CMS 3D CMS Logo

MkFinder.cc
Go to the documentation of this file.
1 #include "MkFinder.h"
2 
5 #include "CandCloner.h"
6 #include "FindingFoos.h"
7 #include "KalmanUtilsMPlex.h"
8 #include "MatriplexPackers.h"
9 #include "MiniPropagators.h"
10 
11 //#define DEBUG
12 #include "Debug.h"
13 
14 #if defined(MKFIT_STANDALONE)
16 #endif
17 
18 #ifdef RNT_DUMP_MkF_SelHitIdcs
19 // declares struct RntIfc_selectHitIndices rnt_shi in unnamed namespace;
20 #include "RecoTracker/MkFitCore/standalone/RntDumper/MkFinder_selectHitIndices.icc"
21 #endif
22 
23 #include "vdt/atan2.h"
24 
25 #include <algorithm>
26 #include <queue>
27 
28 namespace mkfit {
29 
31  const IterationConfig &ic,
32  const IterationParams &ip,
33  const IterationLayerConfig &ilc,
34  const SteeringParams &sp,
35  const std::vector<bool> *ihm,
36  const Event *ev,
37  int region,
38  bool infwd) {
39  m_prop_config = &pc;
40  m_iteration_config = &ic;
41  m_iteration_params = &ip;
43  m_steering_params = &sp;
45  m_event = ev;
47  m_in_fwd = infwd;
48  }
49 
50  void MkFinder::setup_bkfit(const PropagationConfig &pc, const SteeringParams &sp, const Event *ev) {
51  m_prop_config = &pc;
52  m_steering_params = &sp;
53  m_event = ev;
54  }
55 
57  m_prop_config = nullptr;
58  m_iteration_config = nullptr;
59  m_iteration_params = nullptr;
60  m_iteration_layer_config = nullptr;
61  m_steering_params = nullptr;
62  m_iteration_hit_mask = nullptr;
63  m_event = nullptr;
64  m_current_region = -1;
65  m_in_fwd = true;
66  }
67 
68  void MkFinder::begin_layer(const LayerOfHits &layer_of_hits) {
69 #ifdef RNT_DUMP_MkF_SelHitIdcs
70  const LayerOfHits &L = layer_of_hits;
71  const LayerInfo &LI = *L.layer_info();
72  rnt_shi.ResetH();
73  rnt_shi.ResetF();
74  *rnt_shi.h = {m_event->evtID(),
78  L.layer_id(),
79  L.is_barrel() ? LI.rin() : LI.zmin(),
80  LI.is_barrel() ? LI.rout() : LI.zmax(),
81  L.is_barrel(),
82  L.is_pixel(),
83  L.is_stereo()};
84  *rnt_shi.f = *rnt_shi.h;
85 #endif
86  }
87 
89 #ifdef RNT_DUMP_MkF_SelHitIdcs
90  rnt_shi.FillH();
91  rnt_shi.FillF();
92 #endif
93  }
94 
95  //==============================================================================
96  // Input / Output TracksAndHitIdx
97  //==============================================================================
98 
99  void MkFinder::inputTracksAndHitIdx(const std::vector<Track> &tracks, int beg, int end, bool inputProp) {
100  // Assign track parameters to initial state and copy hit values in.
101 
102  // This might not be true for the last chunk!
103  // assert(end - beg == NN);
104 
105  const int iI = inputProp ? iP : iC;
106 
107  for (int i = beg, imp = 0; i < end; ++i, ++imp) {
108  copy_in(tracks[i], imp, iI);
109  }
110  }
111 
113  const std::vector<Track> &tracks, const std::vector<int> &idxs, int beg, int end, bool inputProp, int mp_offset) {
114  // Assign track parameters to initial state and copy hit values in.
115 
116  // This might not be true for the last chunk!
117  // assert(end - beg == NN);
118 
119  const int iI = inputProp ? iP : iC;
120 
121  for (int i = beg, imp = mp_offset; i < end; ++i, ++imp) {
122  copy_in(tracks[idxs[i]], imp, iI);
123  }
124  }
125 
126  void MkFinder::inputTracksAndHitIdx(const std::vector<CombCandidate> &tracks,
127  const std::vector<std::pair<int, int>> &idxs,
128  int beg,
129  int end,
130  bool inputProp) {
131  // Assign track parameters to initial state and copy hit values in.
132 
133  // This might not be true for the last chunk!
134  // assert(end - beg == NN);
135 
136  const int iI = inputProp ? iP : iC;
137 
138  for (int i = beg, imp = 0; i < end; ++i, ++imp) {
139  const TrackCand &trk = tracks[idxs[i].first][idxs[i].second];
140 
141  copy_in(trk, imp, iI);
142 
143  m_SeedIdx(imp, 0, 0) = idxs[i].first;
144  m_CandIdx(imp, 0, 0) = idxs[i].second;
145  m_SeedOriginIdx[imp] = tracks[idxs[i].first].seed_origin_index();
146  }
147  }
148 
149  void MkFinder::inputTracksAndHits(const std::vector<CombCandidate> &tracks,
150  const LayerOfHits &layer_of_hits,
151  const std::vector<UpdateIndices> &idxs,
152  int beg,
153  int end,
154  bool inputProp) {
155  // Assign track parameters to initial state and copy hit values in.
156 
157  // This might not be true for the last chunk!
158  // assert(end - beg == NN);
159 
160  const int iI = inputProp ? iP : iC;
161 
162  for (int i = beg, imp = 0; i < end; ++i, ++imp) {
163  const TrackCand &trk = tracks[idxs[i].seed_idx][idxs[i].cand_idx];
164 
165  copy_in(trk, imp, iI);
166 
167  m_SeedIdx(imp, 0, 0) = idxs[i].seed_idx;
168  m_CandIdx(imp, 0, 0) = idxs[i].cand_idx;
169  m_SeedOriginIdx[imp] = tracks[idxs[i].seed_idx].seed_origin_index();
170 
171  // Reuse selectHitIndices() arrays -- used also in packModuleNormDir()
172  m_XHitArr(imp, 0, 0) = idxs[i].hit_idx;
173  m_XHitSize(imp, 0, 0) = 1;
174 
175  const Hit &hit = layer_of_hits.refHit(idxs[i].hit_idx);
176  m_msErr.copyIn(imp, hit.errArray());
177  m_msPar.copyIn(imp, hit.posArray());
178  }
179  }
180 
181  void MkFinder::inputOverlapHits(const LayerOfHits &layer_of_hits,
182  const std::vector<UpdateIndices> &idxs,
183  int beg,
184  int end) {
185  // Copy overlap hit values in.
186 
187  for (int i = beg, imp = 0; i < end; ++i, ++imp) {
188  const Hit &hit = layer_of_hits.refHit(idxs[i].ovlp_idx);
189  m_msErr.copyIn(imp, hit.errArray());
190  m_msPar.copyIn(imp, hit.posArray());
191  }
192  }
193 
194  void MkFinder::inputTracksAndHitIdx(const std::vector<CombCandidate> &tracks,
195  const std::vector<std::pair<int, IdxChi2List>> &idxs,
196  int beg,
197  int end,
198  bool inputProp) {
199  // Assign track parameters to initial state and copy hit values in.
200 
201  // This might not be true for the last chunk!
202  // assert(end - beg == NN);
203 
204  const int iI = inputProp ? iP : iC;
205 
206  for (int i = beg, imp = 0; i < end; ++i, ++imp) {
207  const TrackCand &trk = tracks[idxs[i].first][idxs[i].second.trkIdx];
208 
209  copy_in(trk, imp, iI);
210 
211  m_SeedIdx(imp, 0, 0) = idxs[i].first;
212  m_CandIdx(imp, 0, 0) = idxs[i].second.trkIdx;
213  m_SeedOriginIdx[imp] = tracks[idxs[i].first].seed_origin_index();
214  }
215  }
216 
217  void MkFinder::outputTracksAndHitIdx(std::vector<Track> &tracks, int beg, int end, bool outputProp) const {
218  // Copies requested track parameters into Track objects.
219  // The tracks vector should be resized to allow direct copying.
220 
221  const int iO = outputProp ? iP : iC;
222 
223  for (int i = beg, imp = 0; i < end; ++i, ++imp) {
224  copy_out(tracks[i], imp, iO);
225  }
226  }
227 
229  std::vector<Track> &tracks, const std::vector<int> &idxs, int beg, int end, bool outputProp) const {
230  // Copies requested track parameters into Track objects.
231  // The tracks vector should be resized to allow direct copying.
232 
233  const int iO = outputProp ? iP : iC;
234 
235  for (int i = beg, imp = 0; i < end; ++i, ++imp) {
236  copy_out(tracks[idxs[i]], imp, iO);
237  }
238  }
239 
241  const LayerOfHits &layer_of_hits, int hit_cnt, MPlexHV &norm, MPlexHV &dir, int N_proc) const {
242  for (int itrack = 0; itrack < NN; ++itrack) {
243  if (itrack < N_proc && hit_cnt < m_XHitSize[itrack]) {
244  const auto &hit = layer_of_hits.refHit(m_XHitArr.constAt(itrack, hit_cnt, 0));
245  unsigned int mid = hit.detIDinLayer();
246  const ModuleInfo &mi = layer_of_hits.layer_info()->module_info(mid);
247  norm.At(itrack, 0, 0) = mi.zdir[0];
248  norm.At(itrack, 1, 0) = mi.zdir[1];
249  norm.At(itrack, 2, 0) = mi.zdir[2];
250  dir.At(itrack, 0, 0) = mi.xdir[0];
251  dir.At(itrack, 1, 0) = mi.xdir[1];
252  dir.At(itrack, 2, 0) = mi.xdir[2];
253  }
254  }
255  }
256 
257  //==============================================================================
258  // getHitSelDynamicWindows
259  //==============================================================================
260  // From HitSelectionWindows.h: track-related config on hit selection windows
261 
263  const float invpt, const float theta, float &min_dq, float &max_dq, float &min_dphi, float &max_dphi) {
264  float max_invpt = std::min(invpt, 10.0f); // => pT>0.1 GeV
265 
266  enum SelWinParameters_e { dp_sf = 0, dp_0, dp_1, dp_2, dq_sf, dq_0, dq_1, dq_2 };
268 
269  if (!v.empty()) {
270  // dq hit selection window
271  const float this_dq = v[dq_sf] * (v[dq_0] * max_invpt + v[dq_1] * theta + v[dq_2]);
272  // In case value is below 0 (bad window derivation or other reasons), leave original limits
273  if (this_dq > 0.f) {
274  min_dq = this_dq;
275  max_dq = 2.0f * min_dq;
276  }
277 
278  // dphi hit selection window
279  const float this_dphi = v[dp_sf] * (v[dp_0] * max_invpt + v[dp_1] * theta + v[dp_2]);
280  // In case value is too low (bad window derivation or other reasons), leave original limits
281  if (this_dphi > min_dphi) {
282  min_dphi = this_dphi;
283  max_dphi = 2.0f * min_dphi;
284  }
285  }
286  }
287 
288  //==============================================================================
289  // getHitSelDynamicChi2Cut
290  //==============================================================================
291  // From HitSelectionWindows.h: track-related config on hit selection windows
292 
293  inline float MkFinder::getHitSelDynamicChi2Cut(const int itrk, const int ipar) {
294  const float minChi2Cut = m_iteration_params->chi2Cut_min;
295  const float invpt = m_Par[ipar].At(itrk, 3, 0);
296  const float theta = std::abs(m_Par[ipar].At(itrk, 5, 0) - Const::PIOver2);
297 
298  float max_invpt = std::min(invpt, 10.0f); // => pT>0.1 GeV
299 
300  enum SelWinParameters_e { c2_sf = 8, c2_0, c2_1, c2_2 };
302 
303  if (!v.empty()) {
304  float this_c2 = v[c2_sf] * (v[c2_0] * max_invpt + v[c2_1] * theta + v[c2_2]);
305  // In case value is too low (bad window derivation or other reasons), leave original limits
306  if (this_c2 > minChi2Cut)
307  return this_c2;
308  }
309  return minChi2Cut;
310  }
311 
312  //==============================================================================
313  // SelectHitIndices
314  //==============================================================================
315 
316  void MkFinder::selectHitIndices(const LayerOfHits &layer_of_hits, const int N_proc, bool fill_binsearch_only) {
317  // bool debug = true;
318  using bidx_t = LayerOfHits::bin_index_t;
319  using bcnt_t = LayerOfHits::bin_content_t;
320  const LayerOfHits &L = layer_of_hits;
322 
323  const int iI = iP;
324  const float nSigmaPhi = 3;
325  const float nSigmaZ = 3;
326  const float nSigmaR = 3;
327 
328  dprintf("LayerOfHits::SelectHitIndices %s layer=%d N_proc=%d\n",
329  L.is_barrel() ? "barrel" : "endcap",
330  L.layer_id(),
331  N_proc);
332 
333  float dqv[NN], dphiv[NN], qv[NN], phiv[NN];
334  bidx_t qb1v[NN], qb2v[NN], qbv[NN], pb1v[NN], pb2v[NN];
335 
336  const auto assignbins = [&](int itrack,
337  float q,
338  float dq,
339  float phi,
340  float dphi,
341  float min_dq,
342  float max_dq,
343  float min_dphi,
344  float max_dphi) {
345  dphi = std::clamp(std::abs(dphi), min_dphi, max_dphi);
346  dq = std::clamp(dq, min_dq, max_dq);
347  //
348  qv[itrack] = q;
349  phiv[itrack] = phi;
350  dphiv[itrack] = dphi;
351  dqv[itrack] = dq;
352  //
353  qbv[itrack] = L.qBinChecked(q);
354  qb1v[itrack] = L.qBinChecked(q - dq);
355  qb2v[itrack] = L.qBinChecked(q + dq) + 1;
356  pb1v[itrack] = L.phiBinChecked(phi - dphi);
357  pb2v[itrack] = L.phiMaskApply(L.phiBin(phi + dphi) + 1);
358  };
359 
360  const auto calcdphi2 = [&](int itrack, float dphidx, float dphidy) {
361  return dphidx * dphidx * m_Err[iI].constAt(itrack, 0, 0) + dphidy * dphidy * m_Err[iI].constAt(itrack, 1, 1) +
362  2 * dphidx * dphidy * m_Err[iI].constAt(itrack, 0, 1);
363  };
364 
365  const auto calcdphi = [&](float dphi2, float min_dphi) {
366  return std::max(nSigmaPhi * std::sqrt(std::abs(dphi2)), min_dphi);
367  };
368 
369  if (L.is_barrel()) {
370  // Pull out the part of the loop that vectorizes with icc and gcc
371  // In llvm16 clang issues a warning that it can't vectorize
372  // the loop. Unfortunately, there doesn't seem to be a
373  // pragma to suppress the warning, so we ifdef it out. This
374  // should be rechecked if llvm vectorization improves.
375 #if !defined(__clang__)
376 #pragma omp simd
377 #endif
378  for (int itrack = 0; itrack < NN; ++itrack) {
379  if (itrack >= N_proc)
380  continue;
381  m_XHitSize[itrack] = 0;
382 
383  float min_dq = ILC.min_dq();
384  float max_dq = ILC.max_dq();
385  float min_dphi = ILC.min_dphi();
386  float max_dphi = ILC.max_dphi();
387 
388  const float invpt = m_Par[iI].At(itrack, 3, 0);
389  const float theta = std::fabs(m_Par[iI].At(itrack, 5, 0) - Const::PIOver2);
390  getHitSelDynamicWindows(invpt, theta, min_dq, max_dq, min_dphi, max_dphi);
391 
392  const float x = m_Par[iI].constAt(itrack, 0, 0);
393  const float y = m_Par[iI].constAt(itrack, 1, 0);
394  const float r2 = x * x + y * y;
395  const float dphidx = -y / r2, dphidy = x / r2;
396  const float dphi2 = calcdphi2(itrack, dphidx, dphidy);
397 #ifdef HARD_CHECK
398  assert(dphi2 >= 0);
399 #endif
400 
401  const float phi = getPhi(x, y);
402  float dphi = calcdphi(dphi2, min_dphi);
403 
404  const float z = m_Par[iI].constAt(itrack, 2, 0);
405  const float dz = std::abs(nSigmaZ * std::sqrt(m_Err[iI].constAt(itrack, 2, 2)));
406  const float edgeCorr = std::abs(0.5f * (L.layer_info()->rout() - L.layer_info()->rin()) /
407  std::tan(m_Par[iI].constAt(itrack, 5, 0)));
408  // XXX-NUM-ERR above, m_Err(2,2) gets negative!
409 
410  m_XWsrResult[itrack] = L.is_within_z_sensitive_region(z, std::sqrt(dz * dz + edgeCorr * edgeCorr));
411  assignbins(itrack, z, dz, phi, dphi, min_dq, max_dq, min_dphi, max_dphi);
412 
413  // Relax propagation-fail detection to be in line with pre-43145.
414  if (m_FailFlag[itrack] && std::sqrt(r2) >= L.layer_info()->rin()) {
415  m_FailFlag[itrack] = 0;
416  }
417  }
418  } else // endcap
419  {
420  //layer half-thikness for dphi spread calculation; only for very restrictive iters
421  const float layerD = std::abs(L.layer_info()->zmax() - L.layer_info()->zmin()) * 0.5f *
423  // Pull out the part of the loop that vectorizes with icc and gcc
424 #if !defined(__clang__)
425 #pragma omp simd
426 #endif
427  for (int itrack = 0; itrack < NN; ++itrack) {
428  m_XHitSize[itrack] = 0;
429 
430  float min_dq = ILC.min_dq();
431  float max_dq = ILC.max_dq();
432  float min_dphi = ILC.min_dphi();
433  float max_dphi = ILC.max_dphi();
434 
435  const float invpt = m_Par[iI].At(itrack, 3, 0);
436  const float theta = std::fabs(m_Par[iI].At(itrack, 5, 0) - Const::PIOver2);
437  getHitSelDynamicWindows(invpt, theta, min_dq, max_dq, min_dphi, max_dphi);
438 
439  const float x = m_Par[iI].constAt(itrack, 0, 0);
440  const float y = m_Par[iI].constAt(itrack, 1, 0);
441  const float r2 = x * x + y * y;
442  const float r2Inv = 1.f / r2;
443  const float dphidx = -y * r2Inv, dphidy = x * r2Inv;
444  const float phi = getPhi(x, y);
445  const float dphi2 =
446  calcdphi2(itrack, dphidx, dphidy)
447  //range from finite layer thickness
448  + std::pow(layerD * std::tan(m_Par[iI].At(itrack, 5, 0)) * std::sin(m_Par[iI].At(itrack, 4, 0) - phi), 2) *
449  r2Inv;
450 #ifdef HARD_CHECK
451  assert(dphi2 >= 0);
452 #endif
453 
454  float dphi = calcdphi(dphi2, min_dphi);
455 
456  const float r = std::sqrt(r2);
457  const float dr = nSigmaR * std::sqrt(std::abs(x * x * m_Err[iI].constAt(itrack, 0, 0) +
458  y * y * m_Err[iI].constAt(itrack, 1, 1) +
459  2 * x * y * m_Err[iI].constAt(itrack, 0, 1)) /
460  r2);
461  const float edgeCorr = std::abs(0.5f * (L.layer_info()->zmax() - L.layer_info()->zmin()) *
462  std::tan(m_Par[iI].constAt(itrack, 5, 0)));
463 
464  m_XWsrResult[itrack] = L.is_within_r_sensitive_region(r, std::sqrt(dr * dr + edgeCorr * edgeCorr));
465  assignbins(itrack, r, dr, phi, dphi, min_dq, max_dq, min_dphi, max_dphi);
466  }
467  }
468 
469 #ifdef RNT_DUMP_MkF_SelHitIdcs
470  if (fill_binsearch_only) {
471  // XXX loop over good indices (prepared in V2) and put in V1 BinSearch results
472  for (auto i : rnt_shi.f_h_idcs) {
473  CandInfo &ci = (*rnt_shi.ci)[rnt_shi.f_h_remap[i]];
474  ci.bso = BinSearch({phiv[i],
475  dphiv[i],
476  qv[i],
477  dqv[i],
478  pb1v[i],
479  pb2v[i],
480  qb1v[i],
481  qb2v[i],
484  false});
485  }
486  return;
487  }
488 #endif
489 
490  // Vectorizing this makes it run slower!
491  //#pragma omp simd
492  for (int itrack = 0; itrack < NN; ++itrack) {
493  if (itrack >= N_proc) {
494  continue;
495  }
496  // PROP-FAIL-ENABLE The following to be enabled when propagation failure
497  // detection is properly implemented in propagate-to-R/Z.
498  if (m_FailFlag[itrack]) {
499  m_XWsrResult[itrack].m_wsr = WSR_Failed;
500  continue;
501  }
502 
503  if (m_XWsrResult[itrack].m_wsr == WSR_Outside) {
504  continue;
505  }
506 
507  const bidx_t qb = qbv[itrack];
508  const bidx_t qb1 = qb1v[itrack];
509  const bidx_t qb2 = qb2v[itrack];
510  const bidx_t pb1 = pb1v[itrack];
511  const bidx_t pb2 = pb2v[itrack];
512 
513  const float q = qv[itrack];
514  const float phi = phiv[itrack];
515  const float dphi = dphiv[itrack];
516  const float dq = dqv[itrack];
517 
518  // clang-format off
519  dprintf(" %2d/%2d: %6.3f %6.3f %6.6f %7.5f %3u %3u %4u %4u\n",
520  L.layer_id(), itrack, q, phi, dq, dphi,
521  qb1, qb2, pb1, pb2);
522  // clang-format on
523 
524 #if defined(DUMPHITWINDOW) && defined(MKFIT_STANDALONE)
525  const auto ngr = [](float f) { return isFinite(f) ? f : -999.0f; };
526 
527  const int seed_lbl = m_event->currentSeed(m_SeedOriginIdx[itrack]).label();
529  const int seed_mcid = (slfh.is_set() && slfh.good_frac() > 0.7f) ? slfh.label : -999999;
530 #endif
531 
532  for (bidx_t qi = qb1; qi != qb2; ++qi) {
533  for (bidx_t pi = pb1; pi != pb2; pi = L.phiMaskApply(pi + 1)) {
534  // Limit to central Q-bin
535  if (qi == qb && L.isBinDead(pi, qi) == true) {
536  dprint("dead module for track in layer=" << L.layer_id() << " qb=" << qi << " pi=" << pi << " q=" << q
537  << " phi=" << phi);
538  m_XWsrResult[itrack].m_in_gap = true;
539  }
540 
541  // MT: The following line is the biggest hog (4% total run time).
542  // This comes from cache misses, I presume.
543  // It might make sense to make first loop to extract bin indices
544  // and issue prefetches at the same time.
545  // Then enter vectorized loop to actually collect the hits in proper order.
546 
547  //SK: ~20x1024 bin sizes give mostly 1 hit per bin. Commented out for 128 bins or less
548  // #pragma nounroll
549  auto pbi = L.phiQBinContent(pi, qi);
550  for (bcnt_t hi = pbi.begin(); hi < pbi.end(); ++hi) {
551  // MT: Access into m_hit_zs and m_hit_phis is 1% run-time each.
552 
553  const unsigned int hi_orig = L.getOriginalHitIndex(hi);
554 
555  if (m_iteration_hit_mask && (*m_iteration_hit_mask)[hi_orig]) {
556  dprintf(
557  "Yay, denying masked hit on layer %u, hi %u, orig idx %u\n", L.layer_info()->layer_id(), hi, hi_orig);
558  continue;
559  }
560 
561  if (Config::usePhiQArrays) {
562  if (m_XHitSize[itrack] >= MPlexHitIdxMax)
563  break;
564 
565  const float ddq = std::abs(q - L.hit_q(hi));
566  const float ddphi = cdist(std::abs(phi - L.hit_phi(hi)));
567 
568  // clang-format off
569  dprintf(" SHI %3u %4u %5u %6.3f %6.3f %6.4f %7.5f %s\n",
570  qi, pi, hi, L.hit_q(hi), L.hit_phi(hi),
571  ddq, ddphi, (ddq < dq && ddphi < dphi) ? "PASS" : "FAIL");
572  // clang-format on
573 
574 #if defined(DUMPHITWINDOW) && defined(MKFIT_STANDALONE)
575  // clang-format off
576  MPlexQF thisOutChi2;
577  {
578  const MCHitInfo &mchinfo = m_event->simHitsInfo_[L.refHit(hi).mcHitID()];
579  int mchid = mchinfo.mcTrackID();
580  int st_isfindable = 0;
581  int st_label = -999999;
582  int st_prodtype = 0;
583  int st_nhits = -1;
584  int st_charge = 0;
585  float st_r = -999.;
586  float st_z = -999.;
587  float st_pt = -999.;
588  float st_eta = -999.;
589  float st_phi = -999.;
590  if (mchid >= 0) {
591  Track simtrack = m_event->simTracks_[mchid];
592  st_isfindable = (int)simtrack.isFindable();
593  st_label = simtrack.label();
594  st_prodtype = (int)simtrack.prodType();
595  st_pt = simtrack.pT();
596  st_eta = simtrack.momEta();
597  st_phi = simtrack.momPhi();
598  st_nhits = simtrack.nTotalHits();
599  st_charge = simtrack.charge();
600  st_r = simtrack.posR();
601  st_z = simtrack.z();
602  }
603 
604  const Hit &thishit = L.refHit(hi_orig);
605  m_msErr.copyIn(itrack, thishit.errArray());
606  m_msPar.copyIn(itrack, thishit.posArray());
607 
608  MPlexQI propFail;
609  MPlexLV tmpPropPar;
610  const FindingFoos &fnd_foos = FindingFoos::get_finding_foos(L.is_barrel());
611  (*fnd_foos.m_compute_chi2_foo)(m_Err[iI],
612  m_Par[iI],
613  m_Chg,
614  m_msErr,
615  m_msPar,
616  thisOutChi2,
617  tmpPropPar,
618  propFail,
619  N_proc,
622 
623  float hx = thishit.x();
624  float hy = thishit.y();
625  float hz = thishit.z();
626  float hr = std::hypot(hx, hy);
627  float hphi = std::atan2(hy, hx);
628  float hex = ngr( std::sqrt(thishit.exx()) );
629  float hey = ngr( std::sqrt(thishit.eyy()) );
630  float hez = ngr( std::sqrt(thishit.ezz()) );
631  float her = ngr( std::sqrt(
632  (hx * hx * thishit.exx() + hy * hy * thishit.eyy() + 2.0f * hx * hy * m_msErr.At(itrack, 0, 1)) /
633  (hr * hr)) );
634  float hephi = ngr( std::sqrt(thishit.ephi()) );
635  float hchi2 = ngr( thisOutChi2[itrack] );
636  float tx = m_Par[iI].At(itrack, 0, 0);
637  float ty = m_Par[iI].At(itrack, 1, 0);
638  float tz = m_Par[iI].At(itrack, 2, 0);
639  float tr = std::hypot(tx, ty);
640  float tphi = std::atan2(ty, tx);
641  // float tchi2 = ngr( m_Chi2(itrack, 0, 0) ); // unused
642  float tex = ngr( std::sqrt(m_Err[iI].At(itrack, 0, 0)) );
643  float tey = ngr( std::sqrt(m_Err[iI].At(itrack, 1, 1)) );
644  float tez = ngr( std::sqrt(m_Err[iI].At(itrack, 2, 2)) );
645  float ter = ngr( std::sqrt(
646  (tx * tx * tex * tex + ty * ty * tey * tey + 2.0f * tx * ty * m_Err[iI].At(itrack, 0, 1)) /
647  (tr * tr)) );
648  float tephi = ngr( std::sqrt(
649  (ty * ty * tex * tex + tx * tx * tey * tey - 2.0f * tx * ty * m_Err[iI].At(itrack, 0, 1)) /
650  (tr * tr * tr * tr)) );
651  float ht_dxy = std::hypot(hx - tx, hy - ty);
652  float ht_dz = hz - tz;
653  float ht_dphi = cdist(std::abs(hphi - tphi));
654 
655  static bool first = true;
656  if (first) {
657  printf(
658  "HITWINDOWSEL "
659  "evt_id/I:track_algo/I:"
660  "lyr_id/I:lyr_isbrl/I:hit_idx/I:"
661  "trk_cnt/I:trk_idx/I:trk_label/I:"
662  "trk_pt/F:trk_eta/F:trk_mphi/F:trk_chi2/F:"
663  "nhits/I:"
664  "seed_idx/I:seed_label/I:seed_mcid/I:"
665  "hit_mcid/I:"
666  "st_isfindable/I:st_prodtype/I:st_label/I:"
667  "st_pt/F:st_eta/F:st_phi/F:"
668  "st_nhits/I:st_charge/I:st_r/F:st_z/F:"
669  "trk_q/F:hit_q/F:dq_trkhit/F:dq_cut/F:trk_phi/F:hit_phi/F:dphi_trkhit/F:dphi_cut/F:"
670  "t_x/F:t_y/F:t_r/F:t_phi/F:t_z/F:"
671  "t_ex/F:t_ey/F:t_er/F:t_ephi/F:t_ez/F:"
672  "h_x/F:h_y/F:h_r/F:h_phi/F:h_z/F:"
673  "h_ex/F:h_ey/F:h_er/F:h_ephi/F:h_ez/F:"
674  "ht_dxy/F:ht_dz/F:ht_dphi/F:"
675  "h_chi2/F"
676  "\n");
677  first = false;
678  }
679 
680  if (!(std::isnan(phi)) && !(std::isnan(getEta(m_Par[iI].At(itrack, 5, 0))))) {
681  //|| std::isnan(ter) || std::isnan(her) || std::isnan(m_Chi2(itrack, 0, 0)) || std::isnan(hchi2)))
682  printf("HITWINDOWSEL "
683  "%d %d"
684  "%d %d %d "
685  "%d %d %d "
686  "%6.3f %6.3f %6.3f %6.3f "
687  "%d "
688  "%d %d %d "
689  "%d "
690  "%d %d %d "
691  "%6.3f %6.3f %6.3f "
692  "%d %d %6.3f %6.3f "
693  "%6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f "
694  "%6.3f %6.3f %6.3f %6.3f %6.3f "
695  "%6.6f %6.6f %6.6f %6.6f %6.6f "
696  "%6.3f %6.3f %6.3f %6.3f %6.3f "
697  "%6.6f %6.6f %6.6f %6.6f %6.6f "
698  "%6.3f %6.3f %6.3f "
699  "%6.3f"
700  "\n",
702  L.layer_id(), L.is_barrel(), hi_orig,
703  itrack, m_CandIdx(itrack, 0, 0), m_Label(itrack, 0, 0),
704  1.0f / m_Par[iI].At(itrack, 3, 0), getEta(m_Par[iI].At(itrack, 5, 0)), m_Par[iI].At(itrack, 4, 0), m_Chi2(itrack, 0, 0),
705  m_NFoundHits(itrack, 0, 0),
706  m_SeedOriginIdx(itrack, 0, 0), seed_lbl, seed_mcid,
707  mchid,
708  st_isfindable, st_prodtype, st_label,
709  st_pt, st_eta, st_phi,
710  st_nhits, st_charge, st_r, st_z,
711  q, L.hit_q(hi), ddq, dq, phi, L.hit_phi(hi), ddphi, dphi,
712  tx, ty, tr, tphi, tz,
713  tex, tey, ter, tephi, tez,
714  hx, hy, hr, hphi, hz,
715  hex, hey, her, hephi, hez,
716  ht_dxy, ht_dz, ht_dphi,
717  hchi2);
718  }
719  }
720  // clang-format on
721 #endif
722 
723  if (ddq >= dq)
724  continue;
725  if (ddphi >= dphi)
726  continue;
727 
728  // MT: Removing extra check gives full efficiency ...
729  // and means our error estimations are wrong!
730  // Avi says we should have *minimal* search windows per layer.
731  // Also ... if bins are sufficiently small, we do not need the extra
732  // checks, see above.
733  m_XHitArr.At(itrack, m_XHitSize[itrack]++, 0) = hi_orig;
734  } else {
735  // MT: The following check alone makes more sense with spiral traversal,
736  // we'd be taking in closest hits first.
737 
738  // Hmmh -- there used to be some more checks here.
739  // Or, at least, the phi binning was much smaller and no further checks were done.
740  assert(false && "this code has not been used in a while -- see comments in code");
741 
742  if (m_XHitSize[itrack] < MPlexHitIdxMax) {
743  m_XHitArr.At(itrack, m_XHitSize[itrack]++, 0) = hi_orig;
744  }
745  }
746  } //hi
747  } //pi
748  } //qi
749  } //itrack
750  }
751 
752  //==============================================================================
753  // SelectHitIndicesV2
754  //==============================================================================
755 
756  void MkFinder::selectHitIndicesV2(const LayerOfHits &layer_of_hits, const int N_proc) {
757  // bool debug = true;
758  using bidx_t = LayerOfHits::bin_index_t;
759  using bcnt_t = LayerOfHits::bin_content_t;
760  const LayerOfHits &L = layer_of_hits;
761  const LayerInfo &LI = *L.layer_info();
762 
763  const int iI = iP;
764 
765  dprintf("LayerOfHits::SelectHitIndicesV2 %s layer=%d N_proc=%d\n",
766  L.is_barrel() ? "barrel" : "endcap",
767  L.layer_id(),
768  N_proc);
769 
770 #ifdef RNT_DUMP_MkF_SelHitIdcs
771  rnt_shi.InnerIdcsReset(N_proc);
772  for (int i = 0; i < N_proc; ++i) {
774  if (m_FailFlag[i]) {
775  rnt_shi.RegisterFailedProp(i, m_Par[1 - iI], m_Par[iI], m_event, m_SeedOriginIdx[i]);
776  } else if (slfh.is_set()) {
777  rnt_shi.RegisterGoodProp(i, m_Par[iI], m_event, m_SeedOriginIdx[i]);
778  // get BinSearch result from V1.
779  selectHitIndices(layer_of_hits, N_proc, true);
780  } // else ... could do something about the bad seeds ... probably better to collect elsewhere.
781  }
782 #endif
783 
784  constexpr int NEW_MAX_HIT = 6; // 4 - 6 give about the same # of tracks in quality-val
785  constexpr float DDPHI_PRESEL_FAC = 2.0f;
786  constexpr float DDQ_PRESEL_FAC = 1.2f;
787  constexpr float PHI_BIN_EXTRA_FAC = 2.75f;
788  constexpr float Q_BIN_EXTRA_FAC = 1.6f;
789 
790  namespace mp = mini_propagators;
791  struct Bins {
792  MPlexQUH q0, q1, q2, p1, p2;
793  mp::InitialStatePlex isp;
794  mp::StatePlex sp1, sp2;
795  int n_proc;
796 
797  MPlexQF dphi_track, dq_track; // 3 sigma track errors at initial state
798 
799  // debug & ntuple dump -- to be local in functions
800  MPlexQF phi_c, dphi;
801  MPlexQF q_c, qmin, qmax;
802 
803  Bins(const MPlexLV &par, const MPlexQI &chg, int np = NN) : isp(par, chg), n_proc(np) {}
804 
805  void prop_to_limits(const LayerInfo &li) {
806  // Positions 1 and 2 should really be by "propagation order", 1 is the closest/
807  // This should also work for backward propagation so not exactly trivial.
808  // Also, do not really need propagation to center.
809  if (li.is_barrel()) {
810  isp.propagate_to_r(mp::PA_Exact, li.rin(), sp1, true, n_proc);
811  isp.propagate_to_r(mp::PA_Exact, li.rout(), sp2, true, n_proc);
812  } else {
813  isp.propagate_to_z(mp::PA_Exact, li.zmin(), sp1, true, n_proc);
814  isp.propagate_to_z(mp::PA_Exact, li.zmax(), sp2, true, n_proc);
815  }
816  }
817 
818  void find_bin_ranges(const LayerInfo &li, const LayerOfHits &loh, const MPlexLS &err) {
819  // Below made members for debugging
820  // MPlexQF phi_c, dphi_min, dphi_max;
821  // phi_c = mp::fast_atan2(isp.y, isp.x); // calculated below as difference
822 
823  // Matriplex::min_max(sp1.dphi, sp2.dphi, dphi_min, dphi_max);
824  // the above is wrong: dalpha is not dphi --> renamed variable in State
825  MPlexQF xp1, xp2, pmin, pmax;
826  xp1 = mp::fast_atan2(sp1.y, sp1.x);
827  xp2 = mp::fast_atan2(sp2.y, sp2.x);
828  Matriplex::min_max(xp1, xp2, pmin, pmax);
829  // Matriplex::min_max(mp::fast_atan2(sp1.y, sp1.x), smp::fast_atan2(sp2.y, sp2.x), pmin, pmax);
830  MPlexQF dp = pmax - pmin;
831  phi_c = 0.5f * (pmax + pmin);
832  for (int ii = 0; ii < NN; ++ii) {
833  if (ii < n_proc) {
834  if (dp[ii] > Const::PI) {
835  std::swap(pmax[ii], pmin[ii]);
836  dp[ii] = Const::TwoPI - dp[ii];
837  phi_c[ii] = Const::PI - phi_c[ii];
838  }
839  dphi[ii] = 0.5f * dp[ii];
840  // printf("phic: %f p1: %f p2: %f pmin: %f pmax: %f dphi: %f\n",
841  // phi_c[ii], xp1[ii], xp2[ii], pmin[ii], pmax[ii], dphi[ii]);
842  }
843  }
844 
845  const auto calc_err_xy = [&](const MPlexQF &x, const MPlexQF &y) {
846  return x * x * err.ReduceFixedIJ(0, 0) + y * y * err.ReduceFixedIJ(1, 1) +
847  2.0f * x * y * err.ReduceFixedIJ(0, 1);
848  };
849 
850  // Calculate dphi_track, dq_track differs for barrel/endcap
851  MPlexQF r2_c = isp.x * isp.x + isp.y * isp.y;
852  MPlexQF r2inv_c = 1.0f / r2_c;
853  MPlexQF dphidx_c = -isp.y * r2inv_c;
854  MPlexQF dphidy_c = isp.x * r2inv_c;
855  dphi_track = 3.0f * calc_err_xy(dphidx_c, dphidy_c).abs().sqrt();
856 
857  // MPlexQF qmin, qmax;
858  if (li.is_barrel()) {
859  Matriplex::min_max(sp1.z, sp2.z, qmin, qmax);
860  q_c = isp.z;
861  dq_track = 3.0f * err.ReduceFixedIJ(2, 2).abs().sqrt();
862  } else {
863  Matriplex::min_max(Matriplex::hypot(sp1.x, sp1.y), Matriplex::hypot(sp2.x, sp2.y), qmin, qmax);
864  q_c = Matriplex::sqrt(r2_c);
865  dq_track = 3.0f * (r2inv_c * calc_err_xy(isp.x, isp.y).abs()).sqrt();
866  }
867 
868  for (int i = 0; i < p1.kTotSize; ++i) {
869  // Clamp crazy sizes. This actually only happens when prop-fail flag is set.
870  // const float dphi_clamp = 0.1;
871  // if (dphi_min[i] > 0.0f || dphi_min[i] < -dphi_clamp) dphi_min[i] = -dphi_clamp;
872  // if (dphi_max[i] < 0.0f || dphi_max[i] > dphi_clampf) dphi_max[i] = dphi_clamp;
873  p1[i] = loh.phiBinChecked(pmin[i] - dphi_track[i] - PHI_BIN_EXTRA_FAC * 0.0123f);
874  p2[i] = loh.phiBinChecked(pmax[i] + dphi_track[i] + PHI_BIN_EXTRA_FAC * 0.0123f);
875 
876  q0[i] = loh.qBinChecked(q_c[i]);
877  q1[i] = loh.qBinChecked(qmin[i] - dq_track[i] - Q_BIN_EXTRA_FAC * 0.5f * li.q_bin());
878  q2[i] = loh.qBinChecked(qmax[i] + dq_track[i] + Q_BIN_EXTRA_FAC * 0.5f * li.q_bin()) + 1;
879  }
880  }
881  };
882 
883  Bins B(m_Par[iI], m_Chg, N_proc);
884  B.prop_to_limits(LI);
885  B.find_bin_ranges(LI, L, m_Err[iI]);
886 
887  for (int i = 0; i < NN; ++i) {
888  if (i < N_proc) {
889  m_XHitSize[i] = 0;
890  // Notify failure. Ideally should be detected before selectHitIndices().
891  if (m_FailFlag[i]) {
893  } else {
894  if (LI.is_barrel()) {
895  m_XWsrResult[i] = L.is_within_z_sensitive_region(B.q_c[i], 0.5f * (B.q2[i] - B.q1[i]));
896  } else {
897  m_XWsrResult[i] = L.is_within_r_sensitive_region(B.q_c[i], 0.5f * (B.q2[i] - B.q1[i]));
898  }
899  }
900  }
901  }
902 
903  // for (int i = 0; i < N_proc; ++i) {
904  // printf("BinCheck %c %+8.6f %+8.6f | %3d %3d - %3d %3d || | %2d %2d - %2d %2d\n", LI.is_barrel() ? 'B' : 'E',
905  // B.phi[i], B.dphi[i], B.p1[i], B.p2[i], pb1v[i], pb2v[i],
906  // B.q[i], B.dq[i], B.q1[i], B.q2[i], qb1v[i], qb2v[i]);
907  // }
908 
909 #ifdef RNT_DUMP_MkF_SelHitIdcs
910  for (auto i : rnt_shi.f_h_idcs) {
911  CandInfo &ci = (*rnt_shi.ci)[rnt_shi.f_h_remap[i]];
912  ci.bsn = BinSearch({B.phi_c[i],
913  B.dphi[i],
914  B.q_c[i],
915  0.5f * (B.q2[i] - B.q1[i]),
916  B.p1[i],
917  B.p2[i],
918  B.q1[i],
919  B.q2[i],
922  false});
923  ci.ps_min = statep2propstate(B.sp1, i);
924  ci.ps_max = statep2propstate(B.sp2, i);
925  }
926 #endif
927 
928  struct PQE {
929  float score;
930  unsigned int hit_index;
931  };
932  auto pqe_cmp = [](const PQE &a, const PQE &b) { return a.score < b.score; };
933  std::priority_queue<PQE, std::vector<PQE>, decltype(pqe_cmp)> pqueue(pqe_cmp);
934  int pqueue_size = 0;
935 
936  // Vectorizing this makes it run slower!
937  //#pragma omp simd
938  for (int itrack = 0; itrack < NN; ++itrack) {
939  if (itrack >= N_proc) {
940  continue;
941  }
942 
943  if (m_FailFlag[itrack]) {
944  m_XWsrResult[itrack].m_wsr = WSR_Failed;
945  continue;
946  }
947 
948  if (m_XWsrResult[itrack].m_wsr == WSR_Outside) {
949  continue;
950  }
951 
952  // New binning -- known to be too restrictive, so scaled up. Probably esp. in stereo layers.
953  // Also, could take track covariance dphi / dq extras + known tilt stuff.
954  const bidx_t qb = B.q0[itrack];
955  const bidx_t qb1 = B.q1[itrack];
956  const bidx_t qb2 = B.q2[itrack];
957  const bidx_t pb1 = B.p1[itrack];
958  const bidx_t pb2 = B.p2[itrack];
959 
960  // clang-format off
961  dprintf(" %2d/%2d: %6.3f %6.3f %6.6f %7.5f %3u %3u %4u %4u\n",
962  L.layer_id(), itrack, qv[itrack], phi[itrack], dqv[itrack], dphiv[itrack],
963  qb1, qb2, pb1, pb2);
964  // clang-format on
965 
966  mp::InitialState mp_is(m_Par[iI], m_Chg, itrack);
967  mp::State mp_s;
968 
969  for (bidx_t qi = qb1; qi != qb2; ++qi) {
970  for (bidx_t pi = pb1; pi != pb2; pi = L.phiMaskApply(pi + 1)) {
971  // Limit to central Q-bin
972  if (qi == qb && L.isBinDead(pi, qi) == true) {
973  dprint("dead module for track in layer=" << L.layer_id() << " qb=" << qi << " pi=" << pi << " q=" << q
974  << " phi=" << phi);
975  m_XWsrResult[itrack].m_in_gap = true;
976  }
977 
978  // It might make sense to make first loop to extract bin indices
979  // and issue prefetches at the same time.
980  // Then enter vectorized loop to actually collect the hits in proper order.
981 
982  //SK: ~20x1024 bin sizes give mostly 1 hit per bin. Commented out for 128 bins or less
983  // #pragma nounroll
984  auto pbi = L.phiQBinContent(pi, qi);
985  for (bcnt_t hi = pbi.begin(); hi < pbi.end(); ++hi) {
986  // MT: Access into m_hit_zs and m_hit_phis is 1% run-time each.
987 
988  const unsigned int hi_orig = L.getOriginalHitIndex(hi);
989 
990  if (m_iteration_hit_mask && (*m_iteration_hit_mask)[hi_orig]) {
991  dprintf(
992  "Yay, denying masked hit on layer %u, hi %u, orig idx %u\n", L.layer_info()->layer_id(), hi, hi_orig);
993  continue;
994  }
995 
996  if (m_XHitSize[itrack] >= MPlexHitIdxMax)
997  break;
998 
999  float new_q, new_phi, new_ddphi, new_ddq;
1000  bool prop_fail;
1001 
1002  if (L.is_barrel()) {
1003  prop_fail = mp_is.propagate_to_r(mp::PA_Exact, L.hit_qbar(hi), mp_s, true);
1004  new_q = mp_s.z;
1005  } else {
1006  prop_fail = mp_is.propagate_to_z(mp::PA_Exact, L.hit_qbar(hi), mp_s, true);
1007  new_q = std::hypot(mp_s.x, mp_s.y);
1008  }
1009 
1010  new_phi = vdt::fast_atan2f(mp_s.y, mp_s.x);
1011  new_ddphi = cdist(std::abs(new_phi - L.hit_phi(hi)));
1012  new_ddq = std::abs(new_q - L.hit_q(hi));
1013 
1014  bool dqdphi_presel = new_ddq < B.dq_track[itrack] + DDQ_PRESEL_FAC * L.hit_q_half_length(hi) &&
1015  new_ddphi < B.dphi_track[itrack] + DDPHI_PRESEL_FAC * 0.0123f;
1016 
1017  // clang-format off
1018  dprintf(" SHI %3u %4u %5u %6.3f %6.3f %6.4f %7.5f PROP-%s %s\n",
1019  qi, pi, hi, L.hit_q(hi), L.hit_phi(hi),
1020  ddq, ddphi, prop_fail ? "FAIL" : "OK", dqdphi_presel ? "PASS" : "REJECT");
1021  // clang-format on
1022 
1023  if (prop_fail || !dqdphi_presel)
1024  continue;
1025  if (pqueue_size < NEW_MAX_HIT) {
1026  pqueue.push({new_ddphi, hi_orig});
1027  ++pqueue_size;
1028  } else if (new_ddphi < pqueue.top().score) {
1029  pqueue.pop();
1030  pqueue.push({new_ddphi, hi_orig});
1031  }
1032  } //hi
1033  } //pi
1034  } //qi
1035 
1036  dprintf(" PQUEUE (%d)", pqueue_size);
1037  // Reverse hits so best dphis/scores come first in the hit-index list.
1038  m_XHitSize[itrack] = pqueue_size;
1039  while (pqueue_size) {
1040  --pqueue_size;
1041  m_XHitArr.At(itrack, pqueue_size, 0) = pqueue.top().hit_index;
1042  dprintf(" %d: %f %d", pqueue_size, pqueue.top().score, pqueue.top().hit_index);
1043  pqueue.pop();
1044  }
1045  dprintf("\n");
1046 
1047  } //itrack
1048  }
1049 
1050  //==============================================================================
1051  // AddBestHit - Best Hit Track Finding
1052  //==============================================================================
1053 
1054  void MkFinder::addBestHit(const LayerOfHits &layer_of_hits, const int N_proc, const FindingFoos &fnd_foos) {
1055  // debug = true;
1056 
1057  MatriplexHitPacker mhp(layer_of_hits.hitArray());
1058 
1059  float minChi2[NN];
1060  int bestHit[NN];
1061  int maxSize = 0;
1062 
1063  // Determine maximum number of hits for tracks in the collection.
1064  for (int it = 0; it < NN; ++it) {
1065  if (it < N_proc) {
1066  if (m_XHitSize[it] > 0) {
1068  }
1069  }
1070 
1071  bestHit[it] = -1;
1073  }
1074 
1075  for (int hit_cnt = 0; hit_cnt < maxSize; ++hit_cnt) {
1076  //fixme what if size is zero???
1077 
1078  mhp.reset();
1079 
1080  //#pragma omp simd doesn't vectorize with current compilers
1081  for (int itrack = 0; itrack < NN; ++itrack) {
1082  if (itrack < N_proc && hit_cnt < m_XHitSize[itrack]) {
1083  mhp.addInputAt(itrack, layer_of_hits.refHit(m_XHitArr.At(itrack, hit_cnt, 0)));
1084  }
1085  }
1086 
1087  mhp.pack(m_msErr, m_msPar);
1088 
1089  //now compute the chi2 of track state vs hit
1090  MPlexQF outChi2;
1091  MPlexLV tmpPropPar;
1092  clearFailFlag();
1093  (*fnd_foos.m_compute_chi2_foo)(m_Err[iP],
1094  m_Par[iP],
1095  m_Chg,
1096  m_msErr,
1097  m_msPar,
1098  outChi2,
1099  tmpPropPar,
1100  m_FailFlag,
1101  N_proc,
1104 
1105  //update best hit in case chi2<minChi2
1106 #pragma omp simd
1107  for (int itrack = 0; itrack < NN; ++itrack) {
1108  if (itrack < N_proc && hit_cnt < m_XHitSize[itrack]) {
1109  const float chi2 = std::abs(outChi2[itrack]); //fixme negative chi2 sometimes...
1110  dprint("chi2=" << chi2 << " minChi2[itrack]=" << minChi2[itrack]);
1111  if (chi2 < minChi2[itrack]) {
1112  minChi2[itrack] = chi2;
1113  bestHit[itrack] = m_XHitArr.At(itrack, hit_cnt, 0);
1114  }
1115  }
1116  }
1117  } // end loop over hits
1118 
1119  //#pragma omp simd
1120  for (int itrack = 0; itrack < NN; ++itrack) {
1121  if (itrack >= N_proc) {
1122  continue;
1123  }
1124 
1125  if (m_XWsrResult[itrack].m_wsr == WSR_Outside) {
1126  // Why am I doing this?
1127  m_msErr.setDiagonal3x3(itrack, 666);
1128  m_msPar(itrack, 0, 0) = m_Par[iP](itrack, 0, 0);
1129  m_msPar(itrack, 1, 0) = m_Par[iP](itrack, 1, 0);
1130  m_msPar(itrack, 2, 0) = m_Par[iP](itrack, 2, 0);
1131 
1132  // XXXX If not in gap, should get back the old track params. But they are gone ...
1133  // Would actually have to do it right after SelectHitIndices where updated params are still ok.
1134  // Here they got screwed during hit matching.
1135  // So, I'd store them there (into propagated params) and retrieve them here.
1136  // Or we decide not to care ...
1137 
1138  continue;
1139  }
1140 
1141  //fixme decide what to do in case no hit found
1142  if (bestHit[itrack] >= 0) {
1143  const Hit &hit = layer_of_hits.refHit(bestHit[itrack]);
1144  const float chi2 = minChi2[itrack];
1145 
1146  dprint("ADD BEST HIT FOR TRACK #"
1147  << itrack << std::endl
1148  << "prop x=" << m_Par[iP].constAt(itrack, 0, 0) << " y=" << m_Par[iP].constAt(itrack, 1, 0) << std::endl
1149  << "copy in hit #" << bestHit[itrack] << " x=" << hit.position()[0] << " y=" << hit.position()[1]);
1150 
1151  m_msErr.copyIn(itrack, hit.errArray());
1152  m_msPar.copyIn(itrack, hit.posArray());
1153  m_Chi2(itrack, 0, 0) += chi2;
1154 
1155  add_hit(itrack, bestHit[itrack], layer_of_hits.layer_id());
1156  } else {
1157  int fake_hit_idx = Hit::kHitMissIdx;
1158 
1159  if (m_XWsrResult[itrack].m_wsr == WSR_Edge) {
1160  // YYYYYY Config::store_missed_layers
1161  fake_hit_idx = Hit::kHitEdgeIdx;
1162  } else if (num_all_minus_one_hits(itrack)) {
1163  fake_hit_idx = Hit::kHitStopIdx;
1164  }
1165 
1166  dprint("ADD FAKE HIT FOR TRACK #" << itrack << " withinBounds=" << (fake_hit_idx != Hit::kHitEdgeIdx)
1167  << " r=" << std::hypot(m_Par[iP](itrack, 0, 0), m_Par[iP](itrack, 1, 0)));
1168 
1169  m_msErr.setDiagonal3x3(itrack, 666);
1170  m_msPar(itrack, 0, 0) = m_Par[iP](itrack, 0, 0);
1171  m_msPar(itrack, 1, 0) = m_Par[iP](itrack, 1, 0);
1172  m_msPar(itrack, 2, 0) = m_Par[iP](itrack, 2, 0);
1173  // Don't update chi2
1174 
1175  add_hit(itrack, fake_hit_idx, layer_of_hits.layer_id());
1176  }
1177  }
1178 
1179  // Update the track parameters with this hit. (Note that some calculations
1180  // are already done when computing chi2. Not sure it's worth caching them?)
1181 
1182  dprint("update parameters");
1183  clearFailFlag();
1184  (*fnd_foos.m_update_param_foo)(m_Err[iP],
1185  m_Par[iP],
1186  m_Chg,
1187  m_msErr,
1188  m_msPar,
1189  m_Err[iC],
1190  m_Par[iC],
1191  m_FailFlag,
1192  N_proc,
1195 
1196  dprint("m_Par[iP](0,0,0)=" << m_Par[iP](0, 0, 0) << " m_Par[iC](0,0,0)=" << m_Par[iC](0, 0, 0));
1197  }
1198 
1199  //=======================================================
1200  // isStripQCompatible : check if prop is consistent with the barrel/endcap strip length
1201  //=======================================================
1203  int itrack, bool isBarrel, const MPlexLS &pErr, const MPlexLV &pPar, const MPlexHS &msErr, const MPlexHV &msPar) {
1204  //check module compatibility via long strip side = L/sqrt(12)
1205  if (isBarrel) { //check z direction only
1206  const float res = std::abs(msPar.constAt(itrack, 2, 0) - pPar.constAt(itrack, 2, 0));
1207  const float hitHL = sqrt(msErr.constAt(itrack, 2, 2) * 3.f); //half-length
1208  const float qErr = sqrt(pErr.constAt(itrack, 2, 2));
1209  dprint("qCompat " << hitHL << " + " << 3.f * qErr << " vs " << res);
1210  return hitHL + std::max(3.f * qErr, 0.5f) > res;
1211  } else { //project on xy, assuming the strip Length >> Width
1212  const float res[2]{msPar.constAt(itrack, 0, 0) - pPar.constAt(itrack, 0, 0),
1213  msPar.constAt(itrack, 1, 0) - pPar.constAt(itrack, 1, 0)};
1214  const float hitT2 = msErr.constAt(itrack, 0, 0) + msErr.constAt(itrack, 1, 1);
1215  const float hitT2inv = 1.f / hitT2;
1216  const float proj[3] = {msErr.constAt(itrack, 0, 0) * hitT2inv,
1217  msErr.constAt(itrack, 0, 1) * hitT2inv,
1218  msErr.constAt(itrack, 1, 1) * hitT2inv};
1219  const float qErr =
1220  sqrt(std::abs(pErr.constAt(itrack, 0, 0) * proj[0] + 2.f * pErr.constAt(itrack, 0, 1) * proj[1] +
1221  pErr.constAt(itrack, 1, 1) * proj[2])); //take abs to avoid non-pos-def cases
1222  const float resProj =
1223  sqrt(res[0] * proj[0] * res[0] + 2.f * res[1] * proj[1] * res[0] + res[1] * proj[2] * res[1]);
1224  dprint("qCompat " << sqrt(hitT2 * 3.f) << " + " << 3.f * qErr << " vs " << resProj);
1225  return sqrt(hitT2 * 3.f) + std::max(3.f * qErr, 0.5f) > resProj;
1226  }
1227  }
1228 
1229  //=======================================================
1230  // passStripChargePCMfromTrack : apply the slope correction to charge per cm and cut using hit err matrix
1231  // the raw pcm = charge/L_normal
1232  // the corrected qCorr = charge/L_path = charge/(L_normal*p/p_zLocal) = pcm*p_zLocal/p
1233  //=======================================================
1235  int itrack, bool isBarrel, unsigned int pcm, unsigned int pcmMin, const MPlexLV &pPar, const MPlexHS &msErr) {
1236  //skip the overflow case
1237  if (pcm >= Hit::maxChargePerCM())
1238  return true;
1239 
1240  float qSF;
1241  if (isBarrel) { //project in x,y, assuming zero-error direction is in this plane
1242  const float hitT2 = msErr.constAt(itrack, 0, 0) + msErr.constAt(itrack, 1, 1);
1243  const float hitT2inv = 1.f / hitT2;
1244  const float proj[3] = {msErr.constAt(itrack, 0, 0) * hitT2inv,
1245  msErr.constAt(itrack, 0, 1) * hitT2inv,
1246  msErr.constAt(itrack, 1, 1) * hitT2inv};
1247  const bool detXY_OK =
1248  std::abs(proj[0] * proj[2] - proj[1] * proj[1]) < 0.1f; //check that zero-direction is close
1249  const float cosP = cos(pPar.constAt(itrack, 4, 0));
1250  const float sinP = sin(pPar.constAt(itrack, 4, 0));
1251  const float sinT = std::abs(sin(pPar.constAt(itrack, 5, 0)));
1252  //qSF = sqrt[(px,py)*(1-proj)*(px,py)]/p = sinT*sqrt[(cosP,sinP)*(1-proj)*(cosP,sinP)].
1253  qSF = detXY_OK ? sinT * std::sqrt(std::abs(1.f + cosP * cosP * proj[0] + sinP * sinP * proj[2] -
1254  2.f * cosP * sinP * proj[1]))
1255  : 1.f;
1256  } else { //project on z
1257  // p_zLocal/p = p_z/p = cosT
1258  qSF = std::abs(cos(pPar.constAt(itrack, 5, 0)));
1259  }
1260 
1261  const float qCorr = pcm * qSF;
1262  dprint("pcm " << pcm << " * " << qSF << " = " << qCorr << " vs " << pcmMin);
1263  return qCorr > pcmMin;
1264  }
1265 
1266  //==============================================================================
1267  // FindCandidates - Standard Track Finding
1268  //==============================================================================
1269 
1270  void MkFinder::findCandidates(const LayerOfHits &layer_of_hits,
1271  std::vector<std::vector<TrackCand>> &tmp_candidates,
1272  const int offset,
1273  const int N_proc,
1274  const FindingFoos &fnd_foos) {
1275  // bool debug = true;
1276 
1277  MatriplexHitPacker mhp(layer_of_hits.hitArray());
1278 
1279  int maxSize = 0;
1280 
1281  // Determine maximum number of hits for tracks in the collection.
1282  for (int it = 0; it < NN; ++it) {
1283  if (it < N_proc) {
1284  if (m_XHitSize[it] > 0) {
1286  }
1287  }
1288  }
1289 
1290  dprintf("FindCandidates max hits to process=%d\n", maxSize);
1291 
1292  int nHitsAdded[NN]{};
1293  bool isTooLargeCluster[NN]{false};
1294 
1295  for (int hit_cnt = 0; hit_cnt < maxSize; ++hit_cnt) {
1296  mhp.reset();
1297 
1298  int charge_pcm[NN];
1299 
1300  //#pragma omp simd doesn't vectorize with current compilers
1301  for (int itrack = 0; itrack < NN; ++itrack) {
1302  if (itrack < N_proc && hit_cnt < m_XHitSize[itrack]) {
1303  const auto &hit = layer_of_hits.refHit(m_XHitArr.At(itrack, hit_cnt, 0));
1304  mhp.addInputAt(itrack, hit);
1305  charge_pcm[itrack] = hit.chargePerCM();
1306  }
1307  }
1308 
1309  mhp.pack(m_msErr, m_msPar);
1310 
1311  //now compute the chi2 of track state vs hit
1312  MPlexQF outChi2;
1313  MPlexLV propPar;
1314  clearFailFlag();
1315 
1317  // Maybe could use 2 matriplex packers ... ModuleInfo has 3 * SVector3 and uint
1318  MPlexHV norm, dir;
1319  packModuleNormDir(layer_of_hits, hit_cnt, norm, dir, N_proc);
1321  m_Par[iP],
1322  m_Chg,
1323  m_msErr,
1324  m_msPar,
1325  norm,
1326  dir,
1327  outChi2,
1328  propPar,
1329  m_FailFlag,
1330  N_proc,
1333  } else {
1334  (*fnd_foos.m_compute_chi2_foo)(m_Err[iP],
1335  m_Par[iP],
1336  m_Chg,
1337  m_msErr,
1338  m_msPar,
1339  outChi2,
1340  propPar,
1341  m_FailFlag,
1342  N_proc,
1345  }
1346 
1347  // Now update the track parameters with this hit (note that some
1348  // calculations are already done when computing chi2, to be optimized).
1349  // 1. This is not needed for candidates the hit is not added to, but it's
1350  // vectorized so doing it serially below should take the same time.
1351  // 2. Still it's a waste of time in case the hit is not added to any of the
1352  // candidates, so check beforehand that at least one cand needs update.
1353  bool oneCandPassCut = false;
1354  for (int itrack = 0; itrack < NN; ++itrack) {
1355  if (itrack >= N_proc) {
1356  continue;
1357  }
1358  float max_c2 = getHitSelDynamicChi2Cut(itrack, iP);
1359 
1360  if (hit_cnt < m_XHitSize[itrack]) {
1361  const float chi2 = std::abs(outChi2[itrack]); //fixme negative chi2 sometimes...
1362  dprint("chi2=" << chi2);
1363  if (chi2 < max_c2) {
1364  bool isCompatible = true;
1365  if (!layer_of_hits.is_pixel()) {
1366  //check module compatibility via long strip side = L/sqrt(12)
1367  isCompatible =
1368  isStripQCompatible(itrack, layer_of_hits.is_barrel(), m_Err[iP], propPar, m_msErr, m_msPar);
1369 
1370  //rescale strip charge to track parameters and reapply the cut
1371  isCompatible &= passStripChargePCMfromTrack(
1372  itrack, layer_of_hits.is_barrel(), charge_pcm[itrack], Hit::minChargePerCM(), propPar, m_msErr);
1373  }
1374  // Select only SiStrip hits with cluster size < maxClusterSize
1375  if (!layer_of_hits.is_pixel()) {
1376  if (layer_of_hits.refHit(m_XHitArr.At(itrack, hit_cnt, 0)).spanRows() >=
1378  isTooLargeCluster[itrack] = true;
1379  isCompatible = false;
1380  }
1381  }
1382 
1383  if (isCompatible) {
1384  oneCandPassCut = true;
1385  break;
1386  }
1387  }
1388  }
1389  }
1390 
1391  if (oneCandPassCut) {
1392  MPlexQI tmpChg = m_Chg;
1393  clearFailFlag();
1394  (*fnd_foos.m_update_param_foo)(m_Err[iP],
1395  m_Par[iP],
1396  tmpChg,
1397  m_msErr,
1398  m_msPar,
1399  m_Err[iC],
1400  m_Par[iC],
1401  m_FailFlag,
1402  N_proc,
1405 
1406  dprint("update parameters" << std::endl
1407  << "propagated track parameters x=" << m_Par[iP].constAt(0, 0, 0)
1408  << " y=" << m_Par[iP].constAt(0, 1, 0) << std::endl
1409  << " hit position x=" << m_msPar.constAt(0, 0, 0)
1410  << " y=" << m_msPar.constAt(0, 1, 0) << std::endl
1411  << " updated track parameters x=" << m_Par[iC].constAt(0, 0, 0)
1412  << " y=" << m_Par[iC].constAt(0, 1, 0));
1413 
1414  //create candidate with hit in case chi2 < max_c2
1415  //fixme: please vectorize me... (not sure it's possible in this case)
1416  for (int itrack = 0; itrack < NN; ++itrack) {
1417  if (itrack < N_proc && hit_cnt < m_XHitSize[itrack]) {
1418  const float max_c2 = getHitSelDynamicChi2Cut(itrack, iP);
1419  const float chi2 = std::abs(outChi2[itrack]); //fixme negative chi2 sometimes...
1420  dprint("chi2=" << chi2);
1421  if (chi2 < max_c2) {
1422  bool isCompatible = true;
1423  if (!layer_of_hits.is_pixel()) {
1424  //check module compatibility via long strip side = L/sqrt(12)
1425  isCompatible =
1426  isStripQCompatible(itrack, layer_of_hits.is_barrel(), m_Err[iP], propPar, m_msErr, m_msPar);
1427 
1428  //rescale strip charge to track parameters and reapply the cut
1429  isCompatible &= passStripChargePCMfromTrack(
1430  itrack, layer_of_hits.is_barrel(), charge_pcm[itrack], Hit::minChargePerCM(), propPar, m_msErr);
1431  }
1432  // Select only SiStrip hits with cluster size < maxClusterSize
1433  if (!layer_of_hits.is_pixel()) {
1434  if (layer_of_hits.refHit(m_XHitArr.At(itrack, hit_cnt, 0)).spanRows() >=
1436  isCompatible = false;
1437  }
1438 
1439  if (isCompatible) {
1440  bool hitExists = false;
1441  int maxHits = m_NFoundHits(itrack, 0, 0);
1442  if (layer_of_hits.is_pixel()) {
1443  for (int i = 0; i <= maxHits; ++i) {
1444  if (i > 2)
1445  break;
1446  if (m_HoTArrs[itrack][i].layer == layer_of_hits.layer_id()) {
1447  hitExists = true;
1448  break;
1449  }
1450  }
1451  }
1452  if (hitExists)
1453  continue;
1454 
1455  nHitsAdded[itrack]++;
1456  dprint("chi2 cut passed, creating new candidate");
1457  // Create a new candidate and fill the tmp_candidates output vector.
1458  // QQQ only instantiate if it will pass, be better than N_best
1459 
1460  const int hit_idx = m_XHitArr.At(itrack, hit_cnt, 0);
1461 
1462  TrackCand newcand;
1463  copy_out(newcand, itrack, iC);
1464  newcand.setCharge(tmpChg(itrack, 0, 0));
1465  newcand.addHitIdx(hit_idx, layer_of_hits.layer_id(), chi2);
1467  newcand,
1468  true /*penalizeTailMissHits*/,
1469  true /*inFindCandidates*/));
1470  newcand.setOriginIndex(m_CandIdx(itrack, 0, 0));
1471 
1472  // To apply a fixed cut instead of dynamic cut for overlap: m_iteration_params->chi2CutOverlap
1473  if (chi2 < max_c2) {
1474  CombCandidate &ccand = *newcand.combCandidate();
1475  ccand[m_CandIdx(itrack, 0, 0)].considerHitForOverlap(
1476  hit_idx, layer_of_hits.refHit(hit_idx).detIDinLayer(), chi2);
1477  }
1478 
1479  dprint("updated track parameters x=" << newcand.parameters()[0] << " y=" << newcand.parameters()[1]
1480  << " z=" << newcand.parameters()[2]
1481  << " pt=" << 1. / newcand.parameters()[3]);
1482 
1483  tmp_candidates[m_SeedIdx(itrack, 0, 0) - offset].emplace_back(newcand);
1484  }
1485  }
1486  }
1487  }
1488  } //end if (oneCandPassCut)
1489 
1490  } //end loop over hits
1491 
1492  //now add invalid hit
1493  //fixme: please vectorize me...
1494  for (int itrack = 0; itrack < NN; ++itrack) {
1495  // Cands that miss the layer are stashed away in MkBuilder(), before propagation,
1496  // and then merged back afterwards.
1497  if (itrack >= N_proc || m_XWsrResult[itrack].m_wsr == WSR_Outside) {
1498  continue;
1499  }
1500 
1501  int fake_hit_idx = ((num_all_minus_one_hits(itrack) < m_iteration_params->maxHolesPerCand) &&
1504  : Hit::kHitStopIdx;
1505 
1506  if (m_XWsrResult[itrack].m_wsr == WSR_Edge) {
1507  // YYYYYY m_iteration_params->store_missed_layers
1508  fake_hit_idx = Hit::kHitEdgeIdx;
1509  }
1510  //now add fake hit for tracks that passsed through inactive modules
1511  else if (m_XWsrResult[itrack].m_in_gap == true && nHitsAdded[itrack] == 0) {
1512  fake_hit_idx = Hit::kHitInGapIdx;
1513  }
1514  //now add fake hit for cases where hit cluster size is larger than maxClusterSize
1515  else if (isTooLargeCluster[itrack] == true && nHitsAdded[itrack] == 0) {
1516  fake_hit_idx = Hit::kHitMaxClusterIdx;
1517  }
1518 
1519  dprint("ADD FAKE HIT FOR TRACK #" << itrack << " withinBounds=" << (fake_hit_idx != Hit::kHitEdgeIdx)
1520  << " r=" << std::hypot(m_Par[iP](itrack, 0, 0), m_Par[iP](itrack, 1, 0)));
1521 
1522  // QQQ as above, only create and add if score better
1523  TrackCand newcand;
1524  copy_out(newcand, itrack, iP);
1525  newcand.addHitIdx(fake_hit_idx, layer_of_hits.layer_id(), 0.);
1526  newcand.setScore(getScoreCand(
1527  m_steering_params->m_track_scorer, newcand, true /*penalizeTailMissHits*/, true /*inFindCandidates*/));
1528  // Only relevant when we actually add a hit
1529  // newcand.setOriginIndex(m_CandIdx(itrack, 0, 0));
1530  tmp_candidates[m_SeedIdx(itrack, 0, 0) - offset].emplace_back(newcand);
1531  }
1532  }
1533 
1534  //==============================================================================
1535  // FindCandidatesCloneEngine - Clone Engine Track Finding
1536  //==============================================================================
1537 
1539  CandCloner &cloner,
1540  const int offset,
1541  const int N_proc,
1542  const FindingFoos &fnd_foos) {
1543  // bool debug = true;
1544 
1545  MatriplexHitPacker mhp(layer_of_hits.hitArray());
1546 
1547  int maxSize = 0;
1548 
1549  // Determine maximum number of hits for tracks in the collection.
1550 #pragma omp simd
1551  for (int it = 0; it < NN; ++it) {
1552  if (it < N_proc) {
1553  if (m_XHitSize[it] > 0) {
1555  }
1556  }
1557  }
1558 
1559  dprintf("FindCandidatesCloneEngine max hits to process=%d\n", maxSize);
1560 
1561  int nHitsAdded[NN]{};
1562  bool isTooLargeCluster[NN]{false};
1563 
1564  for (int hit_cnt = 0; hit_cnt < maxSize; ++hit_cnt) {
1565  mhp.reset();
1566 
1567  int charge_pcm[NN];
1568 
1569  //#pragma omp simd doesn't vectorize with current compilers
1570  for (int itrack = 0; itrack < NN; ++itrack) {
1571  if (itrack < N_proc && hit_cnt < m_XHitSize[itrack]) {
1572  const auto &hit = layer_of_hits.refHit(m_XHitArr.At(itrack, hit_cnt, 0));
1573  mhp.addInputAt(itrack, hit);
1574  charge_pcm[itrack] = hit.chargePerCM();
1575  }
1576  }
1577 
1578  mhp.pack(m_msErr, m_msPar);
1579 
1580  //now compute the chi2 of track state vs hit
1581  MPlexQF outChi2;
1582  MPlexLV propPar;
1583  clearFailFlag();
1584 
1586  // Maybe could use 2 matriplex packers ... ModuleInfo has 3 * SVector3 and uint
1587  MPlexHV norm, dir;
1588  packModuleNormDir(layer_of_hits, hit_cnt, norm, dir, N_proc);
1590  m_Par[iP],
1591  m_Chg,
1592  m_msErr,
1593  m_msPar,
1594  norm,
1595  dir,
1596  outChi2,
1597  propPar,
1598  m_FailFlag,
1599  N_proc,
1602  } else {
1603  (*fnd_foos.m_compute_chi2_foo)(m_Err[iP],
1604  m_Par[iP],
1605  m_Chg,
1606  m_msErr,
1607  m_msPar,
1608  outChi2,
1609  propPar,
1610  m_FailFlag,
1611  N_proc,
1614  }
1615 
1616  //#pragma omp simd // DOES NOT VECTORIZE AS IT IS NOW
1617  for (int itrack = 0; itrack < NN; ++itrack) {
1618  // We can be in failed state from the initial propagation before selectHitIndices
1619  // and there hit_count for track is set to -1 and WSR state to Failed, handled below.
1620  // Or we might have hit it here in propagate-to-hit.
1621  // PROP-FAIL-ENABLE FailFlag check to be enabled when propagation failure
1622  // detection is properly implemented in propagate-to-R/Z.
1623  if ( itrack < N_proc && hit_cnt < m_XHitSize[itrack]) {
1624  // make sure the hit was in the compatiblity window for the candidate
1625  const float max_c2 = getHitSelDynamicChi2Cut(itrack, iP);
1626  const float chi2 = std::abs(outChi2[itrack]); //fixme negative chi2 sometimes...
1627  // XXX-NUM-ERR assert(chi2 >= 0);
1628 
1629  dprint("chi2=" << chi2 << " for trkIdx=" << itrack << " hitIdx=" << m_XHitArr.At(itrack, hit_cnt, 0));
1630  if (chi2 < max_c2) {
1631  bool isCompatible = true;
1632  if (!layer_of_hits.is_pixel()) {
1633  //check module compatibility via long strip side = L/sqrt(12)
1634  isCompatible =
1635  isStripQCompatible(itrack, layer_of_hits.is_barrel(), m_Err[iP], propPar, m_msErr, m_msPar);
1636 
1637  //rescale strip charge to track parameters and reapply the cut
1638  isCompatible &= passStripChargePCMfromTrack(
1639  itrack, layer_of_hits.is_barrel(), charge_pcm[itrack], Hit::minChargePerCM(), propPar, m_msErr);
1640  }
1641 
1642  // Select only SiStrip hits with cluster size < maxClusterSize
1643  if (!layer_of_hits.is_pixel()) {
1644  if (layer_of_hits.refHit(m_XHitArr.At(itrack, hit_cnt, 0)).spanRows() >=
1646  isTooLargeCluster[itrack] = true;
1647  isCompatible = false;
1648  }
1649  }
1650 
1651  if (isCompatible) {
1652  CombCandidate &ccand = cloner.combCandWithOriginalIndex(m_SeedIdx(itrack, 0, 0));
1653  bool hitExists = false;
1654  int maxHits = m_NFoundHits(itrack, 0, 0);
1655  if (layer_of_hits.is_pixel()) {
1656  for (int i = 0; i <= maxHits; ++i) {
1657  if (i > 2)
1658  break;
1659  if (ccand.hot(i).layer == layer_of_hits.layer_id()) {
1660  hitExists = true;
1661  break;
1662  }
1663  }
1664  }
1665  if (hitExists)
1666  continue;
1667 
1668  nHitsAdded[itrack]++;
1669  const int hit_idx = m_XHitArr.At(itrack, hit_cnt, 0);
1670 
1671  // Register hit for overlap consideration, if chi2 cut is passed
1672  // To apply a fixed cut instead of dynamic cut for overlap: m_iteration_params->chi2CutOverlap
1673  if (chi2 < max_c2) {
1674  ccand[m_CandIdx(itrack, 0, 0)].considerHitForOverlap(
1675  hit_idx, layer_of_hits.refHit(hit_idx).detIDinLayer(), chi2);
1676  }
1677 
1678  IdxChi2List tmpList;
1679  tmpList.trkIdx = m_CandIdx(itrack, 0, 0);
1680  tmpList.hitIdx = hit_idx;
1681  tmpList.module = layer_of_hits.refHit(hit_idx).detIDinLayer();
1682  tmpList.nhits = m_NFoundHits(itrack, 0, 0) + 1;
1683  tmpList.ntailholes = 0;
1684  tmpList.noverlaps = m_NOverlapHits(itrack, 0, 0);
1685  tmpList.nholes = num_all_minus_one_hits(itrack);
1686  tmpList.pt = std::abs(1.0f / m_Par[iP].At(itrack, 3, 0));
1687  tmpList.chi2 = m_Chi2(itrack, 0, 0) + chi2;
1688  tmpList.chi2_hit = chi2;
1690  cloner.add_cand(m_SeedIdx(itrack, 0, 0) - offset, tmpList);
1691 
1692  dprint(" adding hit with hit_cnt=" << hit_cnt << " for trkIdx=" << tmpList.trkIdx
1693  << " orig Seed=" << m_Label(itrack, 0, 0));
1694  }
1695  }
1696  }
1697  }
1698 
1699  } //end loop over hits
1700 
1701  //now add invalid hit
1702  for (int itrack = 0; itrack < NN; ++itrack) {
1703  dprint("num_all_minus_one_hits(" << itrack << ")=" << num_all_minus_one_hits(itrack));
1704 
1705  // Cands that miss the layer are stashed away in MkBuilder(), before propagation,
1706  // and then merged back afterwards.
1707  if (itrack >= N_proc || m_XWsrResult[itrack].m_wsr == WSR_Outside) {
1708  continue;
1709  }
1710 
1711  // int fake_hit_idx = num_all_minus_one_hits(itrack) < m_iteration_params->maxHolesPerCand ? -1 : -2;
1712  int fake_hit_idx = ((num_all_minus_one_hits(itrack) < m_iteration_params->maxHolesPerCand) &&
1715  : Hit::kHitStopIdx;
1716 
1717  if (m_XWsrResult[itrack].m_wsr == WSR_Edge) {
1718  fake_hit_idx = Hit::kHitEdgeIdx;
1719  }
1720  //now add fake hit for tracks that passsed through inactive modules
1721  else if (m_XWsrResult[itrack].m_in_gap == true && nHitsAdded[itrack] == 0) {
1722  fake_hit_idx = Hit::kHitInGapIdx;
1723  }
1724  //now add fake hit for cases where hit cluster size is larger than maxClusterSize
1725  else if (isTooLargeCluster[itrack] == true && nHitsAdded[itrack] == 0) {
1726  fake_hit_idx = Hit::kHitMaxClusterIdx;
1727  }
1728 
1729  // PROP-FAIL-ENABLE The following to be enabled when propagation failure
1730  // detection is properly implemented in propagate-to-R/Z.
1731  // // Override for failed propagation, this trumps all other cases.
1732  // if (m_XWsrResult[itrack].m_wsr == WSR_Failed) {
1733  // fake_hit_idx = Hit::kHitStopIdx;
1734  // }
1735 
1736  IdxChi2List tmpList;
1737  tmpList.trkIdx = m_CandIdx(itrack, 0, 0);
1738  tmpList.hitIdx = fake_hit_idx;
1739  tmpList.module = -1;
1740  tmpList.nhits = m_NFoundHits(itrack, 0, 0);
1741  tmpList.ntailholes = (fake_hit_idx == Hit::kHitMissIdx ? m_NTailMinusOneHits(itrack, 0, 0) + 1
1742  : m_NTailMinusOneHits(itrack, 0, 0));
1743  tmpList.noverlaps = m_NOverlapHits(itrack, 0, 0);
1744  tmpList.nholes = num_inside_minus_one_hits(itrack);
1745  tmpList.pt = std::abs(1.0f / m_Par[iP].At(itrack, 3, 0));
1746  tmpList.chi2 = m_Chi2(itrack, 0, 0);
1747  tmpList.chi2_hit = 0;
1749  cloner.add_cand(m_SeedIdx(itrack, 0, 0) - offset, tmpList);
1750  dprint("adding invalid hit " << fake_hit_idx);
1751  }
1752  }
1753 
1754  //==============================================================================
1755  // UpdateWithLoadedHit
1756  //==============================================================================
1757 
1758  void MkFinder::updateWithLoadedHit(int N_proc, const LayerOfHits &layer_of_hits, const FindingFoos &fnd_foos) {
1759  // See comment in MkBuilder::find_tracks_in_layer() about intra / inter flags used here
1760  // for propagation to the hit.
1761  clearFailFlag();
1763  MPlexHV norm, dir;
1764  packModuleNormDir(layer_of_hits, 0, norm, dir, N_proc);
1766  m_Par[iP],
1767  m_Chg,
1768  m_msErr,
1769  m_msPar,
1770  norm,
1771  dir,
1772  m_Err[iC],
1773  m_Par[iC],
1774  m_FailFlag,
1775  N_proc,
1778  } else {
1779  (*fnd_foos.m_update_param_foo)(m_Err[iP],
1780  m_Par[iP],
1781  m_Chg,
1782  m_msErr,
1783  m_msPar,
1784  m_Err[iC],
1785  m_Par[iC],
1786  m_FailFlag,
1787  N_proc,
1790  }
1791 
1792  // PROP-FAIL-ENABLE The following to be enabled when propagation failure
1793  // detection is properly implemented in propagate-to-R/Z.
1794  // for (int i = 0; i < N_proc; ++i) {
1795  // if (m_FailFlag[i]) {
1796  // dprintf("MkFinder::updateWithLoadedHit fail in update, recovering.\n");
1797  // m_Err[iC].copySlot(i, m_Err[iP]);
1798  // m_Par[iC].copySlot(i, m_Par[iP]);
1799  // }
1800  // }
1801  }
1802 
1803  void MkFinder::chi2OfLoadedHit(int N_proc, const FindingFoos &fnd_foos) {
1804  // We expect input in iC slots from above function.
1805  // See comment in MkBuilder::find_tracks_in_layer() about intra / inter flags used here
1806  // for propagation to the hit.
1807  clearFailFlag();
1808  (*fnd_foos.m_compute_chi2_foo)(m_Err[iC],
1809  m_Par[iC],
1810  m_Chg,
1811  m_msErr,
1812  m_msPar,
1813  m_Chi2,
1814  m_Par[iP],
1815  m_FailFlag,
1816  N_proc,
1819 
1820  // PROP-FAIL-ENABLE .... removed here
1821  }
1822 
1823  //==============================================================================
1824  // CopyOutParErr
1825  //==============================================================================
1826 
1827  void MkFinder::copyOutParErr(std::vector<CombCandidate> &seed_cand_vec, int N_proc, bool outputProp) const {
1828  const int iO = outputProp ? iP : iC;
1829 
1830  for (int i = 0; i < NN; ++i) {
1831  if (i < N_proc) {
1832  TrackCand &cand = seed_cand_vec[m_SeedIdx(i, 0, 0)][m_CandIdx(i, 0, 0)];
1833 
1834  // Set the track state to the updated parameters
1835  m_Err[iO].copyOut(i, cand.errors_nc().Array());
1836  m_Par[iO].copyOut(i, cand.parameters_nc().Array());
1837  cand.setCharge(m_Chg(i, 0, 0));
1838 
1839  dprint((outputProp ? "propagated" : "updated")
1840  << " track parameters x=" << cand.parameters()[0] << " y=" << cand.parameters()[1]
1841  << " z=" << cand.parameters()[2] << " pt=" << 1. / cand.parameters()[3] << " posEta=" << cand.posEta());
1842  }
1843  }
1844  }
1845 
1846  //==============================================================================
1847  // Backward Fit hack
1848  //==============================================================================
1849 
1850  void MkFinder::bkFitInputTracks(TrackVec &cands, int beg, int end) {
1851  // Uses HitOnTrack vector from Track directly + a local cursor array to current hit.
1852 
1853  MatriplexTrackPacker mtp(&cands[beg]);
1854 
1855  int itrack = 0;
1856 
1857  for (int i = beg; i < end; ++i, ++itrack) {
1858  const Track &trk = cands[i];
1859 
1860  m_Chg(itrack, 0, 0) = trk.charge();
1861  m_CurHit[itrack] = trk.nTotalHits() - 1;
1862  m_HoTArr[itrack] = trk.getHitsOnTrackArray();
1863 
1864  mtp.addInput(trk);
1865  }
1866 
1867  m_Chi2.setVal(0);
1868 
1869  mtp.pack(m_Err[iC], m_Par[iC]);
1870 
1871  m_Err[iC].scale(100.0f);
1872  }
1873 
1874  void MkFinder::bkFitInputTracks(EventOfCombCandidates &eocss, int beg, int end) {
1875  // Could as well use HotArrays from tracks directly + a local cursor array to last hit.
1876 
1877  // XXXX - shall we assume only TrackCand-zero is needed and that we can freely
1878  // bork the HoTNode array?
1879 
1880  MatriplexTrackPacker mtp(&eocss[beg][0]);
1881 
1882  int itrack = 0;
1883 
1884  for (int i = beg; i < end; ++i, ++itrack) {
1885  const TrackCand &trk = eocss[i][0];
1886 
1887  m_Chg(itrack, 0, 0) = trk.charge();
1888  m_CurNode[itrack] = trk.lastCcIndex();
1889  m_HoTNodeArr[itrack] = trk.combCandidate()->hotsData();
1890 
1891  // XXXX Need TrackCand* to update num-hits. Unless I collect info elsewhere
1892  // and fix it in BkFitOutputTracks.
1893  m_TrkCand[itrack] = &eocss[i][0];
1894 
1895  mtp.addInput(trk);
1896  }
1897 
1898  m_Chi2.setVal(0);
1899 
1900  mtp.pack(m_Err[iC], m_Par[iC]);
1901 
1902  m_Err[iC].scale(100.0f);
1903  }
1904 
1905  //------------------------------------------------------------------------------
1906 
1907  void MkFinder::bkFitOutputTracks(TrackVec &cands, int beg, int end, bool outputProp) {
1908  // Only copy out track params / errors / chi2, all the rest is ok.
1909 
1910  const int iO = outputProp ? iP : iC;
1911 
1912  int itrack = 0;
1913  for (int i = beg; i < end; ++i, ++itrack) {
1914  Track &trk = cands[i];
1915 
1916  m_Err[iO].copyOut(itrack, trk.errors_nc().Array());
1917  m_Par[iO].copyOut(itrack, trk.parameters_nc().Array());
1918 
1919  trk.setChi2(m_Chi2(itrack, 0, 0));
1920  if (isFinite(trk.chi2())) {
1922  }
1923  }
1924  }
1925 
1926  void MkFinder::bkFitOutputTracks(EventOfCombCandidates &eocss, int beg, int end, bool outputProp) {
1927  // Only copy out track params / errors / chi2, all the rest is ok.
1928 
1929  // XXXX - where will rejected hits get removed?
1930 
1931  const int iO = outputProp ? iP : iC;
1932 
1933  int itrack = 0;
1934  for (int i = beg; i < end; ++i, ++itrack) {
1935  TrackCand &trk = eocss[i][0];
1936 
1937  m_Err[iO].copyOut(itrack, trk.errors_nc().Array());
1938  m_Par[iO].copyOut(itrack, trk.parameters_nc().Array());
1939 
1940  trk.setChi2(m_Chi2(itrack, 0, 0));
1941  if (isFinite(trk.chi2())) {
1943  }
1944  }
1945  }
1946 
1947  //------------------------------------------------------------------------------
1948 
1949 #if defined(DEBUG_BACKWARD_FIT) || defined(DEBUG_BACKWARD_FIT_BH)
1950  namespace {
1951  float e2s(float x) { return 1e4 * std::sqrt(x); }
1952  } // namespace
1953 #endif
1954 
1955  void MkFinder::bkFitFitTracksBH(const EventOfHits &eventofhits,
1956  const SteeringParams &st_par,
1957  const int N_proc,
1958  bool chiDebug) {
1959  // Prototyping final backward fit.
1960  // This works with track-finding indices, before remapping.
1961  //
1962  // Layers should be collected during track finding and list all layers that have actual hits.
1963  // Then we could avoid checking which layers actually do have hits.
1964 
1965  MPlexQF tmp_chi2;
1966  float tmp_err[6] = {666, 0, 666, 0, 0, 666};
1967  float tmp_pos[3];
1968 
1969  for (auto lp_iter = st_par.m_layer_plan.rbegin(); lp_iter != st_par.m_layer_plan.rend(); ++lp_iter) {
1970  const int layer = lp_iter->m_layer;
1971 
1972  const LayerOfHits &L = eventofhits[layer];
1973  const LayerInfo &LI = *L.layer_info();
1974 
1975  int count = 0;
1976  for (int i = 0; i < N_proc; ++i) {
1977  while (m_CurHit[i] >= 0 && m_HoTArr[i][m_CurHit[i]].index < 0)
1978  --m_CurHit[i];
1979 
1980  if (m_CurHit[i] >= 0 && m_HoTArr[i][m_CurHit[i]].layer == layer) {
1981  // Skip the overlap hits -- if they exist.
1982  // 1. Overlap hit gets placed *after* the original hit in TrackCand::exportTrack()
1983  // which is *before* in the reverse iteration that we are doing here.
1984  // 2. Seed-hit merging can result in more than two hits per layer.
1985  while (m_CurHit[i] > 0 && m_HoTArr[i][m_CurHit[i] - 1].layer == layer)
1986  --m_CurHit[i];
1987 
1988  const Hit &hit = L.refHit(m_HoTArr[i][m_CurHit[i]].index);
1989  m_msErr.copyIn(i, hit.errArray());
1990  m_msPar.copyIn(i, hit.posArray());
1991  ++count;
1992  --m_CurHit[i];
1993  } else {
1994  tmp_pos[0] = m_Par[iC](i, 0, 0);
1995  tmp_pos[1] = m_Par[iC](i, 1, 0);
1996  tmp_pos[2] = m_Par[iC](i, 2, 0);
1997  m_msErr.copyIn(i, tmp_err);
1998  m_msPar.copyIn(i, tmp_pos);
1999  }
2000  }
2001 
2002  if (count == 0)
2003  continue;
2004 
2005  // ZZZ Could add missing hits here, only if there are any actual matches.
2006 
2007  if (LI.is_barrel()) {
2009 
2011  m_Err[iP],
2012  m_Par[iP],
2013  m_msErr,
2014  m_msPar,
2015  m_Err[iC],
2016  m_Par[iC],
2017  tmp_chi2,
2018  N_proc);
2019  } else {
2021 
2023  m_Err[iP],
2024  m_Par[iP],
2025  m_msErr,
2026  m_msPar,
2027  m_Err[iC],
2028  m_Par[iC],
2029  tmp_chi2,
2030  N_proc);
2031  }
2032 
2033  //fixup invpt sign and charge
2034  for (int n = 0; n < NN; ++n) {
2035  if (n < N_proc && m_Par[iC].At(n, 3, 0) < 0) {
2036  m_Chg.At(n, 0, 0) = -m_Chg.At(n, 0, 0);
2037  m_Par[iC].At(n, 3, 0) = -m_Par[iC].At(n, 3, 0);
2038  }
2039  }
2040 
2041 #ifdef DEBUG_BACKWARD_FIT_BH
2042  // Dump per hit chi2
2043  for (int i = 0; i < N_proc; ++i) {
2044  float r_h = std::hypot(m_msPar.At(i, 0, 0), m_msPar.At(i, 1, 0));
2045  float r_t = std::hypot(m_Par[iC].At(i, 0, 0), m_Par[iC].At(i, 1, 0));
2046 
2047  // if ((std::isnan(tmp_chi2[i]) || std::isnan(r_t)))
2048  // if ( ! std::isnan(tmp_chi2[i]) && tmp_chi2[i] > 0) // && tmp_chi2[i] > 30)
2049  if (chiDebug) {
2050  int ti = iP;
2051  printf(
2052  "CHIHIT %3d %10g %10g %10g %10g %10g %11.5g %11.5g %11.5g %10g %10g %10g %10g %11.5g %11.5g %11.5g %10g "
2053  "%10g %10g %10g %10g %11.5g %11.5g\n",
2054  layer,
2055  tmp_chi2[i],
2056  m_msPar.At(i, 0, 0),
2057  m_msPar.At(i, 1, 0),
2058  m_msPar.At(i, 2, 0),
2059  r_h, // x_h y_h z_h r_h -- hit pos
2060  e2s(m_msErr.At(i, 0, 0)),
2061  e2s(m_msErr.At(i, 1, 1)),
2062  e2s(m_msErr.At(i, 2, 2)), // ex_h ey_h ez_h -- hit errors
2063  m_Par[ti].At(i, 0, 0),
2064  m_Par[ti].At(i, 1, 0),
2065  m_Par[ti].At(i, 2, 0),
2066  r_t, // x_t y_t z_t r_t -- track pos
2067  e2s(m_Err[ti].At(i, 0, 0)),
2068  e2s(m_Err[ti].At(i, 1, 1)),
2069  e2s(m_Err[ti].At(i, 2, 2)), // ex_t ey_t ez_t -- track errors
2070  1.0f / m_Par[ti].At(i, 3, 0),
2071  m_Par[ti].At(i, 4, 0),
2072  m_Par[ti].At(i, 5, 0), // pt, phi, theta
2073  std::atan2(m_msPar.At(i, 1, 0), m_msPar.At(i, 0, 0)), // phi_h
2074  std::atan2(m_Par[ti].At(i, 1, 0), m_Par[ti].At(i, 0, 0)), // phi_t
2075  1e4f * std::hypot(m_msPar.At(i, 0, 0) - m_Par[ti].At(i, 0, 0),
2076  m_msPar.At(i, 1, 0) - m_Par[ti].At(i, 1, 0)), // d_xy
2077  1e4f * (m_msPar.At(i, 2, 0) - m_Par[ti].At(i, 2, 0)) // d_z
2078  // e2s((m_msErr.At(i,0,0) + m_msErr.At(i,1,1)) / (r_h * r_h)), // ephi_h
2079  // e2s((m_Err[ti].At(i,0,0) + m_Err[ti].At(i,1,1)) / (r_t * r_t)) // ephi_t
2080  );
2081  }
2082  }
2083 #endif
2084 
2085  // update chi2
2086  m_Chi2.add(tmp_chi2);
2087  }
2088  }
2089 
2090  //------------------------------------------------------------------------------
2091 
2092  void MkFinder::print_par_err(int corp, int mslot) const {
2093 #ifdef DEBUG
2094  printf("Parameters:\n");
2095  for (int i = 0; i < 6; ++i) {
2096  printf(" %12.4g", m_Par[corp].constAt(mslot, i, 0));
2097  }
2098  printf("\nError matrix\n");
2099  for (int i = 0; i < 6; ++i) {
2100  for (int j = 0; j < 6; ++j) {
2101  printf(" %12.4g", m_Err[corp].constAt(mslot, i, j));
2102  }
2103  printf("\n");
2104  }
2105 #endif
2106  }
2107 
2108  void MkFinder::bkFitFitTracks(const EventOfHits &eventofhits,
2109  const SteeringParams &st_par,
2110  const int N_proc,
2111  bool chiDebug) {
2112  // Prototyping final backward fit.
2113  // This works with track-finding indices, before remapping.
2114  //
2115  // Layers should be collected during track finding and list all layers that have actual hits.
2116  // Then we could avoid checking which layers actually do have hits.
2117 
2118  // bool debug = true;
2119 
2120  MPlexQF tmp_chi2;
2121  MPlexQI no_mat_effs;
2122  float tmp_err[6] = {666, 0, 666, 0, 0, 666};
2123  float tmp_pos[3];
2124 
2125 #if defined(DEBUG_PROP_UPDATE)
2126  const int DSLOT = 0;
2127  printf("bkfit entry, track in slot %d\n", DSLOT);
2128  print_par_err(iC, DSLOT);
2129 #endif
2130 
2131  for (auto lp_iter = st_par.make_iterator(SteeringParams::IT_BkwFit); lp_iter.is_valid(); ++lp_iter) {
2132  const int layer = lp_iter.layer();
2133 
2134  const LayerOfHits &L = eventofhits[layer];
2135  const LayerInfo &LI = *L.layer_info();
2136 
2137 #if defined(DEBUG_BACKWARD_FIT)
2138  const Hit *last_hit_ptr[NN];
2139 #endif
2140 
2141  no_mat_effs.setVal(0);
2142  int done_count = 0;
2143  int here_count = 0;
2144  for (int i = 0; i < N_proc; ++i) {
2145  while (m_CurNode[i] >= 0 && m_HoTNodeArr[i][m_CurNode[i]].m_hot.index < 0) {
2147  }
2148 
2149  if (m_CurNode[i] < 0)
2150  ++done_count;
2151 
2152  if (m_CurNode[i] >= 0 && m_HoTNodeArr[i][m_CurNode[i]].m_hot.layer == layer) {
2153  // Skip the overlap hits -- if they exist.
2154  // 1. Overlap hit gets placed *after* the original hit in TrackCand::exportTrack()
2155  // which is *before* in the reverse iteration that we are doing here.
2156  // 2. Seed-hit merging can result in more than two hits per layer.
2157  // while (m_CurHit[i] > 0 && m_HoTArr[ i ][ m_CurHit[i] - 1 ].layer == layer) --m_CurHit[i];
2158  while (m_HoTNodeArr[i][m_CurNode[i]].m_prev_idx >= 0 &&
2159  m_HoTNodeArr[i][m_HoTNodeArr[i][m_CurNode[i]].m_prev_idx].m_hot.layer == layer)
2161 
2162  const Hit &hit = L.refHit(m_HoTNodeArr[i][m_CurNode[i]].m_hot.index);
2163 
2164 #ifdef DEBUG_BACKWARD_FIT
2165  last_hit_ptr[i] = &hit;
2166 #endif
2167  m_msErr.copyIn(i, hit.errArray());
2168  m_msPar.copyIn(i, hit.posArray());
2169  ++here_count;
2170 
2172  } else {
2173 #ifdef DEBUG_BACKWARD_FIT
2174  last_hit_ptr[i] = nullptr;
2175 #endif
2176  no_mat_effs[i] = 1;
2177  tmp_pos[0] = m_Par[iC](i, 0, 0);
2178  tmp_pos[1] = m_Par[iC](i, 1, 0);
2179  tmp_pos[2] = m_Par[iC](i, 2, 0);
2180  m_msErr.copyIn(i, tmp_err);
2181  m_msPar.copyIn(i, tmp_pos);
2182  }
2183  }
2184 
2185  if (done_count == N_proc)
2186  break;
2187  if (here_count == 0)
2188  continue;
2189 
2190  // ZZZ Could add missing hits here, only if there are any actual matches.
2191 
2192  clearFailFlag();
2193 
2194  // PROP-FAIL-ENABLE Once always "copy input to output on fail" is removed from
2195  // propagateToR one might want to enable this for barrel or endcap or both.
2196  if (LI.is_barrel()) {
2198 
2200  m_Err[iP],
2201  m_Par[iP],
2202  m_msErr,
2203  m_msPar,
2204  m_Err[iC],
2205  m_Par[iC],
2206  tmp_chi2,
2207  N_proc);
2208  } else {
2210 
2212  m_Err[iP],
2213  m_Par[iP],
2214  m_msErr,
2215  m_msPar,
2216  m_Err[iC],
2217  m_Par[iC],
2218  tmp_chi2,
2219  N_proc);
2220  }
2221 
2222 #if defined(DEBUG_PROP_UPDATE)
2223  printf("\nbkfit at layer %d, track in slot %d -- fail=%d, had hit=%d (%g, %g, %g)\n",
2224  LI.layer_id(),
2225  DSLOT,
2226  m_FailFlag[DSLOT],
2227  1 - no_mat_effs[DSLOT],
2228  m_msPar(DSLOT, 0, 0),
2229  m_msPar(DSLOT, 1, 0),
2230  m_msPar(DSLOT, 2, 0));
2231  printf("Propagated:\n");
2232  print_par_err(iP, DSLOT);
2233  printf("Updated:\n");
2234  print_par_err(iC, DSLOT);
2235 #endif
2236 
2237  // Fixup for failed propagation or invpt sign and charge.
2238  for (int i = 0; i < NN; ++i) {
2239  // PROP-FAIL-ENABLE The following to be enabled when propagation failure
2240  // detection is properly implemented in propagate-to-R/Z.
2241  // 1. The following code was only expecting barrel state to be restored.
2242  // auto barrel_pf(m_prop_config->backward_fit_pflags);
2243  // barrel_pf.copy_input_state_on_fail = true;
2244  // 2. There is also check on chi2, commented out to keep physics changes minimal.
2245  /*
2246  if (m_FailFlag[i] && LI.is_barrel()) {
2247  // Barrel pflags are set to include PF_copy_input_state_on_fail.
2248  // Endcap errors are immaterial here (relevant for fwd search), with prop error codes
2249  // one could do other things.
2250  // Are there also fail conditions in KalmanUpdate?
2251 #ifdef DEBUG
2252  if (debug && g_debug) {
2253  dprintf("MkFinder::bkFitFitTracks prop fail: chi2=%f, layer=%d, label=%d. Recovering.\n",
2254  tmp_chi2[i], LI.layer_id(), m_Label[i]);
2255  print_par_err(iC, i);
2256  }
2257 #endif
2258  m_Err[iC].copySlot(i, m_Err[iP]);
2259  m_Par[iC].copySlot(i, m_Par[iP]);
2260  } else if (tmp_chi2[i] > 200 || tmp_chi2[i] < 0) {
2261 #ifdef DEBUG
2262  if (debug && g_debug) {
2263  dprintf("MkFinder::bkFitFitTracks chi2 fail: chi2=%f, layer=%d, label=%d. Recovering.\n",
2264  tmp_chi2[i], LI.layer_id(), m_Label[i]);
2265  print_par_err(iC, i);
2266  }
2267 #endif
2268  // Go back to propagated state (at the current hit, the previous one is lost).
2269  m_Err[iC].copySlot(i, m_Err[iP]);
2270  m_Par[iC].copySlot(i, m_Par[iP]);
2271  }
2272  */
2273  // Fixup invpt sign and charge.
2274  if (i < N_proc && m_Par[iC].At(i, 3, 0) < 0) {
2275  m_Chg.At(i, 0, 0) = -m_Chg.At(i, 0, 0);
2276  m_Par[iC].At(i, 3, 0) = -m_Par[iC].At(i, 3, 0);
2277  }
2278  }
2279 
2280 #if defined(DEBUG_BACKWARD_FIT)
2281  // clang-format off
2282  bool debug = true;
2283  const char beg_cur_sep = '/'; // set to ' ' root parsable printouts
2284  for (int i = 0; i < N_proc; ++i) {
2285  if (chiDebug && last_hit_ptr[i]) {
2286  TrackCand &bb = *m_TrkCand[i];
2287  int ti = iP;
2288  float chi = tmp_chi2.At(i, 0, 0);
2289  float chi_prnt = std::isfinite(chi) ? chi : -9;
2290 
2291 #if defined(MKFIT_STANDALONE)
2292  const MCHitInfo &mchi = m_event->simHitsInfo_[last_hit_ptr[i]->mcHitID()];
2293 
2294  dprintf("BKF_OVERLAP %d %d %d %d %d %d %d "
2295  "%f%c%f %f %f%c%f %f %f %f %d %d %d %d "
2296  "%f %f %f %f %f\n",
2297  m_event->evtID(),
2298 #else
2299  dprintf("BKF_OVERLAP %d %d %d %d %d %d "
2300  "%f%c%f %f %f%c%f %f %f %f %d %d %d "
2301  "%f %f %f %f %f\n",
2302 #endif
2303  bb.label(), (int)bb.prodType(), bb.isFindable(),
2304  layer, L.is_stereo(), L.is_barrel(),
2305  bb.pT(), beg_cur_sep, 1.0f / m_Par[ti].At(i, 3, 0),
2306  bb.posEta(),
2307  bb.posPhi(), beg_cur_sep, std::atan2(m_Par[ti].At(i, 1, 0), m_Par[ti].At(i, 0, 0)),
2308  std::hypot(m_Par[ti].At(i, 0, 0), m_Par[ti].At(i, 1, 0)),
2309  m_Par[ti].At(i, 2, 0),
2310  chi_prnt,
2311  std::isnan(chi), std::isfinite(chi), chi > 0,
2312 #if defined(MKFIT_STANDALONE)
2313  mchi.mcTrackID(),
2314 #endif
2315  // The following three can get negative / prouce nans in e2s.
2316  // std::abs the args for FPE hunt.
2317  e2s(std::abs(m_Err[ti].At(i, 0, 0))),
2318  e2s(std::abs(m_Err[ti].At(i, 1, 1))),
2319  e2s(std::abs(m_Err[ti].At(i, 2, 2))), // sx_t sy_t sz_t -- track errors
2320  1e4f * std::hypot(m_msPar.At(i, 0, 0) - m_Par[ti].At(i, 0, 0),
2321  m_msPar.At(i, 1, 0) - m_Par[ti].At(i, 1, 0)), // d_xy
2322  1e4f * (m_msPar.At(i, 2, 0) - m_Par[ti].At(i, 2, 0)) // d_z
2323  );
2324  }
2325  }
2326  // clang-format on
2327 #endif
2328 
2329  // update chi2
2330  m_Chi2.add(tmp_chi2);
2331  }
2332  }
2333 
2334  //------------------------------------------------------------------------------
2335 
2336  void MkFinder::bkFitPropTracksToPCA(const int N_proc) {
2338  }
2339 
2340 } // end namespace mkfit
float chi2_hit
Definition: Track.h:44
void(* m_compute_chi2_foo)(const MPlexLS &, const MPlexLV &, const MPlexQI &, const MPlexHS &, const MPlexHV &, MPlexQF &, MPlexLV &, MPlexQI &, const int, const PropagationFlags &, const bool)
Definition: FindingFoos.h:25
void setOriginIndex(int oi)
float getScoreCand(const track_score_func &score_func, const Track &cand1, bool penalizeTailMissHits=false, bool inFindCandidates=false)
Definition: Track.h:615
float x() const
Definition: Hit.h:162
void addHitIdx(int hitIdx, int hitLyr, float chi2)
def isnan(num)
MPlexQI m_Chg
Definition: MkBase.h:103
static constexpr int iC
Definition: MkBase.h:18
void copy_in(const Track &trk, const int mslot, const int tslot)
Definition: MkFinder.h:178
static constexpr int MPlexHitIdxMax
Definition: MkFinder.h:42
const SVector6 & parameters() const
Definition: Track.h:146
MPlex< T, D1, D2, N > hypot(const MPlex< T, D1, D2, N > &a, const MPlex< T, D1, D2, N > &b)
Definition: Matriplex.h:436
int charge() const
Definition: Track.h:185
MPlexQI m_NFoundHits
Definition: MkFinder.h:295
const IterationLayerConfig * m_iteration_layer_config
Definition: MkFinder.h:339
void chi2OfLoadedHit(int N_proc, const FindingFoos &fnd_foos)
Definition: MkFinder.cc:1803
Definition: APVGainStruct.h:7
const HitOnTrack * m_HoTArr[NN]
Definition: MkFinder.h:348
static constexpr int iP
Definition: MkBase.h:19
void inputOverlapHits(const LayerOfHits &layer_of_hits, const std::vector< UpdateIndices > &idxs, int beg, int end)
Definition: MkFinder.cc:181
float rin() const
Definition: TrackerInfo.h:67
PropState ps_min
Definition: RntStructs.h:77
float q_bin() const
Definition: TrackerInfo.h:74
float good_frac() const
Definition: Event.h:55
void kalmanOperationEndcap(const int kfOp, const MPlexLS &psErr, const MPlexLV &psPar, const MPlexHS &msErr, const MPlexHV &msPar, MPlexLS &outErr, MPlexLV &outPar, MPlexQF &outChi2, const int N_proc)
void copy_out(Track &trk, const int mslot, const int tslot) const
Definition: MkFinder.h:195
void packModuleNormDir(const LayerOfHits &layer_of_hits, int hit_cnt, MPlexHV &norm, MPlexHV &dir, int N_proc) const
Definition: MkFinder.cc:240
void outputTracksAndHitIdx(std::vector< Track > &tracks, int beg, int end, bool outputProp) const
Definition: MkFinder.cc:217
const float chg[109]
Definition: CoreSimTrack.cc:5
float pT() const
Definition: Track.h:171
void propagateTracksToHitZ(const MPlexHV &par, const int N_proc, const PropagationFlags &pf, const MPlexQI *noMatEffPtr=nullptr)
Definition: MkBase.h:68
HitOnTrack m_HoTArrs[NN][Config::nMaxTrkHits]
Definition: MkFinder.h:297
bin_index_t qBinChecked(float q) const
Definition: HitStructures.h:73
const Hit * hitArray() const
void inputTracksAndHitIdx(const std::vector< Track > &tracks, int beg, int end, bool inputProp)
Definition: MkFinder.cc:99
void bkFitInputTracks(TrackVec &cands, int beg, int end)
Definition: MkFinder.cc:1850
const Event * m_event
Definition: MkFinder.h:342
for(int i=first, nt=offsets[nh];i< nt;i+=gridDim.x *blockDim.x)
Matriplex::Matriplex< float, HH, 1, NN > MPlexHV
Definition: Matrix.h:53
void setChi2(float chi2)
Definition: Track.h:191
Matriplex::Matriplex< unsigned short, 1, 1, NN > MPlexQUH
Definition: Matrix.h:75
Sin< T >::type sin(const T &t)
Definition: Sin.h:22
float chi2() const
Definition: Track.h:186
MPlexLV m_Par[2]
Definition: MkBase.h:102
PropagationFlags backward_fit_pflags
MPlexQI m_FailFlag
Definition: MkBase.h:104
ProdType prodType() const
Definition: Track.h:272
bool is_pixel() const
int label() const
Definition: Track.h:188
void selectHitIndices(const LayerOfHits &layer_of_hits, const int N_proc, bool fill_binsearch_only=false)
Definition: MkFinder.cc:316
void setup(const PropagationConfig &pc, const IterationConfig &ic, const IterationParams &ip, const IterationLayerConfig &ilc, const SteeringParams &sp, const std::vector< bool > *ihm, const Event *ev, int region, bool infwd)
Definition: MkFinder.cc:30
void bkFitPropTracksToPCA(const int N_proc)
Definition: MkFinder.cc:2336
int evtID() const
Definition: Event.h:23
SMatrixSym66 & errors_nc()
Definition: Track.h:154
int mcTrackID() const
Definition: Hit.h:114
const IterationConfig * m_iteration_config
Definition: MkFinder.h:337
constexpr float PIOver2
Definition: Config.h:9
void inputTracksAndHits(const std::vector< CombCandidate > &tracks, const LayerOfHits &layer_of_hits, const std::vector< UpdateIndices > &idxs, int beg, int end, bool inputProp)
Definition: MkFinder.cc:149
void release()
Definition: MkFinder.cc:56
void add_hit(const int mslot, int index, int layer)
Definition: MkFinder.h:247
Matriplex::Matriplex< float, LL, 1, NN > MPlexLV
Definition: Matrix.h:49
float getEta(float r, float z)
Definition: Hit.h:38
assert(be >=bs)
constexpr float TwoPI
Definition: Config.h:8
float exx() const
Definition: Hit.h:165
void swap(Association< C > &lhs, Association< C > &rhs)
Definition: Association.h:112
Definition: Electron.h:6
const float * posArray() const
Definition: Hit.h:151
static unsigned int maxChargePerCM()
Definition: Hit.h:234
float zmax() const
Definition: TrackerInfo.h:71
static constexpr int kHitStopIdx
Definition: Hit.h:194
const IterationParams * m_iteration_params
Definition: MkFinder.h:338
MPlexLS m_Err[2]
Definition: MkBase.h:101
void kalmanOperation(const int kfOp, const MPlexLS &psErr, const MPlexLV &psPar, const MPlexHS &msErr, const MPlexHV &msPar, MPlexLS &outErr, MPlexLV &outPar, MPlexQF &outChi2, const int N_proc)
void findCandidates(const LayerOfHits &layer_of_hits, std::vector< std::vector< TrackCand >> &tmp_candidates, const int offset, const int N_proc, const FindingFoos &fnd_foos)
Definition: MkFinder.cc:1270
static constexpr int kHitInGapIdx
Definition: Hit.h:197
const Double_t pi
track_score_func m_track_scorer
int m_current_region
Definition: MkFinder.h:343
float ezz() const
Definition: Hit.h:167
constexpr bool usePhiQArrays
Definition: Config.h:71
float momEta() const
Definition: Track.h:175
const HoTNode * hotsData() const
PropagationFlags finding_inter_layer_pflags
bool isStripQCompatible(int itrack, bool isBarrel, const MPlexLS &pErr, const MPlexLV &pPar, const MPlexHS &msErr, const MPlexHV &msPar)
Definition: MkFinder.cc:1202
void setScore(float s)
Definition: Track.h:192
float getScoreStruct(const track_score_func &score_func, const IdxChi2List &cand1)
Definition: Track.h:631
const PropagationConfig * m_prop_config
Definition: MkFinder.h:336
float zmin() const
Definition: TrackerInfo.h:70
float posR() const
Definition: Track.h:163
iterator make_iterator(IterationType_e type) const
unsigned int module
Definition: Track.h:37
int np
Definition: AMPTWrapper.h:43
int num_all_minus_one_hits(const int mslot) const
Definition: MkFinder.h:281
unsigned int detIDinLayer() const
Definition: Hit.h:228
bin_index_t phiBinChecked(float phi) const
Definition: HitStructures.h:77
const ModuleInfo & module_info(unsigned int sid) const
Definition: TrackerInfo.h:127
constexpr float PI
Definition: Config.h:7
void(* m_update_param_foo)(const MPlexLS &, const MPlexLV &, MPlexQI &, const MPlexHS &, const MPlexHV &, MPlexLS &, MPlexLV &, MPlexQI &, const int, const PropagationFlags &, const bool)
Definition: FindingFoos.h:26
Definition: EPCuts.h:4
tex
Definition: cuy.py:773
T sqrt(T t)
Definition: SSEVec.h:19
const float * errArray() const
Definition: Hit.h:152
constexpr Matriplex::idx_t NN
Definition: Matrix.h:43
unsigned int bin_content_t
Definition: HitStructures.h:27
Cos< T >::type cos(const T &t)
Definition: Cos.h:22
void setup_bkfit(const PropagationConfig &pc, const SteeringParams &sp, const Event *ev)
Definition: MkFinder.cc:50
PropState ps_max
Definition: RntStructs.h:77
int layer_id() const
Definition: TrackerInfo.h:65
float eyy() const
Definition: Hit.h:166
CombCandidate * combCandidate() const
Tan< T >::type tan(const T &t)
Definition: Tan.h:22
void kalmanPropagateAndUpdatePlane(const MPlexLS &psErr, const MPlexLV &psPar, MPlexQI &Chg, const MPlexHS &msErr, const MPlexHV &msPar, const MPlexHV &plNrm, const MPlexHV &plDir, MPlexLS &outErr, MPlexLV &outPar, MPlexQI &outFailFlag, const int N_proc, const PropagationFlags &propFlags, const bool propToHit)
MPlexQI m_XHitSize
Definition: MkFinder.h:322
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
MPlexHV m_msPar
Definition: MkFinder.h:327
void propagateTracksToHitR(const MPlexHV &par, const int N_proc, const PropagationFlags &pf, const MPlexQI *noMatEffPtr=nullptr)
Definition: MkBase.h:42
MPlexQI m_NTailMinusOneHits
Definition: MkFinder.h:312
double f[11][100]
bool isFindable() const
Definition: Track.h:265
void clearFailFlag()
Definition: MkBase.h:96
void min_max(const MPlex< T, D1, D2, N > &a, const MPlex< T, D1, D2, N > &b, MPlex< T, D1, D2, N > &min, MPlex< T, D1, D2, N > &max)
Definition: Matriplex.h:468
float ephi() const
Definition: Hit.h:172
const HitOnTrack * getHitsOnTrackArray() const
Definition: Track.h:507
MPlexQI m_SeedOriginIdx
Definition: MkFinder.h:301
int m_CurNode[NN]
Definition: MkFinder.h:349
MCHitInfoVec simHitsInfo_
Definition: Event.h:72
PropagationFlags pca_prop_pflags
float posEta() const
Definition: Track.h:166
constexpr float nSigmaPhi
BinSearch bso
Definition: RntStructs.h:78
float cdist(float a)
Definition: Config.h:32
int lastCcIndex() const
void begin_layer(const LayerOfHits &layer_of_hits)
Definition: MkFinder.cc:68
void kalmanPropagateAndComputeChi2Plane(const MPlexLS &psErr, const MPlexLV &psPar, const MPlexQI &inChg, const MPlexHS &msErr, const MPlexHV &msPar, const MPlexHV &plNrm, const MPlexHV &plDir, MPlexQF &outChi2, MPlexLV &propPar, MPlexQI &outFailFlag, const int N_proc, const PropagationFlags &propFlags, const bool propToHit)
MPlexHS m_msErr
Definition: MkFinder.h:326
void propagateTracksToPCAZ(const int N_proc, const PropagationFlags &pf)
Definition: MkBase.h:82
Matriplex::Matriplex< int, 1, 1, NN > MPlexQI
Definition: Matrix.h:72
ii
Definition: cuy.py:589
TrackVec simTracks_
Definition: Event.h:74
const LayerInfo * layer_info() const
TrackCand * m_TrkCand[NN]
Definition: MkFinder.h:318
void updateWithLoadedHit(int N_proc, const LayerOfHits &layer_of_hits, const FindingFoos &fnd_foos)
Definition: MkFinder.cc:1758
float y() const
Definition: Hit.h:163
void selectHitIndicesV2(const LayerOfHits &layer_of_hits, const int N_proc)
Definition: MkFinder.cc:756
std::vector< Track > TrackVec
SimLabelFromHits simLabelForCurrentSeed(int i) const
Definition: Event.cc:868
#define debug
Definition: HDRShower.cc:19
Matriplex::Matriplex< float, 1, 1, NN > MPlexQF
Definition: Matrix.h:71
WithinSensitiveRegion_e m_wsr
Definition: TrackerInfo.h:21
void pack(TMerr &err, TMpar &par)
void bkFitFitTracks(const EventOfHits &eventofhits, const SteeringParams &st_par, const int N_proc, bool chiDebug=false)
Definition: MkFinder.cc:2108
int m_CurHit[NN]
Definition: MkFinder.h:347
const SteeringParams * m_steering_params
Definition: MkFinder.h:340
static const FindingFoos & get_finding_foos(bool is_barrel)
Definition: FindingFoos.cc:18
float z() const
Definition: Track.h:162
std::vector< LayerControl > m_layer_plan
MPlexQI m_NOverlapHits
Definition: MkFinder.h:310
double b
Definition: hdecay.h:120
bool passStripChargePCMfromTrack(int itrack, bool isBarrel, unsigned int pcm, unsigned int pcmMin, const MPlexLV &pPar, const MPlexHS &msErr)
Definition: MkFinder.cc:1234
float getPhi(float x, float y)
Definition: Hit.h:34
float rout() const
Definition: TrackerInfo.h:68
const Track & currentSeed(int i) const
Definition: Event.cc:866
int nTotalHits() const
Definition: Track.h:526
MPlexHitIdx m_XHitArr
Definition: MkFinder.h:323
Matriplex::MatriplexSym< float, HH, NN > MPlexHS
Definition: Matrix.h:54
#define dprint(x)
Definition: Debug.h:95
MPlexQF m_Chi2
Definition: MkFinder.h:291
static constexpr int kHitMaxClusterIdx
Definition: Hit.h:196
void bkFitOutputTracks(TrackVec &cands, int beg, int end, bool outputProp)
Definition: MkFinder.cc:1907
void bkFitFitTracksBH(const EventOfHits &eventofhits, const SteeringParams &st_par, const int N_proc, bool chiDebug=false)
Definition: MkFinder.cc:1955
float z() const
Definition: Hit.h:164
const std::vector< float > & get_window_params(bool forward, bool fallback_to_other) const
MPlexQI m_CandIdx
Definition: MkFinder.h:300
double a
Definition: hdecay.h:121
MPlexQI m_SeedIdx
Definition: MkFinder.h:299
HitOnTrack hot(int i) const
void copyOutParErr(std::vector< CombCandidate > &seed_cand_vec, int N_proc, bool outputProp) const
Definition: MkFinder.cc:1827
int num_inside_minus_one_hits(const int mslot) const
Definition: MkFinder.h:285
void findCandidatesCloneEngine(const LayerOfHits &layer_of_hits, CandCloner &cloner, const int offset, const int N_proc, const FindingFoos &fnd_foos)
Definition: MkFinder.cc:1538
Matriplex::MatriplexSym< float, LL, NN > MPlexLS
Definition: Matrix.h:50
float x
const std::vector< bool > * m_iteration_hit_mask
Definition: MkFinder.h:341
bool is_barrel() const
PropagationFlags finding_intra_layer_pflags
int layer_id() const
void setCharge(int chg)
Definition: Track.h:190
BinSearch bsn
Definition: RntStructs.h:79
constexpr bool usePropToPlane
Definition: Config.h:51
void add_cand(int idx, const IdxChi2List &cand_info)
Definition: CandCloner.h:35
float getHitSelDynamicChi2Cut(const int itrk, const int ipar)
Definition: MkFinder.cc:293
MPF fast_atan2(const MPF &y, const MPF &x)
static constexpr int kHitMissIdx
Definition: Hit.h:193
const HoTNode * m_HoTNodeArr[NN]
Definition: MkFinder.h:350
unsigned short bin_index_t
Definition: HitStructures.h:26
float momPhi() const
Definition: Track.h:174
WSR_Result m_XWsrResult[NN]
Definition: MkFinder.h:321
float posPhi() const
Definition: Track.h:165
void getHitSelDynamicWindows(const float invpt, const float theta, float &min_dq, float &max_dq, float &min_dphi, float &max_dphi)
Definition: MkFinder.cc:262
Geom::Theta< T > theta() const
static constexpr int kHitEdgeIdx
Definition: Hit.h:195
CombCandidate & combCandWithOriginalIndex(int idx)
Definition: CandCloner.h:52
static unsigned int minChargePerCM()
Definition: Hit.h:233
SVector6 & parameters_nc()
Definition: Track.h:153
Power< A, B >::type pow(const A &a, const B &b)
Definition: Power.h:29
#define dprintf(...)
Definition: Debug.h:98
int mcHitID() const
Definition: Hit.h:187
MPlexQI m_Label
Definition: MkFinder.h:292
bool is_barrel() const
Definition: TrackerInfo.h:77
void end_layer()
Definition: MkFinder.cc:88
const Hit & refHit(int i) const
MPlex< T, D1, D2, N > sqrt(const MPlex< T, D1, D2, N > &a)
Definition: Matriplex.h:424
void print_par_err(int corp, int mslot) const
Definition: MkFinder.cc:2092
void addBestHit(const LayerOfHits &layer_of_hits, const int N_proc, const FindingFoos &fnd_foos)
Definition: MkFinder.cc:1054
constexpr bool isFinite(float x)