CMS 3D CMS Logo

BrokenLine.h
Go to the documentation of this file.
1 #ifndef RecoTracker_PixelTrackFitting_BrokenLine_h
2 #define RecoTracker_PixelTrackFitting_BrokenLine_h
3 
4 #include <Eigen/Core>
5 #include <Eigen/Eigenvalues>
6 
8 
9 namespace brokenline {
10 
12 
20 
24  template <int n>
26  int qCharge;
29  // starting from the pre-fitted closest approach
33  };
34 
54  __host__ __device__ inline double multScatt(
55  const double& length, const double bField, const double radius, int layer, double slope) {
56  // limit R to 20GeV...
57  auto pt2 = std::min(20., bField * radius);
58  pt2 *= pt2;
59  constexpr double inv_X0 = 0.06 / 16.;
60  //if(Layer==1) XXI_0=0.06/16.;
61  // else XXI_0=0.06/16.;
62  //XX_0*=1;
63 
65  constexpr double geometry_factor = 0.7;
66  constexpr double fact = geometry_factor * riemannFit::sqr(13.6 / 1000.);
67  return fact / (pt2 * (1. + riemannFit::sqr(slope))) * (std::abs(length) * inv_X0) *
68  riemannFit::sqr(1. + 0.038 * log(std::abs(length) * inv_X0));
69  }
70 
80  rot(0, 0) = 1. / sqrt(1. + riemannFit::sqr(slope));
81  rot(0, 1) = slope * rot(0, 0);
82  rot(1, 0) = -rot(0, 1);
83  rot(1, 1) = rot(0, 0);
84  return rot;
85  }
86 
99  double x0,
100  double y0,
101  riemannFit::Matrix3d& jacobian) {
102  // Avoid multiple access to the circle.par vector.
103  using scalar = std::remove_reference<decltype(circle.par(0))>::type;
104  scalar phi = circle.par(0);
105  scalar dee = circle.par(1);
106  scalar rho = circle.par(2);
107 
108  // Avoid repeated trig. computations
109  scalar sinPhi = sin(phi);
110  scalar cosPhi = cos(phi);
111 
112  // Intermediate computations for the circle parameters
113  scalar deltaPara = x0 * cosPhi + y0 * sinPhi;
114  scalar deltaOrth = x0 * sinPhi - y0 * cosPhi + dee;
115  scalar tempSmallU = 1 + rho * dee;
116  scalar tempC = -rho * y0 + tempSmallU * cosPhi;
117  scalar tempB = rho * x0 + tempSmallU * sinPhi;
118  scalar tempA = 2. * deltaOrth + rho * (riemannFit::sqr(deltaOrth) + riemannFit::sqr(deltaPara));
119  scalar tempU = sqrt(1. + rho * tempA);
120 
121  // Intermediate computations for the error matrix transform
122  scalar xi = 1. / (riemannFit::sqr(tempB) + riemannFit::sqr(tempC));
123  scalar tempV = 1. + rho * deltaOrth;
124  scalar lambda = (0.5 * tempA) / (riemannFit::sqr(1. + tempU) * tempU);
125  scalar mu = 1. / (tempU * (1. + tempU)) + rho * lambda;
126  scalar zeta = riemannFit::sqr(deltaOrth) + riemannFit::sqr(deltaPara);
127  jacobian << xi * tempSmallU * tempV, -xi * riemannFit::sqr(rho) * deltaOrth, xi * deltaPara,
128  2. * mu * tempSmallU * deltaPara, 2. * mu * tempV, mu * zeta - lambda * tempA, 0, 0, 1.;
129 
130  // translated circle parameters
131  // phi
132  circle.par(0) = atan2(tempB, tempC);
133  // d
134  circle.par(1) = tempA / (1 + tempU);
135  // rho after translation. It is invariant, so noop
136  // circle.par(2)= rho;
137 
138  // translated error matrix
139  circle.cov = jacobian * circle.cov * jacobian.transpose();
140  }
141 
150  template <typename M3xN, typename V4, int n>
152  const V4& fast_fit,
153  const double bField,
157 
158  int mId = 1;
159 
160  if constexpr (n > 3) {
161  riemannFit::Vector2d middle = 0.5 * (hits.block(0, n - 1, 2, 1) + hits.block(0, 0, 2, 1));
162  auto d1 = (hits.block(0, n / 2, 2, 1) - middle).squaredNorm();
163  auto d2 = (hits.block(0, n / 2 - 1, 2, 1) - middle).squaredNorm();
164  mId = d1 < d2 ? n / 2 : n / 2 - 1;
165  }
166 
167  dVec = hits.block(0, mId, 2, 1) - hits.block(0, 0, 2, 1);
168  eVec = hits.block(0, n - 1, 2, 1) - hits.block(0, mId, 2, 1);
169  results.qCharge = riemannFit::cross2D(dVec, eVec) > 0 ? -1 : 1;
170 
171  const double slope = -results.qCharge / fast_fit(3);
172 
174 
175  // calculate radii and s
176  results.radii = hits.block(0, 0, 2, n) - fast_fit.head(2) * riemannFit::MatrixXd::Constant(1, n, 1);
177  eVec = -fast_fit(2) * fast_fit.head(2) / fast_fit.head(2).norm();
178  for (u_int i = 0; i < n; i++) {
179  dVec = results.radii.block(0, i, 2, 1);
180  results.sTransverse(i) = results.qCharge * fast_fit(2) *
181  atan2(riemannFit::cross2D(dVec, eVec), dVec.dot(eVec)); // calculates the arc length
182  }
183  riemannFit::VectorNd<n> zVec = hits.block(2, 0, 1, n).transpose();
184 
185  //calculate sTotal and zVec
187  for (u_int i = 0; i < n; i++) {
188  pointsSZ(0, i) = results.sTransverse(i);
189  pointsSZ(1, i) = zVec(i);
190  pointsSZ.block(0, i, 2, 1) = rotMat * pointsSZ.block(0, i, 2, 1);
191  }
192  results.sTotal = pointsSZ.block(0, 0, 1, n).transpose();
193  results.zInSZplane = pointsSZ.block(1, 0, 1, n).transpose();
194 
195  //calculate varBeta
196  results.varBeta(0) = results.varBeta(n - 1) = 0;
197  for (u_int i = 1; i < n - 1; i++) {
198  results.varBeta(i) = multScatt(results.sTotal(i + 1) - results.sTotal(i), bField, fast_fit(2), i + 2, slope) +
199  multScatt(results.sTotal(i) - results.sTotal(i - 1), bField, fast_fit(2), i + 1, slope);
200  }
201  }
202 
215  template <int n>
220  for (u_int i = 0; i < n; i++) {
221  c_uMat(i, i) = weights(i);
222  if (i > 1)
223  c_uMat(i, i) += 1. / (varBeta(i - 1) * riemannFit::sqr(sTotal(i) - sTotal(i - 1)));
224  if (i > 0 && i < n - 1)
225  c_uMat(i, i) +=
226  (1. / varBeta(i)) * riemannFit::sqr((sTotal(i + 1) - sTotal(i - 1)) /
227  ((sTotal(i + 1) - sTotal(i)) * (sTotal(i) - sTotal(i - 1))));
228  if (i < n - 2)
229  c_uMat(i, i) += 1. / (varBeta(i + 1) * riemannFit::sqr(sTotal(i + 1) - sTotal(i)));
230 
231  if (i > 0 && i < n - 1)
232  c_uMat(i, i + 1) =
233  1. / (varBeta(i) * (sTotal(i + 1) - sTotal(i))) *
234  (-(sTotal(i + 1) - sTotal(i - 1)) / ((sTotal(i + 1) - sTotal(i)) * (sTotal(i) - sTotal(i - 1))));
235  if (i < n - 2)
236  c_uMat(i, i + 1) +=
237  1. / (varBeta(i + 1) * (sTotal(i + 1) - sTotal(i))) *
238  (-(sTotal(i + 2) - sTotal(i)) / ((sTotal(i + 2) - sTotal(i + 1)) * (sTotal(i + 1) - sTotal(i))));
239 
240  if (i < n - 2)
241  c_uMat(i, i + 2) = 1. / (varBeta(i + 1) * (sTotal(i + 2) - sTotal(i + 1)) * (sTotal(i + 1) - sTotal(i)));
242 
243  c_uMat(i, i) *= 0.5;
244  }
245  return c_uMat + c_uMat.transpose();
246  }
247 
258  template <typename M3xN, typename V4>
259  __host__ __device__ inline void fastFit(const M3xN& hits, V4& result) {
260  constexpr uint32_t n = M3xN::ColsAtCompileTime;
261 
262  int mId = 1;
263 
264  if constexpr (n > 3) {
265  riemannFit::Vector2d middle = 0.5 * (hits.block(0, n - 1, 2, 1) + hits.block(0, 0, 2, 1));
266  auto d1 = (hits.block(0, n / 2, 2, 1) - middle).squaredNorm();
267  auto d2 = (hits.block(0, n / 2 - 1, 2, 1) - middle).squaredNorm();
268  mId = d1 < d2 ? n / 2 : n / 2 - 1;
269  }
270 
271  const riemannFit::Vector2d a = hits.block(0, mId, 2, 1) - hits.block(0, 0, 2, 1);
272  const riemannFit::Vector2d b = hits.block(0, n - 1, 2, 1) - hits.block(0, mId, 2, 1);
273  const riemannFit::Vector2d c = hits.block(0, 0, 2, 1) - hits.block(0, n - 1, 2, 1);
274 
275  auto tmp = 0.5 / riemannFit::cross2D(c, a);
276  result(0) = hits(0, 0) - (a(1) * c.squaredNorm() + c(1) * a.squaredNorm()) * tmp;
277  result(1) = hits(1, 0) + (a(0) * c.squaredNorm() + c(0) * a.squaredNorm()) * tmp;
278  // check Wikipedia for these formulas
279 
280  result(2) = sqrt(a.squaredNorm() * b.squaredNorm() * c.squaredNorm()) / (2. * std::abs(riemannFit::cross2D(b, a)));
281  // Using Math Olympiad's formula R=abc/(4A)
282 
283  const riemannFit::Vector2d d = hits.block(0, 0, 2, 1) - result.head(2);
284  const riemannFit::Vector2d e = hits.block(0, n - 1, 2, 1) - result.head(2);
285 
286  result(3) = result(2) * atan2(riemannFit::cross2D(d, e), d.dot(e)) / (hits(2, n - 1) - hits(2, 0));
287  // ds/dz slope between last and first point
288  }
289 
314  template <typename M3xN, typename M6xN, typename V4, int n>
315  __host__ __device__ inline void circleFit(const M3xN& hits,
316  const M6xN& hits_ge,
317  const V4& fast_fit,
318  const double bField,
320  karimaki_circle_fit& circle_results) {
321  circle_results.qCharge = data.qCharge;
322  auto& radii = data.radii;
323  const auto& sTransverse = data.sTransverse;
324  const auto& sTotal = data.sTotal;
325  auto& zInSZplane = data.zInSZplane;
326  auto& varBeta = data.varBeta;
327  const double slope = -circle_results.qCharge / fast_fit(3);
328  varBeta *= 1. + riemannFit::sqr(slope); // the kink angles are projected!
329 
330  for (u_int i = 0; i < n; i++) {
331  zInSZplane(i) = radii.block(0, i, 2, 1).norm() - fast_fit(2);
332  }
333 
334  riemannFit::Matrix2d vMat; // covariance matrix
335  riemannFit::VectorNd<n> weightsVec; // weights
336  riemannFit::Matrix2d rotMat; // rotation matrix point by point
337  for (u_int i = 0; i < n; i++) {
338  vMat(0, 0) = hits_ge.col(i)[0]; // x errors
339  vMat(0, 1) = vMat(1, 0) = hits_ge.col(i)[1]; // cov_xy
340  vMat(1, 1) = hits_ge.col(i)[2]; // y errors
341  rotMat = rotationMatrix(-radii(0, i) / radii(1, i));
342  weightsVec(i) =
343  1. / ((rotMat * vMat * rotMat.transpose())(1, 1)); // compute the orthogonal weight point by point
344  }
345 
347  r_uVec(n) = 0;
348  for (u_int i = 0; i < n; i++) {
349  r_uVec(i) = weightsVec(i) * zInSZplane(i);
350  }
351 
353  c_uMat.block(0, 0, n, n) = matrixC_u(weightsVec, sTransverse, varBeta);
354  c_uMat(n, n) = 0;
355  //add the border to the c_uMat matrix
356  for (u_int i = 0; i < n; i++) {
357  c_uMat(i, n) = 0;
358  if (i > 0 && i < n - 1) {
359  c_uMat(i, n) +=
360  -(sTransverse(i + 1) - sTransverse(i - 1)) * (sTransverse(i + 1) - sTransverse(i - 1)) /
361  (2. * varBeta(i) * (sTransverse(i + 1) - sTransverse(i)) * (sTransverse(i) - sTransverse(i - 1)));
362  }
363  if (i > 1) {
364  c_uMat(i, n) +=
365  (sTransverse(i) - sTransverse(i - 2)) / (2. * varBeta(i - 1) * (sTransverse(i) - sTransverse(i - 1)));
366  }
367  if (i < n - 2) {
368  c_uMat(i, n) +=
369  (sTransverse(i + 2) - sTransverse(i)) / (2. * varBeta(i + 1) * (sTransverse(i + 1) - sTransverse(i)));
370  }
371  c_uMat(n, i) = c_uMat(i, n);
372  if (i > 0 && i < n - 1)
373  c_uMat(n, n) += riemannFit::sqr(sTransverse(i + 1) - sTransverse(i - 1)) / (4. * varBeta(i));
374  }
375 
376 #ifdef CPP_DUMP
377  std::cout << "CU5\n" << c_uMat << std::endl;
378 #endif
380  math::cholesky::invert(c_uMat, iMat);
381 #ifdef CPP_DUMP
382  std::cout << "I5\n" << iMat << std::endl;
383 #endif
384 
385  riemannFit::VectorNplusONEd<n> uVec = iMat * r_uVec; // obtain the fitted parameters by solving the linear system
386 
387  // compute (phi, d_ca, k) in the system in which the midpoint of the first two corrected hits is the origin...
388 
389  radii.block(0, 0, 2, 1) /= radii.block(0, 0, 2, 1).norm();
390  radii.block(0, 1, 2, 1) /= radii.block(0, 1, 2, 1).norm();
391 
392  riemannFit::Vector2d dVec = hits.block(0, 0, 2, 1) + (-zInSZplane(0) + uVec(0)) * radii.block(0, 0, 2, 1);
393  riemannFit::Vector2d eVec = hits.block(0, 1, 2, 1) + (-zInSZplane(1) + uVec(1)) * radii.block(0, 1, 2, 1);
394  auto eMinusd = eVec - dVec;
395  auto eMinusd2 = eMinusd.squaredNorm();
396  auto tmp1 = 1. / eMinusd2;
397  auto tmp2 = sqrt(riemannFit::sqr(fast_fit(2)) - 0.25 * eMinusd2);
398 
399  circle_results.par << atan2(eMinusd(1), eMinusd(0)), circle_results.qCharge * (tmp2 - fast_fit(2)),
400  circle_results.qCharge * (1. / fast_fit(2) + uVec(n));
401 
402  tmp2 = 1. / tmp2;
403 
404  riemannFit::Matrix3d jacobian;
405  jacobian << (radii(1, 0) * eMinusd(0) - eMinusd(1) * radii(0, 0)) * tmp1,
406  (radii(1, 1) * eMinusd(0) - eMinusd(1) * radii(0, 1)) * tmp1, 0,
407  circle_results.qCharge * (eMinusd(0) * radii(0, 0) + eMinusd(1) * radii(1, 0)) * tmp2,
408  circle_results.qCharge * (eMinusd(0) * radii(0, 1) + eMinusd(1) * radii(1, 1)) * tmp2, 0, 0, 0,
409  circle_results.qCharge;
410 
411  circle_results.cov << iMat(0, 0), iMat(0, 1), iMat(0, n), iMat(1, 0), iMat(1, 1), iMat(1, n), iMat(n, 0),
412  iMat(n, 1), iMat(n, n);
413 
414  circle_results.cov = jacobian * circle_results.cov * jacobian.transpose();
415 
416  //...Translate in the system in which the first corrected hit is the origin, adding the m.s. correction...
417 
418  translateKarimaki(circle_results, 0.5 * eMinusd(0), 0.5 * eMinusd(1), jacobian);
419  circle_results.cov(0, 0) +=
420  (1 + riemannFit::sqr(slope)) * multScatt(sTotal(1) - sTotal(0), bField, fast_fit(2), 2, slope);
421 
422  //...And translate back to the original system
423 
424  translateKarimaki(circle_results, dVec(0), dVec(1), jacobian);
425 
426  // compute chi2
427  circle_results.chi2 = 0;
428  for (u_int i = 0; i < n; i++) {
429  circle_results.chi2 += weightsVec(i) * riemannFit::sqr(zInSZplane(i) - uVec(i));
430  if (i > 0 && i < n - 1)
431  circle_results.chi2 +=
432  riemannFit::sqr(uVec(i - 1) / (sTransverse(i) - sTransverse(i - 1)) -
433  uVec(i) * (sTransverse(i + 1) - sTransverse(i - 1)) /
434  ((sTransverse(i + 1) - sTransverse(i)) * (sTransverse(i) - sTransverse(i - 1))) +
435  uVec(i + 1) / (sTransverse(i + 1) - sTransverse(i)) +
436  (sTransverse(i + 1) - sTransverse(i - 1)) * uVec(n) / 2) /
437  varBeta(i);
438  }
439  }
440 
463  template <typename V4, typename M6xN, int n>
464  __host__ __device__ inline void lineFit(const M6xN& hits_ge,
465  const V4& fast_fit,
466  const double bField,
468  riemannFit::LineFit& line_results) {
469  const auto& radii = data.radii;
470  const auto& sTotal = data.sTotal;
471  const auto& zInSZplane = data.zInSZplane;
472  const auto& varBeta = data.varBeta;
473 
474  const double slope = -data.qCharge / fast_fit(3);
476 
477  riemannFit::Matrix3d vMat = riemannFit::Matrix3d::Zero(); // covariance matrix XYZ
478  riemannFit::Matrix2x3d jacobXYZtosZ =
479  riemannFit::Matrix2x3d::Zero(); // jacobian for computation of the error on s (xyz -> sz)
481  for (u_int i = 0; i < n; i++) {
482  vMat(0, 0) = hits_ge.col(i)[0]; // x errors
483  vMat(0, 1) = vMat(1, 0) = hits_ge.col(i)[1]; // cov_xy
484  vMat(0, 2) = vMat(2, 0) = hits_ge.col(i)[3]; // cov_xz
485  vMat(1, 1) = hits_ge.col(i)[2]; // y errors
486  vMat(2, 1) = vMat(1, 2) = hits_ge.col(i)[4]; // cov_yz
487  vMat(2, 2) = hits_ge.col(i)[5]; // z errors
488  auto tmp = 1. / radii.block(0, i, 2, 1).norm();
489  jacobXYZtosZ(0, 0) = radii(1, i) * tmp;
490  jacobXYZtosZ(0, 1) = -radii(0, i) * tmp;
491  jacobXYZtosZ(1, 2) = 1.;
492  weights(i) = 1. / ((rotMat * jacobXYZtosZ * vMat * jacobXYZtosZ.transpose() * rotMat.transpose())(
493  1, 1)); // compute the orthogonal weight point by point
494  }
495 
497  for (u_int i = 0; i < n; i++) {
498  r_u(i) = weights(i) * zInSZplane(i);
499  }
500 #ifdef CPP_DUMP
501  std::cout << "CU4\n" << matrixC_u(w, sTotal, varBeta) << std::endl;
502 #endif
505 #ifdef CPP_DUMP
506  std::cout << "I4\n" << iMat << std::endl;
507 #endif
508 
509  riemannFit::VectorNd<n> uVec = iMat * r_u; // obtain the fitted parameters by solving the linear system
510 
511  // line parameters in the system in which the first hit is the origin and with axis along SZ
512  line_results.par << (uVec(1) - uVec(0)) / (sTotal(1) - sTotal(0)), uVec(0);
513  auto idiff = 1. / (sTotal(1) - sTotal(0));
514  line_results.cov << (iMat(0, 0) - 2 * iMat(0, 1) + iMat(1, 1)) * riemannFit::sqr(idiff) +
515  multScatt(sTotal(1) - sTotal(0), bField, fast_fit(2), 2, slope),
516  (iMat(0, 1) - iMat(0, 0)) * idiff, (iMat(0, 1) - iMat(0, 0)) * idiff, iMat(0, 0);
517 
518  // translate to the original SZ system
519  riemannFit::Matrix2d jacobian;
520  jacobian(0, 0) = 1.;
521  jacobian(0, 1) = 0;
522  jacobian(1, 0) = -sTotal(0);
523  jacobian(1, 1) = 1.;
524  line_results.par(1) += -line_results.par(0) * sTotal(0);
525  line_results.cov = jacobian * line_results.cov * jacobian.transpose();
526 
527  // rotate to the original sz system
528  auto tmp = rotMat(0, 0) - line_results.par(0) * rotMat(0, 1);
529  jacobian(1, 1) = 1. / tmp;
530  jacobian(0, 0) = jacobian(1, 1) * jacobian(1, 1);
531  jacobian(0, 1) = 0;
532  jacobian(1, 0) = line_results.par(1) * rotMat(0, 1) * jacobian(0, 0);
533  line_results.par(1) = line_results.par(1) * jacobian(1, 1);
534  line_results.par(0) = (rotMat(0, 1) + line_results.par(0) * rotMat(0, 0)) * jacobian(1, 1);
535  line_results.cov = jacobian * line_results.cov * jacobian.transpose();
536 
537  // compute chi2
538  line_results.chi2 = 0;
539  for (u_int i = 0; i < n; i++) {
540  line_results.chi2 += weights(i) * riemannFit::sqr(zInSZplane(i) - uVec(i));
541  if (i > 0 && i < n - 1)
542  line_results.chi2 += riemannFit::sqr(uVec(i - 1) / (sTotal(i) - sTotal(i - 1)) -
543  uVec(i) * (sTotal(i + 1) - sTotal(i - 1)) /
544  ((sTotal(i + 1) - sTotal(i)) * (sTotal(i) - sTotal(i - 1))) +
545  uVec(i + 1) / (sTotal(i + 1) - sTotal(i))) /
546  varBeta(i);
547  }
548  }
549 
584  template <int n>
586  const Eigen::Matrix<float, 6, 4>& hits_ge,
587  const double bField) {
588  riemannFit::HelixFit helix;
591 
593  karimaki_circle_fit circle;
595  riemannFit::Matrix3d jacobian;
596 
598  lineFit(hits_ge, fast_fit, bField, data, line);
599  circleFit(hits, hits_ge, fast_fit, bField, data, circle);
600 
601  // the circle fit gives k, but here we want p_t, so let's change the parameter and the covariance matrix
602  jacobian << 1., 0, 0, 0, 1., 0, 0, 0,
603  -std::abs(circle.par(2)) * bField / (riemannFit::sqr(circle.par(2)) * circle.par(2));
604  circle.par(2) = bField / std::abs(circle.par(2));
605  circle.cov = jacobian * circle.cov * jacobian.transpose();
606 
607  helix.par << circle.par, line.par;
608  helix.cov = riemannFit::MatrixXd::Zero(5, 5);
609  helix.cov.block(0, 0, 3, 3) = circle.cov;
610  helix.cov.block(3, 3, 2, 2) = line.cov;
611  helix.qCharge = circle.qCharge;
612  helix.chi2_circle = circle.chi2;
613  helix.chi2_line = line.chi2;
614 
615  return helix;
616  }
617 
618 } // namespace brokenline
619 
620 #endif // RecoTracker_PixelTrackFitting_BrokenLine_h
riemannFit::VectorNd< n > zVec
Definition: BrokenLine.h:188
__host__ __device__ void lineFit(const M6xN &hits_ge, const V4 &fast_fit, const double bField, const PreparedBrokenLineData< n > &data, riemannFit::LineFit &line_results)
Performs the Broken Line fit in the straight track case (that is, the fit parameters are only the int...
Definition: BrokenLine.h:464
int qCharge
particle charge
Definition: BrokenLine.h:26
Eigen::Vector4d Vector4d
Definition: FitResult.h:12
Eigen::Matrix< double, 2, N > Matrix2xNd
Definition: FitUtils.h:29
ALPAKA_FN_ACC ALPAKA_FN_INLINE void const M3xN & hits
Definition: BrokenLine.h:158
Eigen::Matrix3d Matrix3d
Definition: FitResult.h:15
int32_t qCharge
particle charge
Definition: FitResult.h:31
#define __host__
T w() const
Eigen::Matrix< double, 2, 3 > Matrix2x3d
Definition: FitUtils.h:49
static const double slope[3]
Vector5d par
(phi,Tip,pt,cotan(theta)),Zip)
Definition: FitResult.h:46
Sin< T >::type sin(const T &t)
Definition: Sin.h:22
Eigen::Matrix< double, N+1, 1 > VectorNplusONEd
Definition: FitUtils.h:39
Vector3d par
parameter: (X0,Y0,R)
Definition: FitResult.h:24
__host__ __device__ double cross2D(const Vector2d &a, const Vector2d &b)
Compute cross product of two 2D vector (assuming z component 0), returning z component of the result...
Definition: FitUtils.h:79
__host__ __device__ void translateKarimaki(karimaki_circle_fit &circle, double x0, double y0, riemannFit::Matrix3d &jacobian)
Changes the Karimäki parameters (and consequently their covariance matrix) under a translation of the...
Definition: BrokenLine.h:98
__host__ __device__ void prepareBrokenLineData(const M3xN &hits, const V4 &fast_fit, const double bField, PreparedBrokenLineData< n > &results)
Computes the data needed for the Broken Line fit procedure that are mainly common for the circle and ...
Definition: BrokenLine.h:151
__host__ __device__ double multScatt(const double &length, const double bField, const double radius, int layer, double slope)
Computes the Coulomb multiple scattering variance of the planar angle.
Definition: BrokenLine.h:54
Eigen::Matrix< double, N, 1 > VectorNd
Definition: FitUtils.h:37
riemannFit::VectorNd< n > sTransverse
total distance traveled in the transverse plane
Definition: BrokenLine.h:28
ALPAKA_FN_ACC ALPAKA_FN_INLINE void const M3xN const V4 const double bField
Definition: BrokenLine.h:158
int32_t qCharge
particle charge
Definition: FitResult.h:58
T sqrt(T t)
Definition: SSEVec.h:19
Eigen::Matrix2d Matrix2d
Definition: FitResult.h:14
Cos< T >::type cos(const T &t)
Definition: Cos.h:22
Eigen::Matrix< double, N, N > MatrixNd
Definition: FitUtils.h:19
constexpr T sqr(const T a)
raise to square.
Definition: FitUtils.h:67
__host__ __device__ void fastFit(const M3xN &hits, V4 &result)
A very fast helix fit.
Definition: BrokenLine.h:259
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
riemannFit::HelixFit helixFit(const riemannFit::Matrix3xNd< n > &hits, const Eigen::Matrix< float, 6, 4 > &hits_ge, const double bField)
Helix fit by three step: -fast pre-fit (see Fast_fit() for further info); -circle fit of the hits pr...
Definition: BrokenLine.h:585
Eigen::Matrix< double, 3, N > Matrix3xNd
Definition: HelixFit.h:30
d
Definition: ztail.py:151
ALPAKA_FN_ACC ALPAKA_FN_INLINE void const M3xN const V4 const double PreparedBrokenLineData< n > & results
Definition: BrokenLine.h:158
Polynomial< 0 > Constant
Definition: Constant.h:6
ALPAKA_FN_ACC ALPAKA_FN_INLINE void const M3xN const V4 & fast_fit
Definition: BrokenLine.h:158
const double fact
__host__ __device__ riemannFit::Matrix2d rotationMatrix(double slope)
Computes the 2D rotation matrix that transforms the line y=slope*x into the line y=0.
Definition: BrokenLine.h:78
riemannFit::Matrix2xNd< n > pointsSZ
Definition: BrokenLine.h:191
Eigen::Vector2d Vector2d
Definition: FitResult.h:10
__host__ __device__ riemannFit::MatrixNd< n > matrixC_u(const riemannFit::VectorNd< n > &weights, const riemannFit::VectorNd< n > &sTotal, const riemannFit::VectorNd< n > &varBeta)
Computes the n-by-n band matrix obtained minimizing the Broken Line&#39;s cost function w...
Definition: BrokenLine.h:216
riemannFit::Matrix2xNd< n > radii
xy data in the system in which the pre-fitted center is the origin
Definition: BrokenLine.h:27
double b
Definition: hdecay.h:120
riemannFit::VectorNd< n > zInSZplane
orthogonal coordinate to the pre-fitted line in the sz plane
Definition: BrokenLine.h:31
Eigen::Matrix< double, N+1, N+1 > MatrixNplusONEd
Definition: FitUtils.h:21
char data[epos_bytes_allocation]
Definition: EPOS_Wrapper.h:80
double a
Definition: hdecay.h:121
Vector2d par
(cotan(theta),Zip)
Definition: FitResult.h:36
riemannFit::VectorNd< n > varBeta
kink angles in the SZ plane
Definition: BrokenLine.h:32
static constexpr float d1
__host__ __device__ void circleFit(const M3xN &hits, const M6xN &hits_ge, const V4 &fast_fit, const double bField, PreparedBrokenLineData< n > &data, karimaki_circle_fit &circle_results)
Performs the Broken Line fit in the curved track case (that is, the fit parameters are the intercepti...
Definition: BrokenLine.h:315
tmp
align.sh
Definition: createJobs.py:716
riemannFit::VectorNd< n > sTotal
total distance traveled (three-dimensional)
Definition: BrokenLine.h:30
data needed for the Broken Line fit procedure.
Definition: BrokenLine.h:25
#define __device__