32 #include <unordered_set> 106 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalSiliconRotatedCassette: Creating an instance";
115 waferTypes_ =
static_cast<int>(nArgs[
"WaferTypes"]);
116 passiveTypes_ =
static_cast<int>(nArgs[
"PassiveTypes"]);
117 facingTypes_ =
static_cast<int>(nArgs[
"FacingTypes"]);
118 orientationTypes_ =
static_cast<int>(nArgs[
"OrientationTypes"]);
119 partialTypes_ =
static_cast<int>(nArgs[
"PartialTypes"]);
120 placeOffset_ =
static_cast<int>(nArgs[
"PlaceOffset"]);
122 edm::LogVerbatim(
"HGCalGeom") <<
"Number of types of wafers: " << waferTypes_ <<
" passives: " << passiveTypes_
123 <<
" facings: " << facingTypes_ <<
" Orientations: " << orientationTypes_
124 <<
" PartialTypes: " << partialTypes_ <<
" PlaceOffset: " << placeOffset_;
126 firstLayer_ =
static_cast<int>(nArgs[
"FirstLayer"]);
127 absorbMode_ =
static_cast<int>(nArgs[
"AbsorberMode"]);
128 sensitiveMode_ =
static_cast<int>(nArgs[
"SensitiveMode"]);
131 <<
"Absober:Sensitive mode " << absorbMode_ <<
":" << sensitiveMode_;
133 zMinBlock_ = nArgs[
"zMinBlock"];
134 waferSize_ = nArgs[
"waferSize"];
135 waferSepar_ = nArgs[
"SensorSeparation"];
136 sectors_ =
static_cast<int>(nArgs[
"Sectors"]);
137 cassettes_ =
static_cast<int>(nArgs[
"Cassettes"]);
138 alpha_ = (1._pi) / sectors_;
139 cosAlpha_ =
cos(alpha_);
140 rotstr_ = sArgs[
"LayerRotation"];
142 edm::LogVerbatim(
"HGCalGeom") <<
"zStart " << zMinBlock_ <<
" wafer width " << waferSize_ <<
" separations " 143 << waferSepar_ <<
" sectors " << sectors_ <<
":" <<
convertRadToDeg(alpha_) <<
":" 144 << cosAlpha_ <<
" rotation matrix " << rotstr_ <<
" with " << cassettes_
147 waferFull_ = vsArgs[
"WaferNamesFull"];
148 waferPart_ = vsArgs[
"WaferNamesPartial"];
150 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalSiliconRotatedCassette: " << waferFull_.size() <<
" full and " 151 << waferPart_.size() <<
" partial modules";
152 unsigned int i1max =
static_cast<unsigned int>(waferFull_.size());
153 for (
unsigned int i1 = 0;
i1 < i1max;
i1 += 2) {
154 std::ostringstream st1;
156 for (
unsigned int i =
i1;
i <
i2; ++
i)
157 st1 <<
" [" <<
i <<
"] " << waferFull_[
i];
160 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalSiliconRotatedCassette: Partial Modules:";
161 i1max =
static_cast<unsigned int>(waferPart_.size());
162 for (
unsigned int i1 = 0;
i1 < i1max;
i1 += 2) {
163 std::ostringstream st1;
165 for (
unsigned int i =
i1;
i <
i2; ++
i)
166 st1 <<
" [" <<
i <<
"] " << waferPart_[
i];
170 passiveFull_ = vsArgs[
"PassiveNamesFull"];
171 passivePart_ = vsArgs[
"PassiveNamesPartial"];
173 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalSiliconRotatedCassette: " << passiveFull_.size() <<
" full and " 174 << passivePart_.size() <<
" partial passive modules";
175 i1max =
static_cast<unsigned int>(passiveFull_.size());
176 for (
unsigned int i1 = 0;
i1 < i1max;
i1 += 2) {
177 std::ostringstream st1;
179 for (
unsigned int i =
i1;
i <
i2; ++
i)
180 st1 <<
" [" <<
i <<
"] " << passiveFull_[
i];
183 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalSiliconRotatedCassette: Partial Modules:";
184 i1max =
static_cast<unsigned int>(passivePart_.size());
185 for (
unsigned int i1 = 0;
i1 < i1max;
i1 += 2) {
186 std::ostringstream st1;
188 for (
unsigned int i =
i1;
i <
i2; ++
i)
189 st1 <<
" [" <<
i <<
"] " << passivePart_[
i];
193 materials_ = vsArgs[
"MaterialNames"];
194 names_ = vsArgs[
"VolumeNames"];
195 thick_ = vArgs[
"Thickness"];
196 copyNumber_.resize(materials_.size(), 1);
198 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalSiliconRotatedCassette: " << materials_.size() <<
" types of volumes";
199 for (
unsigned int i = 0;
i < names_.size(); ++
i)
200 edm::LogVerbatim(
"HGCalGeom") <<
"Volume [" <<
i <<
"] " << names_[
i] <<
" of thickness " << thick_[
i]
201 <<
" filled with " << materials_[
i] <<
" first copy number " << copyNumber_[
i];
204 layerThick_ = vArgs[
"LayerThick"];
206 edm::LogVerbatim(
"HGCalGeom") <<
"There are " << layers_.size() <<
" blocks";
207 for (
unsigned int i = 0;
i < layers_.size(); ++
i)
208 edm::LogVerbatim(
"HGCalGeom") <<
"Block [" <<
i <<
"] of thickness " << layerThick_[
i] <<
" with " << layers_[
i]
212 layerSense_ =
dbl_to_int(vArgs[
"LayerSense"]);
213 layerOrient_ =
dbl_to_int(vArgs[
"LayerTypes"]);
214 for (
unsigned int k = 0;
k < layerOrient_.size(); ++
k)
217 for (
unsigned int i = 0;
i < layerOrient_.size(); ++
i)
220 if (firstLayer_ > 0) {
221 for (
unsigned int i = 0;
i < layerType_.size(); ++
i) {
222 if (layerSense_[
i] > 0) {
223 int ii = layerType_[
i];
224 copyNumber_[
ii] = (layerSense_[
i] == 1) ? firstLayer_ : (firstLayer_ + 1);
226 edm::LogVerbatim(
"HGCalGeom") <<
"First copy number for layer type " <<
i <<
":" <<
ii <<
" with " 227 << materials_[
ii] <<
" changed to " << copyNumber_[
ii];
235 edm::LogVerbatim(
"HGCalGeom") <<
"There are " << layerType_.size() <<
" layers";
236 for (
unsigned int i = 0;
i < layerType_.size(); ++
i)
237 edm::LogVerbatim(
"HGCalGeom") <<
"Layer [" <<
i <<
"] with material type " << layerType_[
i] <<
" sensitive class " 240 slopeB_ = vArgs[
"SlopeBottom"];
241 zFrontB_ = vArgs[
"ZFrontBottom"];
242 rMinFront_ = vArgs[
"RMinFront"];
243 slopeT_ = vArgs[
"SlopeTop"];
244 zFrontT_ = vArgs[
"ZFrontTop"];
245 rMaxFront_ = vArgs[
"RMaxFront"];
247 for (
unsigned int i = 0;
i < slopeB_.size(); ++
i)
248 edm::LogVerbatim(
"HGCalGeom") <<
"Bottom Block [" <<
i <<
"] Zmin " << zFrontB_[
i] <<
" Rmin " << rMinFront_[
i]
249 <<
" Slope " << slopeB_[
i];
250 for (
unsigned int i = 0;
i < slopeT_.size(); ++
i)
251 edm::LogVerbatim(
"HGCalGeom") <<
"Top Block [" <<
i <<
"] Zmin " << zFrontT_[
i] <<
" Rmax " << rMaxFront_[
i]
252 <<
" Slope " << slopeT_[
i];
254 waferIndex_ =
dbl_to_int(vArgs[
"WaferIndex"]);
255 waferProperty_ =
dbl_to_int(vArgs[
"WaferProperties"]);
256 waferLayerStart_ =
dbl_to_int(vArgs[
"WaferLayerStart"]);
257 cassetteShift_ = vArgs[
"CassetteShift"];
259 edm::LogVerbatim(
"HGCalGeom") <<
"waferProperties with " << waferIndex_.size() <<
" entries in " 260 << waferLayerStart_.size() <<
" layers";
261 for (
unsigned int k = 0;
k < waferLayerStart_.size(); ++
k)
263 for (
unsigned int k = 0;
k < waferIndex_.size(); ++
k)
271 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalSiliconRotatedCassette: " << cassetteShift_.size()
272 <<
" elements for cassette shifts";
273 unsigned int j1max = cassetteShift_.size();
274 for (
unsigned int j1 = 0; j1 < j1max; j1 += 6) {
275 std::ostringstream st1;
276 unsigned int j2 =
std::min((j1 + 6), j1max);
277 for (
unsigned int j = j1;
j < j2; ++
j)
278 st1 <<
" [" <<
j <<
"] " << std::setw(9) << cassetteShift_[
j];
284 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalSiliconRotatedCassette: NameSpace " << nameSpace_ <<
":";
286 cassette_.setParameter(cassettes_, cassetteShift_);
295 edm::LogVerbatim(
"HGCalGeom") <<
"==>> Constructing DDHGCalSiliconRotatedCassette...";
300 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalSiliconRotatedCassette: " << copies_.size()
301 <<
" different wafer copy numbers";
303 for (std::unordered_set<int>::const_iterator itr = copies_.begin(); itr != copies_.end(); ++itr, ++
k) {
307 edm::LogVerbatim(
"HGCalGeom") <<
"<<== End of DDHGCalSiliconRotatedCassette construction...";
312 double zi(zMinBlock_);
314 for (
unsigned int i = 0;
i < layers_.size();
i++) {
315 double zo = zi + layerThick_[
i];
317 int laymax = laymin + layers_[
i];
320 for (
int ly = laymin; ly < laymax; ++ly) {
321 int ii = layerType_[ly];
322 int copy = copyNumber_[
ii];
323 double hthick = 0.5 * thick_[
ii];
326 thickTot += thick_[
ii];
330 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalSiliconRotatedCassette: Layer " << ly <<
":" <<
ii <<
" Front " << zi
331 <<
", " << routF <<
" Back " << zo <<
", " << rinB <<
" superlayer thickness " 337 if (layerSense_[ly] == 0) {
338 std::vector<double> pgonZ, pgonRin, pgonRout;
339 double rmax = routF * cosAlpha_ - tol1_;
352 for (
unsigned int isec = 0;
isec < pgonZ.size(); ++
isec) {
354 if (layerSense_[ly] == 0 || absorbMode_ == 0)
355 pgonRout[
isec] = rmax;
357 pgonRout[
isec] = pgonRout[
isec] * cosAlpha_ - tol1_;
363 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalSiliconRotatedCassette: " << solid.
name() <<
" polyhedra of " 366 <<
" sections and filled with " << matName;
367 for (
unsigned int k = 0;
k < pgonZ.size(); ++
k)
368 edm::LogVerbatim(
"HGCalGeom") <<
"[" <<
k <<
"] z " << pgonZ[
k] <<
" R " << pgonRin[
k] <<
":" << pgonRout[
k];
371 int mode = (layerSense_[ly] > 0) ? sensitiveMode_ : absorbMode_;
377 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalSiliconRotatedCassette: " << solid.
name() <<
" Tubs made of " 378 << matName <<
" of dimensions " << rinB <<
":" << rins <<
", " << routF <<
":" 379 << routs <<
", " << hthick <<
", 0.0, 360.0 and position " << glog.
name()
380 <<
" number " <<
copy <<
":" << layerOrient_[
copy - firstLayer_] <<
" Z " <<
zz;
382 if (layerSense_[ly] > 0)
383 positionSensitive(glog, (
copy - firstLayer_), cpv);
385 positionPassive(glog, (
copy - firstLayer_), -layerSense_[ly], cpv);
399 int inc = ((layerSense_[ly] > 0) && (facingTypes_ > 1)) ? 2 : 1;
400 copyNumber_[
ii] =
copy + inc;
403 <<
" positioned in " <<
module.name() <<
" at " << r1 <<
" with " <<
rotName 411 if (
std::abs(thickTot - layerThick_[
i]) >= tol2_) {
412 if (thickTot > layerThick_[
i]) {
413 edm::LogError(
"HGCalGeom") <<
"Thickness of the partition " << layerThick_[
i] <<
" is smaller than " << thickTot
414 <<
": thickness of all its components **** ERROR ****";
416 edm::LogWarning(
"HGCalGeom") <<
"Thickness of the partition " << layerThick_[
i] <<
" does not match with " 417 << thickTot <<
" of the components";
425 static const double sqrt3 =
std::sqrt(3.0);
426 int layercenter = layerOrient_[layer];
428 int firstWafer = waferLayerStart_[layer];
429 int lastWafer = ((layer + 1 <
static_cast<int>(waferLayerStart_.size())) ? waferLayerStart_[layer + 1]
430 :
static_cast<int>(waferIndex_.size()));
431 double delx = 0.5 * (waferSize_ + waferSepar_);
432 double dely = 2.0 * delx / sqrt3;
433 double dy = 0.75 * dely;
434 const auto& xyoff = geomTools_.shiftXY(layercenter, (waferSize_ + waferSepar_));
436 int ium(0), ivm(0), kount(0);
437 std::vector<int> ntype(3, 0);
438 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalSiliconRotatedCassette: " << glog.
ddname() <<
" r " << delx <<
" R " << dely
439 <<
" dy " <<
dy <<
" Shift " << xyoff.first <<
":" << xyoff.second <<
" WaferSize " 440 << (waferSize_ + waferSepar_) <<
" index " << firstWafer <<
":" << (lastWafer - 1)
441 <<
" Layer Center " << layercenter <<
":" << layertype;
443 for (
int k = firstWafer;
k < lastWafer; ++
k) {
457 auto cshift = cassette_.getShift(layer + 1, -1, cassette);
458 double xpos = xyoff.first - cshift.first + nc * delx;
459 double ypos = xyoff.second + cshift.second +
nr *
dy;
461 double xorig = xyoff.first + nc * delx;
462 double yorig = xyoff.second +
nr *
dy;
463 double angle = std::atan2(yorig, xorig);
464 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalSiliconRotatedCassette::Wafer: layer " << layer + 1 <<
" cassette " 465 << cassette <<
" Shift " << cshift.first <<
":" << cshift.second <<
" Original " 467 << ypos <<
" u|v " << u <<
":" <<
v <<
" type|part|orient|place " <<
type <<
":" 468 <<
part <<
":" << orien <<
":" << place;
473 i =
type * facingTypes_ * orientationTypes_ + place - placeOffset_;
474 wafer = waferFull_[
i];
476 edm::LogVerbatim(
"HGCalGeom") <<
" layertype:type:part:orien:cassette:place:offsets:ind " << layertype <<
":" 477 <<
type <<
":" <<
part <<
":" << orien <<
":" << cassette <<
":" << place <<
":" 478 << placeOffset_ <<
":" << facingTypes_ <<
":" << orientationTypes_ <<
" wafer " <<
i 483 i = (
part - partoffset) * facingTypes_ * orientationTypes_ +
486 edm::LogVerbatim(
"HGCalGeom") <<
" layertype:type:part:orien:cassette:place:offsets:ind " << layertype <<
":" 487 <<
type <<
":" <<
part <<
":" << orien <<
":" << cassette <<
":" << place <<
":" 489 << waferPart_.size();
491 wafer = waferPart_[
i];
497 <<
copy <<
" type:part:orien:place:ind " <<
type <<
":" <<
part <<
":" << orien <<
":" 498 << place <<
":" <<
i <<
" layer:u:v:indx " << (layer + firstLayer_) <<
":" << u <<
":" 499 <<
v <<
" pos " << xpos <<
":" << ypos;
505 if (copies_.count(
copy) == 0)
506 copies_.insert(
copy);
515 << layertype <<
":" <<
type <<
" positioned in " << glog.
ddname() <<
" at " << tran
516 <<
" with no rotation";
520 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalSiliconRotatedCassette: Maximum # of u " << ium <<
" # of v " << ivm
521 <<
" and " << kount <<
" passives (" << ntype[0] <<
":" << ntype[1] <<
":" << ntype[2]
522 <<
") for " << glog.
ddname();
531 static const double sqrt3 =
std::sqrt(3.0);
532 int layercenter = layerOrient_[layer];
534 int firstWafer = waferLayerStart_[layer];
535 int lastWafer = ((layer + 1 <
static_cast<int>(waferLayerStart_.size())) ? waferLayerStart_[layer + 1]
536 :
static_cast<int>(waferIndex_.size()));
537 double delx = 0.5 * (waferSize_ + waferSepar_);
538 double dely = 2.0 * delx / sqrt3;
539 double dy = 0.75 * dely;
540 const auto& xyoff = geomTools_.shiftXY(layercenter, (waferSize_ + waferSepar_));
542 int ium(0), ivm(0), kount(0);
543 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalSiliconRotatedCassette: " << glog.
ddname() <<
" r " << delx <<
" R " << dely
544 <<
" dy " <<
dy <<
" Shift " << xyoff.first <<
":" << xyoff.second <<
" WaferSize " 545 << (waferSize_ + waferSepar_) <<
" index " << firstWafer <<
":" << (lastWafer - 1)
546 <<
" Layer Center " << layercenter <<
":" << layertype;
548 for (
int k = firstWafer;
k < lastWafer; ++
k) {
561 auto cshift = cassette_.getShift(layer + 1, -1, cassette);
562 double xpos = xyoff.first - cshift.first + nc * delx;
563 double ypos = xyoff.second + cshift.second +
nr *
dy;
565 double xorig = xyoff.first + nc * delx;
566 double yorig = xyoff.second +
nr *
dy;
567 double angle = std::atan2(yorig, xorig);
569 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalSiliconRotatedCassette::Passive: layer " << layer + 1 <<
" cassette " 570 << cassette <<
" Shift " << cshift.first <<
":" << cshift.second <<
" Original " 572 << ypos <<
" u|v " << u <<
":" <<
v <<
" type|part|orient" <<
type <<
":" <<
part 579 passive = passiveFull_[
i];
581 edm::LogVerbatim(
"HGCalGeom") <<
" layertype:abstype:part:orien:cassette:offsets:ind " << layertype <<
":" 582 << absType <<
":" <<
part <<
":" << orien <<
":" << cassette <<
":" 583 <<
":" << partialTypes_ <<
":" << orientationTypes_ <<
" passive " <<
i <<
":" 590 i = (
part - partoffset) * facingTypes_ * orientationTypes_ +
591 (absType - 1) * facingTypes_ * orientationTypes_ * partialTypes_ + place - placeOffset_;
593 edm::LogVerbatim(
"HGCalGeom") <<
" layertype:abstype:part:orien:cassette:3Types:offset:ind " << layertype <<
":" 594 << absType <<
":" <<
part <<
":" << orien <<
":" << cassette <<
":" << partialTypes_
595 <<
":" << facingTypes_ <<
":" << orientationTypes_ <<
":" << partoffset <<
":" <<
i 596 <<
":" << passivePart_.size();
598 passive = passivePart_[
i];
604 <<
copy <<
" type:part:orien:place:ind " <<
type <<
":" <<
part <<
":" << orien <<
":" 605 << place <<
":" <<
i <<
" layer:u:v:indx " << (layer + firstLayer_) <<
":" << u <<
":" 606 <<
v <<
" pos " << xpos <<
":" << ypos;
619 << layertype <<
":" <<
type <<
" positioned in " << glog.
ddname() <<
" at " << tran
620 <<
" with no rotation";
624 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalSiliconRotatedCassette: Maximum # of u " << ium <<
" # of v " << ivm
625 <<
" and " << kount <<
" passives for " << glog.
ddname();
Log< level::Info, true > LogVerbatim
static AlgebraicMatrix initialize()
static int32_t cellPlacementIndex(int32_t iz, int32_t frontBack, int32_t orient)
std::vector< int > waferIndex_
void constructLayers(const DDLogicalPart &, DDCompactView &cpv)
static constexpr int32_t WaferPartLDOffset
std::vector< std::string > passivePart_
void position(const DDLogicalPart &self, const DDLogicalPart &parent, const std::string ©no, const DDTranslation &trans, const DDRotation &rot, const DDDivision *div=nullptr)
static constexpr int32_t WaferTypeOffset[3]
std::vector< int > layerType_
DDMaterial is used to define and access material information.
int32_t waferU(const int32_t index)
int32_t waferLayer(const int32_t index)
std::unordered_set< int > copies_
constexpr NumType convertRadToDeg(NumType radians)
std::vector< double > thick_
std::vector< double > layerThick_
std::vector< int > waferProperty_
std::vector< double > rMinFront_
DDName is used to identify DDD entities uniquely.
std::vector< double > slopeB_
static std::string & ns()
Log< level::Error, false > LogError
Compact representation of the geometrical detector hierarchy.
std::vector< std::string > materials_
DDHGCalSiliconRotatedCassette()
int32_t waferOrient(const int32_t property)
void initialize(const DDNumericArguments &nArgs, const DDVectorArguments &vArgs, const DDMapArguments &mArgs, const DDStringArguments &sArgs, const DDStringVectorArguments &vsArgs) override
A DDSolid represents the shape of a part.
static std::string to_string(const XMLCh *ch)
Represents a uniquely identifyable rotation matrix.
static const std::string & rotName(const T &rot, const cms::DDParsingContext &context)
U second(std::pair< T, U > const &p)
int32_t waferCassette(const int32_t property)
static constexpr int32_t WaferFull
void positionSensitive(const DDLogicalPart &glog, int layer, DDCompactView &cpv)
std::vector< std::string > passiveFull_
Cos< T >::type cos(const T &t)
void execute(DDCompactView &cpv) override
Abs< T >::type abs(const T &t)
void constructLayers(const cms::DDNamespace &ns, const std::vector< std::string > &wafers, const std::vector< std::string > &covers, const std::vector< int > &layerType, const std::vector< int > &layerSense, const std::vector< int > &maxModule, const std::vector< std::string > &names, const std::vector< std::string > &materials, std::vector< int > ©Number, const std::vector< double > &layerThick, const double &absorbW, const double &absorbH, const double &waferTot, const double &rMax, const double &rMaxFine, std::unordered_set< int > &copies, int firstLayer, int lastLayer, double zFront, double totalWidth, bool ignoreCenter, dd4hep::Volume &module)
A DDLogicalPart aggregates information concerning material, solid and sensitveness ...
std::vector< double > zFrontT_
static DDSolid tubs(const DDName &name, double zhalf, double rIn, double rOut, double startPhi, double deltaPhi)
int32_t waferThick(const int32_t property)
std::vector< double > slopeT_
std::vector< std::string > waferFull_
std::vector< double > rMaxFront_
std::vector< int > dbl_to_int(const std::vector< double > &vecdbl)
Converts a std::vector of doubles to a std::vector of int.
std::vector< double > cassetteShift_
std::vector< int > copyNumber_
static constexpr int32_t WaferPartHDOffset
static constexpr int32_t WaferCenterR
std::vector< int > layerSense_
std::vector< int > waferLayerStart_
std::vector< std::string > waferPart_
std::vector< std::string > names_
int32_t waferPartial(const int32_t property)
HGCalGeomTools geomTools_
int32_t waferV(const int32_t index)
static int32_t packTypeUV(int type, int u, int v)
static constexpr int32_t WaferHDTop
#define DEFINE_EDM_PLUGIN(factory, type, name)
Log< level::Warning, false > LogWarning
static int32_t layerType(int type)
static constexpr int32_t WaferCenterB
std::pair< std::string, std::string > DDSplit(const std::string &n)
split into (name,namespace), separator = ':'
std::vector< double > zFrontB_
ROOT::Math::DisplacementVector3D< ROOT::Math::Cartesian3D< double > > DDTranslation
static DDSolid polyhedra(const DDName &name, int sides, double startPhi, double deltaPhi, const std::vector< double > &z, const std::vector< double > &rmin, const std::vector< double > &rmax)
Creates a polyhedra (refere to Geant3 or Geant4 documentation)
std::vector< int > layerOrient_
void positionPassive(const DDLogicalPart &glog, int layer, int passiveType, DDCompactView &cpv)
std::vector< int > layers_
T angle(T x1, T y1, T z1, T x2, T y2, T z2)