (fMaxVariables(j) - fMinVariables(j));
1269  k = i * fNVariables + j;
1270 
1271  // Fill histograms of original independent variables
1272  if (TESTBIT(fHistogramMask, HIST_XORIG))
1273  ((TH1D *)fHistograms->FindObject(Form("x_%d_orig", j)))->Fill(fVariables(k));
1274 
1275  // Normalise independent variables
1276  fVariables(k) = 1 + 2 * range * (fVariables(k) - fMaxVariables(j));
1277 
1278  // Fill histograms of normalised independent variables
1279  if (TESTBIT(fHistogramMask, HIST_XNORM))
1280  ((TH1D *)fHistograms->FindObject(Form("x_%d_norm", j)))->Fill(fVariables(k));
1281  }
1282  }
1283  // Shift min and max of dependent variable
1286 
1287  // Shift mean of independent variables
1288  for (i = 0; i < fNVariables; i++) {
1289  Double_t range = 1. / (fMaxVariables(i) - fMinVariables(i));
1290  fMeanVariables(i) = 1 + 2 * range * (fMeanVariables(i) - fMaxVariables(i));
1291  }
1292 }
Double_t fMaxQuantity
Definition: TMultiDimFet.h:44
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
Double_t fSumSqAvgQuantity
SumSquare of dependent quantity.
Definition: TMultiDimFet.h:47
Double_t fMinQuantity
Max value of dependent quantity.
Definition: TMultiDimFet.h:45
Byte_t fHistogramMask
List of histograms.
Definition: TMultiDimFet.h:108
#define HIST_DSHIF
Definition: TMultiDimFet.cc:30
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
TVectorD fQuantity
Definition: TMultiDimFet.h:41
void Fill(HcalDetId &id, double val, std::vector< TH2F > &depth)
Double_t fMeanQuantity
Training sample, error in quantity.
Definition: TMultiDimFet.h:43
#define HIST_XNORM
Definition: TMultiDimFet.cc:29
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
#define HIST_DORIG
Definition: TMultiDimFet.cc:28
TList * fHistograms
Multi Correlation coefficient.
Definition: TMultiDimFet.h:107
TVectorD fVariables
Sum of squares away from mean.
Definition: TMultiDimFet.h:49
Int_t fSampleSize
Definition: TMultiDimFet.h:55
#define HIST_XORIG
Definition: TMultiDimFet.cc:27
TVectorD fMeanVariables
Definition: TMultiDimFet.h:51

◆ MakeParameterization()

void TMultiDimFet::MakeParameterization ( )
protectedvirtual

Definition at line 1295 of file TMultiDimFet.cc.

References MillePedeFileConverter_cfg::e, submitPVResolutionJobs::err, EvalControl(), fError, fFunctionCodes, fFunctions, fIsUserFunction, fIsVerbose, fMaxAngle, fMaxFunctions, fMaxPowersFinal, fMaxStudy, fMaxTerms, fMinRelativeError, fNCoefficients, fNVariables, fOrthCoefficients, fOrthCurvatureMatrix, fOrthFunctionNorms, fOrthFunctions, fParameterisationCode, fPowerIndex, fPowers, fRMS, fSampleSize, fSumSqAvgQuantity, fSumSqResidual, mps_fire::i, dqmiolumiharvest::j, dqmdumpme::k, MainPageGenerator::l, MakeGramSchmidt(), METSkim_cff::Max, PARAM_MAXSTUDY, PARAM_MAXTERMS, PARAM_RELERR, PARAM_SEVERAL, alignCSCRings::s, and TestFunction().

Referenced by FindParameterization().

1295  {
1296  // PRIVATE METHOD:
1297  // Find the parameterization over the training sample. A full account
1298  // of the algorithm is given in the
1299  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
1300 
1301  Int_t i = -1;
1302  Int_t j = 0;
1303  Int_t k = 0;
1304  Int_t maxPass = 3;
1305  Int_t studied = 0;
1306  Double_t squareResidual = fSumSqAvgQuantity;
1307  fNCoefficients = 0;
1309  fFunctions.ResizeTo(fMaxTerms, fSampleSize);
1311  fOrthFunctionNorms.ResizeTo(fMaxTerms);
1312  fOrthCoefficients.ResizeTo(fMaxTerms);
1314  fFunctions = 1;
1315 
1316  fFunctionCodes.resize(fMaxFunctions);
1317  fPowerIndex.resize(fMaxTerms);
1318  Int_t l;
1319  for (l = 0; l < fMaxFunctions; l++)
1320  fFunctionCodes[l] = 0;
1321  for (l = 0; l < fMaxTerms; l++)
1322  fPowerIndex[l] = 0;
1323 
1324  if (fMaxAngle != 0)
1325  maxPass = 100;
1326  if (fIsUserFunction)
1327  maxPass = 1;
1328 
1329  // Loop over the number of functions we want to study.
1330  // increment inspection counter
1331  while (kTRUE) {
1332  // Reach user defined limit of studies
1333  if (studied++ >= fMaxStudy) {
1335  break;
1336  }
1337 
1338  // Considered all functions several times
1339  if (k >= maxPass) {
1341  break;
1342  }
1343 
1344  // increment function counter
1345  i++;
1346 
1347  // If we've reached the end of the functions, restart pass
1348  if (i == fMaxFunctions) {
1349  if (fMaxAngle != 0)
1350  fMaxAngle += (90 - fMaxAngle) / 2;
1351  i = 0;
1352  studied--;
1353  k++;
1354  continue;
1355  }
1356  if (studied == 1)
1357  fFunctionCodes[i] = 0;
1358  else if (fFunctionCodes[i] >= 2)
1359  continue;
1360 
1361  // Print a happy message
1362  if (fIsVerbose && studied == 1)
1363  edm::LogInfo("TMultiDimFet") << "Coeff SumSqRes Contrib Angle QM Func"
1364  << " Value W^2 Powers"
1365  << "\n";
1366 
1367  // Make the Gram-Schmidt
1368  Double_t dResidur = MakeGramSchmidt(i);
1369 
1370  if (dResidur == 0) {
1371  // This function is no good!
1372  // First test is in MakeGramSchmidt
1373  fFunctionCodes[i] = 1;
1374  continue;
1375  }
1376 
1377  // If user specified function, assume she/he knows what he's doing
1378  if (!fIsUserFunction) {
1379  // Flag this function as considered
1380  fFunctionCodes[i] = 2;
1381 
1382  // Test if this function contributes to the fit
1383  if (!TestFunction(squareResidual, dResidur)) {
1384  fFunctionCodes[i] = 1;
1385  continue;
1386  }
1387  }
1388 
1389  // If we get to here, the function currently considered is
1390  // fNCoefficients, so we increment the counter
1391  // Flag this function as OK, and store and the number in the
1392  // index.
1393  fFunctionCodes[i] = 3;
1395  fNCoefficients++;
1396 
1397  // We add the current contribution to the sum of square of
1398  // residuals;
1399  squareResidual -= dResidur;
1400 
1401  // Calculate control parameter from this function
1402  for (j = 0; j < fNVariables; j++) {
1403  if (fNCoefficients == 1 || fMaxPowersFinal[j] <= fPowers[i * fNVariables + j] - 1)
1404  fMaxPowersFinal[j] = fPowers[i * fNVariables + j] - 1;
1405  }
1406  Double_t s = EvalControl(&fPowers[i * fNVariables]);
1407 
1408  // Print the statistics about this function
1409  if (fIsVerbose) {
1410  edm::LogVerbatim("TMultiDimFet") << std::setw(5) << fNCoefficients << " " << std::setw(10) << std::setprecision(4)
1411  << squareResidual << " " << std::setw(10) << std::setprecision(4) << dResidur
1412  << " " << std::setw(7) << std::setprecision(3) << fMaxAngle << " "
1413  << std::setw(7) << std::setprecision(3) << s << " " << std::setw(5) << i << " "
1414  << std::setw(10) << std::setprecision(4) << fOrthCoefficients(fNCoefficients - 1)
1415  << " " << std::setw(10) << std::setprecision(4)
1416  << fOrthFunctionNorms(fNCoefficients - 1) << " " << std::flush;
1417  for (j = 0; j < fNVariables; j++)
1418  edm::LogInfo("TMultiDimFet") << " " << fPowers[i * fNVariables + j] - 1 << std::flush;
1419  edm::LogInfo("TMultiDimFet") << "\n";
1420  }
1421 
1422  if (fNCoefficients >= fMaxTerms /* && fIsVerbose */) {
1424  break;
1425  }
1426 
1427  Double_t err = TMath::Sqrt(TMath::Max(1e-20, squareResidual) / fSumSqAvgQuantity);
1428  if (err < fMinRelativeError) {
1430  break;
1431  }
1432  }
1433 
1434  fError = TMath::Max(1e-20, squareResidual);
1436  fRMS = TMath::Sqrt(fError / fSampleSize);
1437 }
Log< level::Info, true > LogVerbatim
Double_t fSumSqAvgQuantity
SumSquare of dependent quantity.
Definition: TMultiDimFet.h:47
Int_t fParameterisationCode
Chi square of fit.
Definition: TMultiDimFet.h:97
TMatrixD fFunctions
Control parameter.
Definition: TMultiDimFet.h:70
virtual Double_t EvalControl(const Int_t *powers)
TMatrixD fOrthFunctions
max functions to study
Definition: TMultiDimFet.h:75
Double_t fMaxAngle
Min angle for acepting new function.
Definition: TMultiDimFet.h:64
std::vector< Int_t > fPowers
Definition: TMultiDimFet.h:80
virtual Double_t MakeGramSchmidt(Int_t function)
virtual Bool_t TestFunction(Double_t squareResidual, Double_t dResidur)
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
#define PARAM_SEVERAL
Definition: TMultiDimFet.cc:36
Bool_t fIsVerbose
Definition: TMultiDimFet.h:115
Double_t fMinRelativeError
Definition: TMultiDimFet.h:66
TVectorD fOrthCoefficients
Definition: TMultiDimFet.h:91
Double_t fRMS
Vector of RMS of coefficients.
Definition: TMultiDimFet.h:95
std::vector< Int_t > fPowerIndex
Definition: TMultiDimFet.h:81
TVectorD fOrthFunctionNorms
As above, but orthogonalised.
Definition: TMultiDimFet.h:76
#define PARAM_MAXTERMS
Definition: TMultiDimFet.cc:38
Double_t fSumSqResidual
Row giving min residual.
Definition: TMultiDimFet.h:88
#define PARAM_RELERR
Definition: TMultiDimFet.cc:37
Log< level::Info, false > LogInfo
Int_t fMaxTerms
Max angle for acepting new function.
Definition: TMultiDimFet.h:65
Int_t fMaxFunctions
Functions evaluated over sample.
Definition: TMultiDimFet.h:71
Int_t fSampleSize
Definition: TMultiDimFet.h:55
Bool_t fIsUserFunction
Definition: TMultiDimFet.h:114
Double_t fError
Exit code of parameterisation.
Definition: TMultiDimFet.h:99
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90
std::vector< Int_t > fFunctionCodes
Definition: TMultiDimFet.h:72
#define PARAM_MAXSTUDY
Definition: TMultiDimFet.cc:35
TMatrixD fOrthCurvatureMatrix
The model coefficients.
Definition: TMultiDimFet.h:92
std::vector< Int_t > fMaxPowersFinal
Norm of the evaluated functions.
Definition: TMultiDimFet.h:78
Int_t fMaxStudy
acceptance code, ex-array
Definition: TMultiDimFet.h:73

◆ MakeRealCode()

void TMultiDimFet::MakeRealCode ( const char *  filename,
const char *  classname,
Option_t *  option = "" 
)
protectedvirtual

Definition at line 1440 of file TMultiDimFet.cc.

References data-class-funcs::classname, fCoefficients, corrVsCorr::filename, fIsVerbose, fMaxVariables, fMeanQuantity, fMeanVariables, fMinVariables, fNCoefficients, fNVariables, fPolyType, fPowerIndex, fPowers, mps_fire::i, dqmiolumiharvest::j, kChebyshev, kLegendre, MillePedeFileConverter_cfg::out, L1TdeCSCTF_cfi::outFile, hcallasereventfilter2012_cfi::prefix, and pileupReCalc_HLTpaths::trunc.

Referenced by MakeCode(), and MakeMethod().

1440  {
1441  // PRIVATE METHOD:
1442  // This is the method that actually generates the code for the
1443  // evaluation the parameterization on some point.
1444  // It's called by TMultiDimFet::MakeCode and TMultiDimFet::MakeMethod.
1445  //
1446  // The options are: NONE so far
1447  Int_t i, j;
1448 
1449  Bool_t isMethod = (classname[0] == '\0' ? kFALSE : kTRUE);
1450  const char *prefix = (isMethod ? Form("%s::", classname) : "");
1451  const char *cv_qual = (isMethod ? "" : "static ");
1452 
1453  std::ofstream outFile(filename, std::ios::out | std::ios::trunc);
1454  if (!outFile) {
1455  Error("MakeRealCode", "couldn't open output file '%s'", filename);
1456  return;
1457  }
1458 
1459  if (fIsVerbose)
1460  edm::LogInfo("TMultiDimFet") << "Writing on file \"" << filename << "\" ... " << std::flush;
1461  //
1462  // Write header of file
1463  //
1464  // Emacs mode line ;-)
1465  outFile << "// -*- mode: c++ -*-"
1466  << "\n";
1467  // Info about creator
1468  outFile << "// "
1469  << "\n"
1470  << "// File " << filename << " generated by TMultiDimFet::MakeRealCode"
1471  << "\n";
1472  // Time stamp
1473  TDatime date;
1474  outFile << "// on " << date.AsString() << "\n";
1475  // ROOT version info
1476  outFile << "// ROOT version " << gROOT->GetVersion() << "\n"
1477  << "//"
1478  << "\n";
1479  // General information on the code
1480  outFile << "// This file contains the function "
1481  << "\n"
1482  << "//"
1483  << "\n"
1484  << "// double " << prefix << "MDF(double *x); "
1485  << "\n"
1486  << "//"
1487  << "\n"
1488  << "// For evaluating the parameterization obtained"
1489  << "\n"
1490  << "// from TMultiDimFet and the point x"
1491  << "\n"
1492  << "// "
1493  << "\n"
1494  << "// See TMultiDimFet class documentation for more "
1495  << "information "
1496  << "\n"
1497  << "// "
1498  << "\n";
1499  // Header files
1500  if (isMethod)
1501  // If these are methods, we need the class header
1502  outFile << "#include \"" << classname << ".h\""
1503  << "\n";
1504 
1505  //
1506  // Now for the data
1507  //
1508  outFile << "//"
1509  << "\n"
1510  << "// Static data variables"
1511  << "\n"
1512  << "//"
1513  << "\n";
1514  outFile << cv_qual << "int " << prefix << "gNVariables = " << fNVariables << ";"
1515  << "\n";
1516  outFile << cv_qual << "int " << prefix << "gNCoefficients = " << fNCoefficients << ";"
1517  << "\n";
1518  outFile << cv_qual << "double " << prefix << "gDMean = " << fMeanQuantity << ";"
1519  << "\n";
1520 
1521  // Assignment to mean vector.
1522  outFile << "// Assignment to mean vector."
1523  << "\n";
1524  outFile << cv_qual << "double " << prefix << "gXMean[] = {"
1525  << "\n";
1526  for (i = 0; i < fNVariables; i++)
1527  outFile << (i != 0 ? ", " : " ") << fMeanVariables(i) << std::flush;
1528  outFile << " };"
1529  << "\n"
1530  << "\n";
1531 
1532  // Assignment to minimum vector.
1533  outFile << "// Assignment to minimum vector."
1534  << "\n";
1535  outFile << cv_qual << "double " << prefix << "gXMin[] = {"
1536  << "\n";
1537  for (i = 0; i < fNVariables; i++)
1538  outFile << (i != 0 ? ", " : " ") << fMinVariables(i) << std::flush;
1539  outFile << " };"
1540  << "\n"
1541  << "\n";
1542 
1543  // Assignment to maximum vector.
1544  outFile << "// Assignment to maximum vector."
1545  << "\n";
1546  outFile << cv_qual << "double " << prefix << "gXMax[] = {"
1547  << "\n";
1548  for (i = 0; i < fNVariables; i++)
1549  outFile << (i != 0 ? ", " : " ") << fMaxVariables(i) << std::flush;
1550  outFile << " };"
1551  << "\n"
1552  << "\n";
1553 
1554  // Assignment to coefficients vector.
1555  outFile << "// Assignment to coefficients vector."
1556  << "\n";
1557  outFile << cv_qual << "double " << prefix << "gCoefficient[] = {" << std::flush;
1558  for (i = 0; i < fNCoefficients; i++)
1559  outFile << (i != 0 ? "," : "") << "\n"
1560  << " " << fCoefficients(i) << std::flush;
1561  outFile << "\n"
1562  << " };"
1563  << "\n"
1564  << "\n";
1565 
1566  // Assignment to powers vector.
1567  outFile << "// Assignment to powers vector."
1568  << "\n"
1569  << "// The powers are stored row-wise, that is"
1570  << "\n"
1571  << "// p_ij = " << prefix << "gPower[i * NVariables + j];"
1572  << "\n";
1573  outFile << cv_qual << "int " << prefix << "gPower[] = {" << std::flush;
1574  for (i = 0; i < fNCoefficients; i++) {
1575  for (j = 0; j < fNVariables; j++) {
1576  if (j != 0)
1577  outFile << std::flush << " ";
1578  else
1579  outFile << "\n"
1580  << " ";
1582  << (i == fNCoefficients - 1 && j == fNVariables - 1 ? "" : ",") << std::flush;
1583  }
1584  }
1585  outFile << "\n"
1586  << "};"
1587  << "\n"
1588  << "\n";
1589 
1590  //
1591  // Finally we reach the function itself
1592  //
1593  outFile << "// "
1594  << "\n"
1595  << "// The " << (isMethod ? "method " : "function ") << " double " << prefix << "MDF(double *x)"
1596  << "\n"
1597  << "// "
1598  << "\n";
1599  outFile << "double " << prefix << "MDF(double *x) {"
1600  << "\n"
1601  << " double returnValue = " << prefix << "gDMean;"
1602  << "\n"
1603  << " int i = 0, j = 0, k = 0;"
1604  << "\n"
1605  << " for (i = 0; i < " << prefix << "gNCoefficients ; i++) {"
1606  << "\n"
1607  << " // Evaluate the ith term in the expansion"
1608  << "\n"
1609  << " double term = " << prefix << "gCoefficient[i];"
1610  << "\n"
1611  << " for (j = 0; j < " << prefix << "gNVariables; j++) {"
1612  << "\n"
1613  << " // Evaluate the polynomial in the jth variable."
1614  << "\n"
1615  << " int power = " << prefix << "gPower[" << prefix << "gNVariables * i + j]; "
1616  << "\n"
1617  << " double p1 = 1, p2 = 0, p3 = 0, r = 0;"
1618  << "\n"
1619  << " double v = 1 + 2. / (" << prefix << "gXMax[j] - " << prefix << "gXMin[j]) * (x[j] - " << prefix
1620  << "gXMax[j]);"
1621  << "\n"
1622  << " // what is the power to use!"
1623  << "\n"
1624  << " switch(power) {"
1625  << "\n"
1626  << " case 1: r = 1; break; "
1627  << "\n"
1628  << " case 2: r = v; break; "
1629  << "\n"
1630  << " default: "
1631  << "\n"
1632  << " p2 = v; "
1633  << "\n"
1634  << " for (k = 3; k <= power; k++) { "
1635  << "\n"
1636  << " p3 = p2 * v;"
1637  << "\n";
1638  if (fPolyType == kLegendre)
1639  outFile << " p3 = ((2 * i - 3) * p2 * v - (i - 2) * p1)"
1640  << " / (i - 1);"
1641  << "\n";
1642  if (fPolyType == kChebyshev)
1643  outFile << " p3 = 2 * v * p2 - p1; "
1644  << "\n";
1645  outFile << " p1 = p2; p2 = p3; "
1646  << "\n"
1647  << " }"
1648  << "\n"
1649  << " r = p3;"
1650  << "\n"
1651  << " }"
1652  << "\n"
1653  << " // multiply this term by the poly in the jth var"
1654  << "\n"
1655  << " term *= r; "
1656  << "\n"
1657  << " }"
1658  << "\n"
1659  << " // Add this term to the final result"
1660  << "\n"
1661  << " returnValue += term;"
1662  << "\n"
1663  << " }"
1664  << "\n"
1665  << " return returnValue;"
1666  << "\n"
1667  << "}"
1668  << "\n"
1669  << "\n";
1670 
1671  // EOF
1672  outFile << "// EOF for " << filename << "\n";
1673 
1674  // Close the file
1675  outFile.close();
1676 
1677  if (fIsVerbose)
1678  edm::LogInfo("TMultiDimFet") << "done"
1679  << "\n";
1680 }
edm::ErrorSummaryEntry Error
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
EMDFPolyType fPolyType
Bit pattern of hisograms used.
Definition: TMultiDimFet.h:112
std::vector< Int_t > fPowers
Definition: TMultiDimFet.h:80
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
Bool_t fIsVerbose
Definition: TMultiDimFet.h:115
std::vector< Int_t > fPowerIndex
Definition: TMultiDimFet.h:81
Double_t fMeanQuantity
Training sample, error in quantity.
Definition: TMultiDimFet.h:43
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
Log< level::Info, false > LogInfo
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90
TVectorD fMeanVariables
Definition: TMultiDimFet.h:51
TVectorD fCoefficients
Model matrix.
Definition: TMultiDimFet.h:93

◆ operator=()

const TMultiDimFet & TMultiDimFet::operator= ( const TMultiDimFet in)

Max value of dependent quantity

Min value of dependent quantity

SumSquare of dependent quantity

Sum of squares away from mean

Size of training sample

Size of test sample

Min angle for acepting new function

Max angle for acepting new function

Min relative error accepted

[fNVariables] maximum powers

Control parameter

[fMaxFunctions] acceptance code

max functions to study

[fNVariables] maximum powers from fit;

Max redsidual value

Min redsidual value

Row giving max residual

Row giving min residual

Sum of Square residuals

Root mean square of fit

Chi square of fit

Exit code of parameterisation

Error from parameterization

Error from test

Relative precision of param

Relative precision of test

Multi Correlation coefficient

Multi Correlation coefficient

List of histograms

Bit pattern of hisograms used

Definition at line 83 of file TMultiDimFet.cc.

References fChi2, fCoefficients, fCorrelationCoeff, fError, fFunctionCodes, fHistogramMask, fHistograms, fIsUserFunction, fIsVerbose, fMaxAngle, fMaxFunctions, fMaxFunctionsTimesNVariables, fMaxPowers, fMaxPowersFinal, fMaxQuantity, fMaxResidual, fMaxResidualRow, fMaxStudy, fMaxTerms, fMaxVariables, fMeanQuantity, fMinAngle, fMinQuantity, fMinRelativeError, fMinResidual, fMinResidualRow, fMinVariables, fNCoefficients, fNVariables, fParameterisationCode, fPolyType, fPowerIndex, fPowerLimit, fPowers, fPrecision, fRMS, fSampleSize, fShowCorrelation, fSumSqAvgQuantity, fSumSqQuantity, fSumSqResidual, fTestCorrelationCoeff, fTestError, fTestPrecision, fTestSampleSize, and recoMuon::in.

83  {
84  if (this == &in) {
85  return *this;
86  }
87 
88  fMeanQuantity = in.fMeanQuantity; // Mean of dependent quantity
89 
90  fMaxQuantity = 0.0;
91  fMinQuantity = 0.0;
92  fSumSqQuantity = 0.0;
93  fSumSqAvgQuantity = 0.0;
94 
95  fNVariables = in.fNVariables; // Number of independent variables
96 
97  fMaxVariables.ResizeTo(in.fMaxVariables.GetLwb(), in.fMaxVariables.GetUpb());
98  fMaxVariables = in.fMaxVariables; // max value of independent variables
99 
100  fMinVariables.ResizeTo(in.fMinVariables.GetLwb(), in.fMinVariables.GetUpb());
101  fMinVariables = in.fMinVariables; // min value of independent variables
102 
103  fSampleSize = 0;
104  fTestSampleSize = 0;
105  fMinAngle = 1;
106  fMaxAngle = 0.0;
107 
108  fMaxTerms = in.fMaxTerms; // Max terms expected in final expr.
109 
110  fMinRelativeError = 0.0;
111 
112  fMaxPowers.clear();
113  fPowerLimit = 1;
114 
115  fMaxFunctions = in.fMaxFunctions; // max number of functions
116 
117  fFunctionCodes.clear();
118  fMaxStudy = 0;
119 
120  fMaxPowersFinal.clear();
121 
122  fMaxFunctionsTimesNVariables = in.fMaxFunctionsTimesNVariables; // fMaxFunctionsTimesNVariables
123  fPowers = in.fPowers;
124 
125  fPowerIndex = in.fPowerIndex; // [fMaxTerms] Index of accepted powers
126 
127  fMaxResidual = 0.0;
128  fMinResidual = 0.0;
129  fMaxResidualRow = 0;
130  fMinResidualRow = 0;
131  fSumSqResidual = 0.0;
132 
133  fNCoefficients = in.fNCoefficients; // Dimension of model coefficients
134 
135  fCoefficients.ResizeTo(in.fCoefficients.GetLwb(), in.fCoefficients.GetUpb());
136  fCoefficients = in.fCoefficients; // Vector of the final coefficients
137 
138  fRMS = 0.0;
139  fChi2 = 0.0;
141  fError = 0.0;
142  fTestError = 0.0;
143  fPrecision = 0.0;
144  fTestPrecision = 0.0;
145  fCorrelationCoeff = 0.0;
146  fTestCorrelationCoeff = 0.0;
147  fHistograms = nullptr;
148  fHistogramMask = 0;
149  //fFitter = nullptr; //! Fit object (MINUIT)
150 
151  fPolyType = in.fPolyType; // Type of polynomials to use
152  fShowCorrelation = in.fShowCorrelation; // print correlation matrix
153  fIsUserFunction = in.fIsUserFunction; // Flag for user defined function
154  fIsVerbose = in.fIsVerbose; //
155  return *this;
156 }
Double_t fMaxQuantity
Definition: TMultiDimFet.h:44
Double_t fSumSqQuantity
Min value of dependent quantity.
Definition: TMultiDimFet.h:46
Double_t fMinAngle
Size of test sample.
Definition: TMultiDimFet.h:63
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
Int_t fTestSampleSize
Test sample, independent variables.
Definition: TMultiDimFet.h:61
Double_t fSumSqAvgQuantity
SumSquare of dependent quantity.
Definition: TMultiDimFet.h:47
Double_t fMinQuantity
Max value of dependent quantity.
Definition: TMultiDimFet.h:45
Int_t fParameterisationCode
Chi square of fit.
Definition: TMultiDimFet.h:97
Double_t fMinResidual
Max redsidual value.
Definition: TMultiDimFet.h:85
EMDFPolyType fPolyType
Bit pattern of hisograms used.
Definition: TMultiDimFet.h:112
Double_t fTestCorrelationCoeff
Correlation matrix.
Definition: TMultiDimFet.h:105
Byte_t fHistogramMask
List of histograms.
Definition: TMultiDimFet.h:108
Double_t fMaxAngle
Min angle for acepting new function.
Definition: TMultiDimFet.h:64
std::vector< Int_t > fPowers
Definition: TMultiDimFet.h:80
Double_t fPowerLimit
maximum powers, ex-array
Definition: TMultiDimFet.h:68
Double_t fPrecision
Error from test.
Definition: TMultiDimFet.h:101
Int_t fMaxResidualRow
Min redsidual value.
Definition: TMultiDimFet.h:86
Double_t fTestError
Error from parameterization.
Definition: TMultiDimFet.h:100
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
Double_t fChi2
Root mean square of fit.
Definition: TMultiDimFet.h:96
Bool_t fIsVerbose
Definition: TMultiDimFet.h:115
Bool_t fShowCorrelation
Definition: TMultiDimFet.h:113
Int_t fMinResidualRow
Row giving max residual.
Definition: TMultiDimFet.h:87
Double_t fMinRelativeError
Definition: TMultiDimFet.h:66
Double_t fRMS
Vector of RMS of coefficients.
Definition: TMultiDimFet.h:95
std::vector< Int_t > fPowerIndex
Definition: TMultiDimFet.h:81
Double_t fMeanQuantity
Training sample, error in quantity.
Definition: TMultiDimFet.h:43
Double_t fSumSqResidual
Row giving min residual.
Definition: TMultiDimFet.h:88
Double_t fMaxResidual
Vector of the final residuals.
Definition: TMultiDimFet.h:84
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
Double_t fTestPrecision
Relative precision of param.
Definition: TMultiDimFet.h:102
TList * fHistograms
Multi Correlation coefficient.
Definition: TMultiDimFet.h:107
Int_t fMaxTerms
Max angle for acepting new function.
Definition: TMultiDimFet.h:65
Int_t fMaxFunctions
Functions evaluated over sample.
Definition: TMultiDimFet.h:71
Int_t fSampleSize
Definition: TMultiDimFet.h:55
Bool_t fIsUserFunction
Definition: TMultiDimFet.h:114
Double_t fError
Exit code of parameterisation.
Definition: TMultiDimFet.h:99
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90
Int_t fMaxFunctionsTimesNVariables
maximum powers from fit, ex-array
Definition: TMultiDimFet.h:79
std::vector< Int_t > fFunctionCodes
Definition: TMultiDimFet.h:72
Double_t fCorrelationCoeff
Relative precision of test.
Definition: TMultiDimFet.h:103
std::vector< Int_t > fMaxPowers
Min relative error accepted.
Definition: TMultiDimFet.h:67
std::vector< Int_t > fMaxPowersFinal
Norm of the evaluated functions.
Definition: TMultiDimFet.h:78
TVectorD fCoefficients
Model matrix.
Definition: TMultiDimFet.h:93
Int_t fMaxStudy
acceptance code, ex-array
Definition: TMultiDimFet.h:73

◆ Print()

void TMultiDimFet::Print ( Option_t *  option = "ps") const
override

Definition at line 1683 of file TMultiDimFet.cc.

References fChi2, fCoefficients, fCoefficientsRMS, fCorrelationCoeff, fCorrelationMatrix, fError, fFunctionCodes, fMaxAngle, fMaxFunctions, fMaxPowers, fMaxPowersFinal, fMaxQuantity, fMaxResidual, fMaxStudy, fMaxTerms, fMaxVariables, fMeanQuantity, fMeanVariables, fMinAngle, fMinQuantity, fMinRelativeError, fMinResidual, fMinVariables, fNCoefficients, fNVariables, fParameterisationCode, fPolyType, fPowerIndex, fPowerLimit, fPowers, fPrecision, fRMS, fSampleSize, fSumSqQuantity, fSumSqResidual, fTestCorrelationCoeff, fTestError, fTestPrecision, fTestSampleSize, mps_fire::i, dqmiolumiharvest::j, kChebyshev, kLegendre, das-up-to-nevents::opt, fileinputsource_cfi::option, AlCaHLTBitMon_ParallelJobs::p, PARAM_MAXSTUDY, PARAM_MAXTERMS, PARAM_RELERR, and PARAM_SEVERAL.

1683  {
1684  // Print statistics etc.
1685  // Options are
1686  // P Parameters
1687  // S Statistics
1688  // C Coefficients
1689  // R Result of parameterisation
1690  // F Result of fit
1691  // K Correlation Matrix
1692  // M Pretty print formula
1693  //
1694  Int_t i = 0;
1695  Int_t j = 0;
1696 
1697  TString opt(option);
1698  opt.ToLower();
1699 
1700  if (opt.Contains("p")) {
1701  // Print basic parameters for this object
1702  edm::LogInfo("TMultiDimFet") << "User parameters:"
1703  << "\n"
1704  << "----------------"
1705  << "\n"
1706  << " Variables: " << fNVariables << "\n"
1707  << " Data points: " << fSampleSize << "\n"
1708  << " Max Terms: " << fMaxTerms << "\n"
1709  << " Power Limit Parameter: " << fPowerLimit << "\n"
1710  << " Max functions: " << fMaxFunctions << "\n"
1711  << " Max functions to study: " << fMaxStudy << "\n"
1712  << " Max angle (optional): " << fMaxAngle << "\n"
1713  << " Min angle: " << fMinAngle << "\n"
1714  << " Relative Error accepted: " << fMinRelativeError << "\n"
1715  << " Maximum Powers: " << std::flush;
1716  for (i = 0; i < fNVariables; i++)
1717  edm::LogInfo("TMultiDimFet") << " " << fMaxPowers[i] - 1 << std::flush;
1718  edm::LogInfo("TMultiDimFet") << "\n"
1719  << "\n"
1720  << " Parameterisation will be done using " << std::flush;
1721  if (fPolyType == kChebyshev)
1722  edm::LogInfo("TMultiDimFet") << "Chebyshev polynomials"
1723  << "\n";
1724  else if (fPolyType == kLegendre)
1725  edm::LogInfo("TMultiDimFet") << "Legendre polynomials"
1726  << "\n";
1727  else
1728  edm::LogInfo("TMultiDimFet") << "Monomials"
1729  << "\n";
1730  edm::LogInfo("TMultiDimFet") << "\n";
1731  }
1732 
1733  if (opt.Contains("s")) {
1734  // Print statistics for read data
1735  edm::LogInfo("TMultiDimFet") << "Sample statistics:"
1736  << "\n"
1737  << "------------------"
1738  << "\n"
1739  << " D" << std::flush;
1740  for (i = 0; i < fNVariables; i++)
1741  edm::LogInfo("TMultiDimFet") << " " << std::setw(10) << i + 1 << std::flush;
1742  edm::LogInfo("TMultiDimFet") << "\n"
1743  << " Max: " << std::setw(10) << std::setprecision(7) << fMaxQuantity << std::flush;
1744  for (i = 0; i < fNVariables; i++)
1745  edm::LogInfo("TMultiDimFet") << " " << std::setw(10) << std::setprecision(4) << fMaxVariables(i) << std::flush;
1746  edm::LogInfo("TMultiDimFet") << "\n"
1747  << " Min: " << std::setw(10) << std::setprecision(7) << fMinQuantity << std::flush;
1748  for (i = 0; i < fNVariables; i++)
1749  edm::LogInfo("TMultiDimFet") << " " << std::setw(10) << std::setprecision(4) << fMinVariables(i) << std::flush;
1750  edm::LogInfo("TMultiDimFet") << "\n"
1751  << " Mean: " << std::setw(10) << std::setprecision(7) << fMeanQuantity << std::flush;
1752  for (i = 0; i < fNVariables; i++)
1753  edm::LogInfo("TMultiDimFet") << " " << std::setw(10) << std::setprecision(4) << fMeanVariables(i) << std::flush;
1754  edm::LogInfo("TMultiDimFet") << "\n"
1755  << " Function Sum Squares: " << fSumSqQuantity << "\n"
1756  << "\n";
1757  }
1758 
1759  if (opt.Contains("r")) {
1760  edm::LogInfo("TMultiDimFet") << "Results of Parameterisation:"
1761  << "\n"
1762  << "----------------------------"
1763  << "\n"
1764  << " Total reduction of square residuals " << fSumSqResidual << "\n"
1765  << " Relative precision obtained: " << fPrecision << "\n"
1766  << " Error obtained: " << fError << "\n"
1767  << " Multiple correlation coefficient: " << fCorrelationCoeff << "\n"
1768  << " Reduced Chi square over sample: " << fChi2 / (fSampleSize - fNCoefficients)
1769  << "\n"
1770  << " Maximum residual value: " << fMaxResidual << "\n"
1771  << " Minimum residual value: " << fMinResidual << "\n"
1772  << " Estimated root mean square: " << fRMS << "\n"
1773  << " Maximum powers used: " << std::flush;
1774  for (j = 0; j < fNVariables; j++)
1775  edm::LogInfo("TMultiDimFet") << fMaxPowersFinal[j] << " " << std::flush;
1776  edm::LogInfo("TMultiDimFet") << "\n"
1777  << " Function codes of candidate functions."
1778  << "\n"
1779  << " 1: considered,"
1780  << " 2: too little contribution,"
1781  << " 3: accepted." << std::flush;
1782  for (i = 0; i < fMaxFunctions; i++) {
1783  if (i % 60 == 0)
1784  edm::LogInfo("TMultiDimFet") << "\n"
1785  << " " << std::flush;
1786  else if (i % 10 == 0)
1787  edm::LogInfo("TMultiDimFet") << " " << std::flush;
1788  edm::LogInfo("TMultiDimFet") << fFunctionCodes[i];
1789  }
1790  edm::LogInfo("TMultiDimFet") << "\n"
1791  << " Loop over candidates stopped because " << std::flush;
1792  switch (fParameterisationCode) {
1793  case PARAM_MAXSTUDY:
1794  edm::LogInfo("TMultiDimFet") << "max allowed studies reached"
1795  << "\n";
1796  break;
1797  case PARAM_SEVERAL:
1798  edm::LogInfo("TMultiDimFet") << "all candidates considered several times"
1799  << "\n";
1800  break;
1801  case PARAM_RELERR:
1802  edm::LogInfo("TMultiDimFet") << "wanted relative error obtained"
1803  << "\n";
1804  break;
1805  case PARAM_MAXTERMS:
1806  edm::LogInfo("TMultiDimFet") << "max number of terms reached"
1807  << "\n";
1808  break;
1809  default:
1810  edm::LogInfo("TMultiDimFet") << "some unknown reason"
1811  << "\n";
1812  break;
1813  }
1814  edm::LogInfo("TMultiDimFet") << "\n";
1815  }
1816 
1817  if (opt.Contains("f")) {
1818  edm::LogInfo("TMultiDimFet") << "Results of Fit:"
1819  << "\n"
1820  << "---------------"
1821  << "\n"
1822  << " Test sample size: " << fTestSampleSize << "\n"
1823  << " Multiple correlation coefficient: " << fTestCorrelationCoeff << "\n"
1824  << " Relative precision obtained: " << fTestPrecision << "\n"
1825  << " Error obtained: " << fTestError << "\n"
1826  << " Reduced Chi square over sample: " << fChi2 / (fSampleSize - fNCoefficients)
1827  << "\n"
1828  << "\n";
1829  /*
1830  if (fFitter) {
1831  fFitter->PrintResults(1,1);
1832  edm::LogInfo("TMultiDimFet") << "\n";
1833  }
1834 */
1835  }
1836 
1837  if (opt.Contains("c")) {
1838  edm::LogInfo("TMultiDimFet") << "Coefficients:"
1839  << "\n"
1840  << "-------------"
1841  << "\n"
1842  << " # Value Error Powers"
1843  << "\n"
1844  << " ---------------------------------------"
1845  << "\n";
1846  for (i = 0; i < fNCoefficients; i++) {
1847  edm::LogInfo("TMultiDimFet") << " " << std::setw(3) << i << " " << std::setw(12) << fCoefficients(i) << " "
1848  << std::setw(12) << fCoefficientsRMS(i) << " " << std::flush;
1849  for (j = 0; j < fNVariables; j++)
1850  edm::LogInfo("TMultiDimFet") << " " << std::setw(3) << fPowers[fPowerIndex[i] * fNVariables + j] - 1
1851  << std::flush;
1852  edm::LogInfo("TMultiDimFet") << "\n";
1853  }
1854  edm::LogInfo("TMultiDimFet") << "\n";
1855  }
1856  if (opt.Contains("k") && fCorrelationMatrix.IsValid()) {
1857  edm::LogInfo("TMultiDimFet") << "Correlation Matrix:"
1858  << "\n"
1859  << "-------------------";
1860  fCorrelationMatrix.Print();
1861  }
1862 
1863  if (opt.Contains("m")) {
1864  edm::LogInfo("TMultiDimFet") << std::setprecision(25);
1865  edm::LogInfo("TMultiDimFet") << "Parameterization:"
1866  << "\n"
1867  << "-----------------"
1868  << "\n"
1869  << " Normalised variables: "
1870  << "\n";
1871  for (i = 0; i < fNVariables; i++)
1872  edm::LogInfo("TMultiDimFet") << "\ty" << i << "\t:= 1 + 2 * (x" << i << " - " << fMaxVariables(i) << ") / ("
1873  << fMaxVariables(i) << " - " << fMinVariables(i) << ")"
1874  << "\n";
1875  edm::LogInfo("TMultiDimFet") << "\n"
1876  << " f[";
1877  for (i = 0; i < fNVariables; i++) {
1878  edm::LogInfo("TMultiDimFet") << "y" << i;
1879  if (i != fNVariables - 1)
1880  edm::LogInfo("TMultiDimFet") << ", ";
1881  }
1882  edm::LogInfo("TMultiDimFet") << "] := ";
1883  for (Int_t i = 0; i < fNCoefficients; i++) {
1884  if (i != 0)
1885  edm::LogInfo("TMultiDimFet") << " " << (fCoefficients(i) < 0 ? "- " : "+ ") << TMath::Abs(fCoefficients(i));
1886  else
1887  edm::LogInfo("TMultiDimFet") << fCoefficients(i);
1888  for (Int_t j = 0; j < fNVariables; j++) {
1889  Int_t p = fPowers[fPowerIndex[i] * fNVariables + j];
1890  switch (p) {
1891  case 1:
1892  break;
1893  case 2:
1894  edm::LogInfo("TMultiDimFet") << " * y" << j;
1895  break;
1896  default:
1897  switch (fPolyType) {
1898  case kLegendre:
1899  edm::LogInfo("TMultiDimFet") << " * L" << p - 1 << "(y" << j << ")";
1900  break;
1901  case kChebyshev:
1902  edm::LogInfo("TMultiDimFet") << " * C" << p - 1 << "(y" << j << ")";
1903  break;
1904  default:
1905  edm::LogInfo("TMultiDimFet") << " * y" << j << "^" << p - 1;
1906  break;
1907  }
1908  }
1909  }
1910  }
1911  edm::LogInfo("TMultiDimFet") << "\n";
1912  }
1913 }
Double_t fMaxQuantity
Definition: TMultiDimFet.h:44
TMatrixD fCorrelationMatrix
Multi Correlation coefficient.
Definition: TMultiDimFet.h:104
Double_t fSumSqQuantity
Min value of dependent quantity.
Definition: TMultiDimFet.h:46
Double_t fMinAngle
Size of test sample.
Definition: TMultiDimFet.h:63
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
Int_t fTestSampleSize
Test sample, independent variables.
Definition: TMultiDimFet.h:61
Double_t fMinQuantity
Max value of dependent quantity.
Definition: TMultiDimFet.h:45
Int_t fParameterisationCode
Chi square of fit.
Definition: TMultiDimFet.h:97
Double_t fMinResidual
Max redsidual value.
Definition: TMultiDimFet.h:85
EMDFPolyType fPolyType
Bit pattern of hisograms used.
Definition: TMultiDimFet.h:112
Double_t fTestCorrelationCoeff
Correlation matrix.
Definition: TMultiDimFet.h:105
Double_t fMaxAngle
Min angle for acepting new function.
Definition: TMultiDimFet.h:64
std::vector< Int_t > fPowers
Definition: TMultiDimFet.h:80
Double_t fPowerLimit
maximum powers, ex-array
Definition: TMultiDimFet.h:68
Double_t fPrecision
Error from test.
Definition: TMultiDimFet.h:101
TVectorD fCoefficientsRMS
Definition: TMultiDimFet.h:94
Double_t fTestError
Error from parameterization.
Definition: TMultiDimFet.h:100
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
#define PARAM_SEVERAL
Definition: TMultiDimFet.cc:36
Double_t fChi2
Root mean square of fit.
Definition: TMultiDimFet.h:96
Double_t fMinRelativeError
Definition: TMultiDimFet.h:66
Double_t fRMS
Vector of RMS of coefficients.
Definition: TMultiDimFet.h:95
std::vector< Int_t > fPowerIndex
Definition: TMultiDimFet.h:81
Double_t fMeanQuantity
Training sample, error in quantity.
Definition: TMultiDimFet.h:43
#define PARAM_MAXTERMS
Definition: TMultiDimFet.cc:38
Double_t fSumSqResidual
Row giving min residual.
Definition: TMultiDimFet.h:88
#define PARAM_RELERR
Definition: TMultiDimFet.cc:37
Double_t fMaxResidual
Vector of the final residuals.
Definition: TMultiDimFet.h:84
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
Double_t fTestPrecision
Relative precision of param.
Definition: TMultiDimFet.h:102
Log< level::Info, false > LogInfo
Int_t fMaxTerms
Max angle for acepting new function.
Definition: TMultiDimFet.h:65
Int_t fMaxFunctions
Functions evaluated over sample.
Definition: TMultiDimFet.h:71
Int_t fSampleSize
Definition: TMultiDimFet.h:55
Double_t fError
Exit code of parameterisation.
Definition: TMultiDimFet.h:99
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90
std::vector< Int_t > fFunctionCodes
Definition: TMultiDimFet.h:72
#define PARAM_MAXSTUDY
Definition: TMultiDimFet.cc:35
Double_t fCorrelationCoeff
Relative precision of test.
Definition: TMultiDimFet.h:103
std::vector< Int_t > fMaxPowers
Min relative error accepted.
Definition: TMultiDimFet.h:67
TVectorD fMeanVariables
Definition: TMultiDimFet.h:51
std::vector< Int_t > fMaxPowersFinal
Norm of the evaluated functions.
Definition: TMultiDimFet.h:78
TVectorD fCoefficients
Model matrix.
Definition: TMultiDimFet.h:93
Int_t fMaxStudy
acceptance code, ex-array
Definition: TMultiDimFet.h:73

◆ PrintPolynomialsSpecial()

void TMultiDimFet::PrintPolynomialsSpecial ( Option_t *  option = "m") const
virtual

Definition at line 1916 of file TMultiDimFet.cc.

References fCoefficients, fMaxVariables, fMeanQuantity, fMinVariables, fNCoefficients, fNVariables, fPolyType, fPowerIndex, fPowers, mps_fire::i, dqmiolumiharvest::j, kChebyshev, kLegendre, das-up-to-nevents::opt, fileinputsource_cfi::option, and AlCaHLTBitMon_ParallelJobs::p.

1916  {
1917  // M Pretty print formula
1918  //
1919  Int_t i = 0;
1920  // Int_t j = 0;
1921 
1922  TString opt(option);
1923  opt.ToLower();
1924 
1925  if (opt.Contains("m")) {
1926  edm::LogInfo("TMultiDimFet") << std::setprecision(25);
1927  edm::LogInfo("TMultiDimFet") << "Parameterization:"
1928  << "\n"
1929  << "-----------------"
1930  << "\n"
1931  << " Normalised variables: "
1932  << "\n";
1933  for (i = 0; i < fNVariables; i++)
1934  edm::LogInfo("TMultiDimFet") << "\tdouble y" << i << "\t=1+2*(x" << i << "-" << fMaxVariables(i) << ")/("
1935  << fMaxVariables(i) << "-" << fMinVariables(i) << ");"
1936  << "\n";
1937  edm::LogInfo("TMultiDimFet") << "\n"
1938  << " f[";
1939  for (i = 0; i < fNVariables; i++) {
1940  edm::LogInfo("TMultiDimFet") << "y" << i;
1941  if (i != fNVariables - 1)
1942  edm::LogInfo("TMultiDimFet") << ", ";
1943  }
1944  edm::LogInfo("TMultiDimFet") << "] := " << fMeanQuantity << " + ";
1945  for (Int_t i = 0; i < fNCoefficients; i++) {
1946  if (i != 0)
1947  edm::LogInfo("TMultiDimFet") << " " << (fCoefficients(i) < 0 ? "-" : "+") << TMath::Abs(fCoefficients(i));
1948  else
1949  edm::LogInfo("TMultiDimFet") << fCoefficients(i);
1950  for (Int_t j = 0; j < fNVariables; j++) {
1951  Int_t p = fPowers[fPowerIndex[i] * fNVariables + j];
1952  switch (p) {
1953  case 1:
1954  break;
1955  case 2:
1956  edm::LogInfo("TMultiDimFet") << "*y" << j;
1957  break;
1958  default:
1959  switch (fPolyType) {
1960  case kLegendre:
1961  edm::LogInfo("TMultiDimFet") << "*Leg(" << p - 1 << ",y" << j << ")";
1962  break;
1963  case kChebyshev:
1964  edm::LogInfo("TMultiDimFet") << "*C" << p - 1 << "(y" << j << ")";
1965  break;
1966  default:
1967  edm::LogInfo("TMultiDimFet") << "*y" << j << "**" << p - 1;
1968  break;
1969  }
1970  }
1971  }
1972  edm::LogInfo("TMultiDimFet") << "\n";
1973  }
1974  edm::LogInfo("TMultiDimFet") << "\n";
1975  }
1976 }
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
EMDFPolyType fPolyType
Bit pattern of hisograms used.
Definition: TMultiDimFet.h:112
std::vector< Int_t > fPowers
Definition: TMultiDimFet.h:80
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
std::vector< Int_t > fPowerIndex
Definition: TMultiDimFet.h:81
Double_t fMeanQuantity
Training sample, error in quantity.
Definition: TMultiDimFet.h:43
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
Log< level::Info, false > LogInfo
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90
TVectorD fCoefficients
Model matrix.
Definition: TMultiDimFet.h:93

◆ ReducePolynomial()

void TMultiDimFet::ReducePolynomial ( double  error)

Definition at line 466 of file TMultiDimFet.cc.

References relativeConstraints::error, and ZeroDoubiousCoefficients().

Referenced by FindParameterization().

466  {
467  if (error == 0.0)
468  return;
469  else {
471  }
472 }
void ZeroDoubiousCoefficients(double error)

◆ Select()

Bool_t TMultiDimFet::Select ( const Int_t *  iv)
protectedvirtual

Definition at line 1979 of file TMultiDimFet.cc.

Referenced by MakeCandidates().

1979  {
1980  // Selection method. User can override this method for specialized
1981  // selection of acceptable functions in fit. Default is to select
1982  // all. This message is sent during the build-up of the function
1983  // candidates table once for each set of powers in
1984  // variables. Notice, that the argument array contains the powers
1985  // PLUS ONE. For example, to De select the function
1986  // f = x1^2 * x2^4 * x3^5,
1987  // this method should return kFALSE if given the argument
1988  // { 3, 4, 6 }
1989  return kTRUE;
1990 }

◆ SetMaxAngle()

void TMultiDimFet::SetMaxAngle ( Double_t  angle = 0)

Definition at line 1993 of file TMultiDimFet.cc.

References fMaxAngle.

Referenced by LHCOpticsApproximator::SetDefaultAproximatorSettings().

1993  {
1994  // Set the max angle (in degrees) between the initial data vector to
1995  // be fitted, and the new candidate function to be included in the
1996  // fit. By default it is 0, which automatically chooses another
1997  // selection criteria. See also
1998  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
1999  if (ang >= 90 || ang < 0) {
2000  Warning("SetMaxAngle", "angle must be in [0,90)");
2001  return;
2002  }
2003 
2004  fMaxAngle = ang;
2005 }
Double_t fMaxAngle
Min angle for acepting new function.
Definition: TMultiDimFet.h:64

◆ SetMaxFunctions()

void TMultiDimFet::SetMaxFunctions ( Int_t  n)
inline

Definition at line 203 of file TMultiDimFet.h.

References fMaxFunctions, and dqmiodumpmetadata::n.

Referenced by LHCOpticsApproximator::SetDefaultAproximatorSettings().

203 { fMaxFunctions = n; }
Int_t fMaxFunctions
Functions evaluated over sample.
Definition: TMultiDimFet.h:71

◆ SetMaxPowers()

void TMultiDimFet::SetMaxPowers ( const Int_t *  powers)

Definition at line 2051 of file TMultiDimFet.cc.

References fMaxPowers, fNVariables, and mps_fire::i.

Referenced by LHCOpticsApproximator::SetDefaultAproximatorSettings().

2051  {
2052  // Set the maximum power to be considered in the fit for each
2053  // variable. See also
2054  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
2055  if (!powers)
2056  return;
2057 
2058  for (Int_t i = 0; i < fNVariables; i++)
2059  fMaxPowers[i] = powers[i] + 1;
2060 }
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
std::vector< Int_t > fMaxPowers
Min relative error accepted.
Definition: TMultiDimFet.h:67

◆ SetMaxStudy()

void TMultiDimFet::SetMaxStudy ( Int_t  n)
inline

Definition at line 205 of file TMultiDimFet.h.

References fMaxStudy, and dqmiodumpmetadata::n.

Referenced by LHCOpticsApproximator::SetDefaultAproximatorSettings().

205 { fMaxStudy = n; }
Int_t fMaxStudy
acceptance code, ex-array
Definition: TMultiDimFet.h:73

◆ SetMaxTerms()

void TMultiDimFet::SetMaxTerms ( Int_t  terms)
inline

Definition at line 206 of file TMultiDimFet.h.

References fMaxTerms.

Referenced by LHCOpticsApproximator::SetDefaultAproximatorSettings().

206 { fMaxTerms = terms; }
Int_t fMaxTerms
Max angle for acepting new function.
Definition: TMultiDimFet.h:65

◆ SetMinAngle()

void TMultiDimFet::SetMinAngle ( Double_t  angle = 1)

Definition at line 2008 of file TMultiDimFet.cc.

References fMinAngle.

Referenced by LHCOpticsApproximator::SetDefaultAproximatorSettings().

2008  {
2009  // Set the min angle (in degrees) between a new candidate function
2010  // and the subspace spanned by the previously accepted
2011  // functions. See also
2012  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
2013  if (ang > 90 || ang <= 0) {
2014  Warning("SetMinAngle", "angle must be in [0,90)");
2015  return;
2016  }
2017 
2018  fMinAngle = ang;
2019 }
Double_t fMinAngle
Size of test sample.
Definition: TMultiDimFet.h:63

◆ SetMinRelativeError()

void TMultiDimFet::SetMinRelativeError ( Double_t  error)

Definition at line 2063 of file TMultiDimFet.cc.

References relativeConstraints::error, and fMinRelativeError.

Referenced by LHCOpticsApproximator::SetDefaultAproximatorSettings().

2063  {
2064  // Set the acceptable relative error for when sum of square
2065  // residuals is considered minimized. For a full account, refer to
2066  // the
2067  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
2069 }
Double_t fMinRelativeError
Definition: TMultiDimFet.h:66

◆ SetPowerLimit()

void TMultiDimFet::SetPowerLimit ( Double_t  limit = 1e-3)

Definition at line 2042 of file TMultiDimFet.cc.

References fPowerLimit, and remoteMonitoring_LASER_era2018_cfg::limit.

Referenced by LHCOpticsApproximator::SetDefaultAproximatorSettings().

2042  {
2043  // Set the user parameter for the function selection. The bigger the
2044  // limit, the more functions are used. The meaning of this variable
2045  // is defined in the
2046  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
2047  fPowerLimit = limit;
2048 }
Double_t fPowerLimit
maximum powers, ex-array
Definition: TMultiDimFet.h:68

◆ SetPowers()

void TMultiDimFet::SetPowers ( const Int_t *  powers,
Int_t  terms 
)
virtual

Definition at line 2022 of file TMultiDimFet.cc.

References fIsUserFunction, fMaxFunctions, fMaxFunctionsTimesNVariables, fMaxStudy, fMaxTerms, fNVariables, fPowers, mps_fire::i, and dqmiolumiharvest::j.

Referenced by LHCOpticsApproximator::SetTermsManually().

2022  {
2023  // Define a user function. The input array must be of the form
2024  // (p11, ..., p1N, ... ,pL1, ..., pLN)
2025  // Where N is the dimension of the data sample, L is the number of
2026  // terms (given in terms) and the first number, labels the term, the
2027  // second the variable. More information is given in the
2028  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
2029  fIsUserFunction = kTRUE;
2030  fMaxFunctions = terms;
2031  fMaxTerms = terms;
2032  fMaxStudy = terms;
2034  fPowers.resize(fMaxFunctions * fNVariables);
2035  Int_t i, j;
2036  for (i = 0; i < fMaxFunctions; i++)
2037  for (j = 0; j < fNVariables; j++)
2038  fPowers[i * fNVariables + j] = powers[i * fNVariables + j] + 1;
2039 }
std::vector< Int_t > fPowers
Definition: TMultiDimFet.h:80
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
Int_t fMaxTerms
Max angle for acepting new function.
Definition: TMultiDimFet.h:65
Int_t fMaxFunctions
Functions evaluated over sample.
Definition: TMultiDimFet.h:71
Bool_t fIsUserFunction
Definition: TMultiDimFet.h:114
Int_t fMaxFunctionsTimesNVariables
maximum powers from fit, ex-array
Definition: TMultiDimFet.h:79
Int_t fMaxStudy
acceptance code, ex-array
Definition: TMultiDimFet.h:73

◆ TestFunction()

Bool_t TMultiDimFet::TestFunction ( Double_t  squareResidual,
Double_t  dResidur 
)
protectedvirtual

Definition at line 2072 of file TMultiDimFet.cc.

References DEGRAD, fMaxAngle, fMaxTerms, fNCoefficients, and fSumSqAvgQuantity.

Referenced by MakeParameterization().

2072  {
2073  // PRIVATE METHOD:
2074  // Test whether the currently considered function contributes to the
2075  // fit. See also
2076  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
2077 
2078  if (fNCoefficients != 0) {
2079  // Now for the second test:
2080  if (fMaxAngle == 0) {
2081  // If the user hasn't supplied a max angle do the test as,
2082  if (dResidur < squareResidual / (fMaxTerms - fNCoefficients + 1 + 1E-10)) {
2083  return kFALSE;
2084  }
2085  } else {
2086  // If the user has provided a max angle, test if the calculated
2087  // angle is less then the max angle.
2088  if (TMath::Sqrt(dResidur / fSumSqAvgQuantity) < TMath::Cos(fMaxAngle * DEGRAD)) {
2089  return kFALSE;
2090  }
2091  }
2092  }
2093  // If we get here, the function is OK
2094  return kTRUE;
2095 }
Double_t fSumSqAvgQuantity
SumSquare of dependent quantity.
Definition: TMultiDimFet.h:47
Double_t fMaxAngle
Min angle for acepting new function.
Definition: TMultiDimFet.h:64
#define DEGRAD
Definition: TMultiDimFet.cc:26
Int_t fMaxTerms
Max angle for acepting new function.
Definition: TMultiDimFet.h:65
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90

◆ ZeroDoubiousCoefficients()

void TMultiDimFet::ZeroDoubiousCoefficients ( double  error)

Definition at line 474 of file TMultiDimFet.cc.

References relativeConstraints::error, fCoefficients, fNCoefficients, fPowerIndex, mps_fire::i, ALPAKA_ACCELERATOR_NAMESPACE::vertexFinder::it, and visualization-live-secondInstance_cfg::m.

Referenced by ReducePolynomial().

474  {
475  typedef std::multimap<double, int> cmt;
476  cmt m;
477 
478  for (int i = 0; i < fNCoefficients; i++) {
479  m.insert(std::pair<double, int>(TMath::Abs(fCoefficients(i)), i));
480  }
481 
482  double del_error_abs = 0;
483  int deleted_terms_count = 0;
484 
485  for (cmt::iterator it = m.begin(); it != m.end() && del_error_abs < error; ++it) {
486  if (TMath::Abs(it->first) + del_error_abs < error) {
487  fCoefficients(it->second) = 0.0;
488  del_error_abs = TMath::Abs(it->first) + del_error_abs;
489  deleted_terms_count++;
490  } else
491  break;
492  }
493 
494  int fNCoefficients_new = fNCoefficients - deleted_terms_count;
495  TVectorD fCoefficients_new(fNCoefficients_new);
496  std::vector<Int_t> fPowerIndex_new;
497 
498  int ind = 0;
499  for (int i = 0; i < fNCoefficients; i++) {
500  if (fCoefficients(i) != 0.0) {
501  fCoefficients_new(ind) = fCoefficients(i);
502  fPowerIndex_new.push_back(fPowerIndex[i]);
503  ind++;
504  }
505  }
506  fNCoefficients = fNCoefficients_new;
507  fCoefficients.ResizeTo(fNCoefficients);
508  fCoefficients = fCoefficients_new;
509  fPowerIndex = fPowerIndex_new;
510  edm::LogInfo("TMultiDimFet") << deleted_terms_count << " terms removed"
511  << "\n";
512 }
std::vector< Int_t > fPowerIndex
Definition: TMultiDimFet.h:81
Log< level::Info, false > LogInfo
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90
TVectorD fCoefficients
Model matrix.
Definition: TMultiDimFet.h:93

Member Data Documentation

◆ fChi2

Double_t TMultiDimFet::fChi2
protected

Root mean square of fit.

Definition at line 96 of file TMultiDimFet.h.

Referenced by GetChi2(), MakeChi2(), MakeCoefficientErrors(), operator=(), and Print().

◆ fCoefficients

TVectorD TMultiDimFet::fCoefficients
protected

◆ fCoefficientsRMS

TVectorD TMultiDimFet::fCoefficientsRMS
protected

Definition at line 94 of file TMultiDimFet.h.

Referenced by Clear(), MakeCoefficientErrors(), and Print().

◆ fCorrelationCoeff

Double_t TMultiDimFet::fCorrelationCoeff
protected

Relative precision of test.

Definition at line 103 of file TMultiDimFet.h.

Referenced by MakeCoefficients(), operator=(), and Print().

◆ fCorrelationMatrix

TMatrixD TMultiDimFet::fCorrelationMatrix
protected

Multi Correlation coefficient.

Definition at line 104 of file TMultiDimFet.h.

Referenced by Clear(), GetCorrelationMatrix(), MakeCorrelation(), and Print().

◆ fError

Double_t TMultiDimFet::fError
protected

Exit code of parameterisation.

Definition at line 99 of file TMultiDimFet.h.

Referenced by Clear(), GetError(), MakeParameterization(), operator=(), Print(), and TMultiDimFet().

◆ fFunctionCodes

std::vector<Int_t> TMultiDimFet::fFunctionCodes
protected

Definition at line 72 of file TMultiDimFet.h.

Referenced by GetFunctionCodes(), MakeParameterization(), operator=(), and Print().

◆ fFunctions

TMatrixD TMultiDimFet::fFunctions
protected

Control parameter.

Definition at line 70 of file TMultiDimFet.h.

Referenced by Clear(), GetFunctions(), MakeCoefficientErrors(), MakeCoefficients(), MakeGramSchmidt(), and MakeParameterization().

◆ fHistogramMask

Byte_t TMultiDimFet::fHistogramMask
protected

List of histograms.

Definition at line 108 of file TMultiDimFet.h.

Referenced by MakeCoefficients(), MakeHistograms(), MakeNormalized(), operator=(), and TMultiDimFet().

◆ fHistograms

TList* TMultiDimFet::fHistograms
protected

Multi Correlation coefficient.

Definition at line 107 of file TMultiDimFet.h.

Referenced by Clear(), GetHistograms(), MakeCoefficients(), MakeHistograms(), MakeNormalized(), operator=(), TMultiDimFet(), and ~TMultiDimFet().

◆ fIsUserFunction

Bool_t TMultiDimFet::fIsUserFunction
protected

◆ fIsVerbose

Bool_t TMultiDimFet::fIsVerbose
protected

Definition at line 115 of file TMultiDimFet.h.

Referenced by MakeParameterization(), MakeRealCode(), operator=(), and TMultiDimFet().

◆ fMaxAngle

Double_t TMultiDimFet::fMaxAngle
protected

Min angle for acepting new function.

Definition at line 64 of file TMultiDimFet.h.

Referenced by Clear(), GetMaxAngle(), MakeParameterization(), operator=(), Print(), SetMaxAngle(), TestFunction(), and TMultiDimFet().

◆ fMaxFunctions

Int_t TMultiDimFet::fMaxFunctions
protected

Functions evaluated over sample.

Definition at line 71 of file TMultiDimFet.h.

Referenced by Clear(), GetMaxFunctions(), MakeCandidates(), MakeParameterization(), operator=(), Print(), SetMaxFunctions(), SetPowers(), and TMultiDimFet().

◆ fMaxFunctionsTimesNVariables

Int_t TMultiDimFet::fMaxFunctionsTimesNVariables
protected

maximum powers from fit, ex-array

Definition at line 79 of file TMultiDimFet.h.

Referenced by Clear(), MakeCandidates(), operator=(), SetPowers(), and TMultiDimFet().

◆ fMaxPowers

std::vector<Int_t> TMultiDimFet::fMaxPowers
protected

Min relative error accepted.

Definition at line 67 of file TMultiDimFet.h.

Referenced by Clear(), EvalControl(), GetMaxPowers(), MakeCandidates(), operator=(), Print(), SetMaxPowers(), and TMultiDimFet().

◆ fMaxPowersFinal

std::vector<Int_t> TMultiDimFet::fMaxPowersFinal
protected

Norm of the evaluated functions.

Definition at line 78 of file TMultiDimFet.h.

Referenced by Clear(), MakeParameterization(), operator=(), Print(), and TMultiDimFet().

◆ fMaxQuantity

Double_t TMultiDimFet::fMaxQuantity
protected

◆ fMaxResidual

Double_t TMultiDimFet::fMaxResidual
protected

Vector of the final residuals.

Definition at line 84 of file TMultiDimFet.h.

Referenced by Clear(), GetResidualMax(), MakeCoefficients(), operator=(), and Print().

◆ fMaxResidualRow

Int_t TMultiDimFet::fMaxResidualRow
protected

Min redsidual value.

Definition at line 86 of file TMultiDimFet.h.

Referenced by Clear(), GetResidualMaxRow(), MakeCoefficients(), and operator=().

◆ fMaxStudy

Int_t TMultiDimFet::fMaxStudy
protected

acceptance code, ex-array

Definition at line 73 of file TMultiDimFet.h.

Referenced by Clear(), GetMaxStudy(), MakeParameterization(), operator=(), Print(), SetMaxStudy(), and SetPowers().

◆ fMaxTerms

Int_t TMultiDimFet::fMaxTerms
protected

Max angle for acepting new function.

Definition at line 65 of file TMultiDimFet.h.

Referenced by Clear(), GetMaxTerms(), MakeParameterization(), operator=(), Print(), SetMaxTerms(), SetPowers(), and TestFunction().

◆ fMaxVariables

TVectorD TMultiDimFet::fMaxVariables
protected

◆ fMeanQuantity

Double_t TMultiDimFet::fMeanQuantity
protected

Training sample, error in quantity.

Definition at line 43 of file TMultiDimFet.h.

Referenced by AddRow(), Clear(), Eval(), GetMeanQuantity(), MakeHistograms(), MakeNormalized(), MakeRealCode(), operator=(), Print(), PrintPolynomialsSpecial(), and TMultiDimFet().

◆ fMeanVariables

TVectorD TMultiDimFet::fMeanVariables
protected

◆ fMinAngle

Double_t TMultiDimFet::fMinAngle
protected

Size of test sample.

Definition at line 63 of file TMultiDimFet.h.

Referenced by Clear(), GetMinAngle(), MakeGramSchmidt(), operator=(), Print(), SetMinAngle(), and TMultiDimFet().

◆ fMinQuantity

Double_t TMultiDimFet::fMinQuantity
protected

Max value of dependent quantity.

Definition at line 45 of file TMultiDimFet.h.

Referenced by AddRow(), Clear(), GetMinQuantity(), MakeHistograms(), MakeNormalized(), operator=(), Print(), and TMultiDimFet().

◆ fMinRelativeError

Double_t TMultiDimFet::fMinRelativeError
protected

◆ fMinResidual

Double_t TMultiDimFet::fMinResidual
protected

Max redsidual value.

Definition at line 85 of file TMultiDimFet.h.

Referenced by Clear(), GetResidualMin(), MakeCoefficients(), operator=(), and Print().

◆ fMinResidualRow

Int_t TMultiDimFet::fMinResidualRow
protected

Row giving max residual.

Definition at line 87 of file TMultiDimFet.h.

Referenced by Clear(), GetResidualMinRow(), MakeCoefficients(), and operator=().

◆ fMinVariables

TVectorD TMultiDimFet::fMinVariables
protected

◆ fNCoefficients

Int_t TMultiDimFet::fNCoefficients
protected

◆ fNVariables

Int_t TMultiDimFet::fNVariables
protected

◆ fOrthCoefficients

TVectorD TMultiDimFet::fOrthCoefficients
protected

Definition at line 91 of file TMultiDimFet.h.

Referenced by Clear(), MakeCoefficients(), MakeGramSchmidt(), and MakeParameterization().

◆ fOrthCurvatureMatrix

TMatrixD TMultiDimFet::fOrthCurvatureMatrix
protected

The model coefficients.

Definition at line 92 of file TMultiDimFet.h.

Referenced by Clear(), MakeCoefficients(), MakeGramSchmidt(), and MakeParameterization().

◆ fOrthFunctionNorms

TVectorD TMultiDimFet::fOrthFunctionNorms
protected

As above, but orthogonalised.

Definition at line 76 of file TMultiDimFet.h.

Referenced by Clear(), MakeGramSchmidt(), and MakeParameterization().

◆ fOrthFunctions

TMatrixD TMultiDimFet::fOrthFunctions
protected

max functions to study

Definition at line 75 of file TMultiDimFet.h.

Referenced by Clear(), MakeGramSchmidt(), and MakeParameterization().

◆ fParameterisationCode

Int_t TMultiDimFet::fParameterisationCode
protected

Chi square of fit.

Definition at line 97 of file TMultiDimFet.h.

Referenced by MakeParameterization(), operator=(), Print(), and TMultiDimFet().

◆ fPolyType

EMDFPolyType TMultiDimFet::fPolyType
protected

Bit pattern of hisograms used.

Definition at line 112 of file TMultiDimFet.h.

Referenced by Clear(), EvalFactor(), GetPolyType(), MakeRealCode(), operator=(), Print(), PrintPolynomialsSpecial(), and TMultiDimFet().

◆ fPowerIndex

std::vector<Int_t> TMultiDimFet::fPowerIndex
protected

◆ fPowerLimit

Double_t TMultiDimFet::fPowerLimit
protected

maximum powers, ex-array

Definition at line 68 of file TMultiDimFet.h.

Referenced by Clear(), GetPowerLimit(), MakeCandidates(), operator=(), Print(), SetPowerLimit(), and TMultiDimFet().

◆ fPowers

std::vector<Int_t> TMultiDimFet::fPowers
protected

◆ fPrecision

Double_t TMultiDimFet::fPrecision
protected

Error from test.

Definition at line 101 of file TMultiDimFet.h.

Referenced by Clear(), GetPrecision(), MakeCoefficients(), operator=(), Print(), and TMultiDimFet().

◆ fQuantity

TVectorD TMultiDimFet::fQuantity
protected

◆ fResiduals

TVectorD TMultiDimFet::fResiduals
protected

Definition at line 83 of file TMultiDimFet.h.

Referenced by Clear(), and MakeCoefficients().

◆ fRMS

Double_t TMultiDimFet::fRMS
protected

Vector of RMS of coefficients.

Definition at line 95 of file TMultiDimFet.h.

Referenced by Clear(), GetRMS(), MakeParameterization(), operator=(), and Print().

◆ fSampleSize

Int_t TMultiDimFet::fSampleSize
protected

◆ fShowCorrelation

Bool_t TMultiDimFet::fShowCorrelation
protected

Definition at line 113 of file TMultiDimFet.h.

Referenced by Clear(), MakeCorrelation(), operator=(), and TMultiDimFet().

◆ fSqError

TVectorD TMultiDimFet::fSqError
protected

Training sample, dependent quantity.

Definition at line 42 of file TMultiDimFet.h.

Referenced by AddRow(), Clear(), GetSqError(), and MakeCoefficientErrors().

◆ fSumSqAvgQuantity

Double_t TMultiDimFet::fSumSqAvgQuantity
protected

SumSquare of dependent quantity.

Definition at line 47 of file TMultiDimFet.h.

Referenced by Clear(), GetSumSqAvgQuantity(), MakeCoefficients(), MakeNormalized(), MakeParameterization(), operator=(), TestFunction(), and TMultiDimFet().

◆ fSumSqQuantity

Double_t TMultiDimFet::fSumSqQuantity
protected

Min value of dependent quantity.

Definition at line 46 of file TMultiDimFet.h.

Referenced by AddRow(), Clear(), GetSumSqQuantity(), MakeCoefficients(), operator=(), Print(), and TMultiDimFet().

◆ fSumSqResidual

Double_t TMultiDimFet::fSumSqResidual
protected

Row giving min residual.

Definition at line 88 of file TMultiDimFet.h.

Referenced by Clear(), GetResidualSumSq(), MakeCoefficients(), MakeParameterization(), operator=(), and Print().

◆ fTestCorrelationCoeff

Double_t TMultiDimFet::fTestCorrelationCoeff
protected

Correlation matrix.

Definition at line 105 of file TMultiDimFet.h.

Referenced by operator=(), and Print().

◆ fTestError

Double_t TMultiDimFet::fTestError
protected

Error from parameterization.

Definition at line 100 of file TMultiDimFet.h.

Referenced by Clear(), GetTestError(), operator=(), Print(), and TMultiDimFet().

◆ fTestPrecision

Double_t TMultiDimFet::fTestPrecision
protected

Relative precision of param.

Definition at line 102 of file TMultiDimFet.h.

Referenced by Clear(), GetTestPrecision(), operator=(), Print(), and TMultiDimFet().

◆ fTestQuantity

TVectorD TMultiDimFet::fTestQuantity
protected

Size of training sample.

Definition at line 57 of file TMultiDimFet.h.

Referenced by AddTestRow(), Clear(), GetTestQuantity(), and MakeChi2().

◆ fTestSampleSize

Int_t TMultiDimFet::fTestSampleSize
protected

Test sample, independent variables.

Definition at line 61 of file TMultiDimFet.h.

Referenced by AddTestRow(), Clear(), GetTestSampleSize(), MakeChi2(), operator=(), Print(), and TMultiDimFet().

◆ fTestSqError

TVectorD TMultiDimFet::fTestSqError
protected

Test sample, dependent quantity.

Definition at line 58 of file TMultiDimFet.h.

Referenced by AddTestRow(), Clear(), GetTestSqError(), and MakeChi2().

◆ fTestVariables

TVectorD TMultiDimFet::fTestVariables
protected

Test sample, Error in quantity.

Definition at line 59 of file TMultiDimFet.h.

Referenced by AddTestRow(), Clear(), GetTestVariables(), and MakeChi2().

◆ fVariables

TVectorD TMultiDimFet::fVariables
protected

Sum of squares away from mean.

Definition at line 49 of file TMultiDimFet.h.

Referenced by AddRow(), Clear(), GetVariables(), MakeCoefficients(), MakeCorrelation(), MakeGramSchmidt(), and MakeNormalized().