CMS 3D CMS Logo

HGVHistoProducerAlgo.cc
Go to the documentation of this file.
1 #include <numeric>
2 #include <iomanip>
3 #include <sstream>
4 
8 #include "TMath.h"
9 #include "TLatex.h"
10 #include "TF1.h"
11 
12 using namespace std;
13 
14 //Parameters for the score cut. Later, this will become part of the
15 //configuration parameter for the HGCAL associator.
16 const double ScoreCutLCtoCP_ = 0.1;
17 const double ScoreCutCPtoLC_ = 0.1;
18 const double ScoreCutLCtoSC_ = 0.1;
19 const double ScoreCutSCtoLC_ = 0.1;
20 const double ScoreCutTStoSTSFakeMerge_[] = {0.6, FLT_MIN}; //1.e-09
21 const double ScoreCutSTStoTSPurDup_[] = {0.2, FLT_MIN}; //1.e-11
22 
24  : //parameters for eta
25  minEta_(pset.getParameter<double>("minEta")),
26  maxEta_(pset.getParameter<double>("maxEta")),
27  nintEta_(pset.getParameter<int>("nintEta")),
28  useFabsEta_(pset.getParameter<bool>("useFabsEta")),
29 
30  //parameters for energy
31  minEne_(pset.getParameter<double>("minEne")),
32  maxEne_(pset.getParameter<double>("maxEne")),
33  nintEne_(pset.getParameter<int>("nintEne")),
34 
35  //parameters for pt
36  minPt_(pset.getParameter<double>("minPt")),
37  maxPt_(pset.getParameter<double>("maxPt")),
38  nintPt_(pset.getParameter<int>("nintPt")),
39 
40  //parameters for phi
41  minPhi_(pset.getParameter<double>("minPhi")),
42  maxPhi_(pset.getParameter<double>("maxPhi")),
43  nintPhi_(pset.getParameter<int>("nintPhi")),
44 
45  //parameters for counting mixed hits SimClusters
46  minMixedHitsSimCluster_(pset.getParameter<double>("minMixedHitsSimCluster")),
47  maxMixedHitsSimCluster_(pset.getParameter<double>("maxMixedHitsSimCluster")),
48  nintMixedHitsSimCluster_(pset.getParameter<int>("nintMixedHitsSimCluster")),
49 
50  //parameters for counting mixed hits clusters
51  minMixedHitsCluster_(pset.getParameter<double>("minMixedHitsCluster")),
52  maxMixedHitsCluster_(pset.getParameter<double>("maxMixedHitsCluster")),
53  nintMixedHitsCluster_(pset.getParameter<int>("nintMixedHitsCluster")),
54 
55  //parameters for the total amount of energy clustered by all layer clusters (fraction over CaloParticless)
56  minEneCl_(pset.getParameter<double>("minEneCl")),
57  maxEneCl_(pset.getParameter<double>("maxEneCl")),
58  nintEneCl_(pset.getParameter<int>("nintEneCl")),
59 
60  //parameters for the longitudinal depth barycenter.
61  minLongDepBary_(pset.getParameter<double>("minLongDepBary")),
62  maxLongDepBary_(pset.getParameter<double>("maxLongDepBary")),
63  nintLongDepBary_(pset.getParameter<int>("nintLongDepBary")),
64 
65  //parameters for z positionof vertex plots
66  minZpos_(pset.getParameter<double>("minZpos")),
67  maxZpos_(pset.getParameter<double>("maxZpos")),
68  nintZpos_(pset.getParameter<int>("nintZpos")),
69 
70  //Parameters for the total number of SimClusters per layer
71  minTotNsimClsperlay_(pset.getParameter<double>("minTotNsimClsperlay")),
72  maxTotNsimClsperlay_(pset.getParameter<double>("maxTotNsimClsperlay")),
73  nintTotNsimClsperlay_(pset.getParameter<int>("nintTotNsimClsperlay")),
74 
75  //Parameters for the total number of layer clusters per layer
76  minTotNClsperlay_(pset.getParameter<double>("minTotNClsperlay")),
77  maxTotNClsperlay_(pset.getParameter<double>("maxTotNClsperlay")),
78  nintTotNClsperlay_(pset.getParameter<int>("nintTotNClsperlay")),
79 
80  //Parameters for the energy clustered by layer clusters per layer (fraction over CaloParticless)
81  minEneClperlay_(pset.getParameter<double>("minEneClperlay")),
82  maxEneClperlay_(pset.getParameter<double>("maxEneClperlay")),
83  nintEneClperlay_(pset.getParameter<int>("nintEneClperlay")),
84 
85  //Parameters for the score both for:
86  //1. calo particle to layer clusters association per layer
87  //2. layer cluster to calo particles association per layer
88  minScore_(pset.getParameter<double>("minScore")),
89  maxScore_(pset.getParameter<double>("maxScore")),
90  nintScore_(pset.getParameter<int>("nintScore")),
91 
92  //Parameters for shared energy fraction. That is:
93  //1. Fraction of each of the layer clusters energy related to a
94  //calo particle over that calo particle's energy.
95  //2. Fraction of each of the calo particles energy
96  //related to a layer cluster over that layer cluster's energy.
97  minSharedEneFrac_(pset.getParameter<double>("minSharedEneFrac")),
98  maxSharedEneFrac_(pset.getParameter<double>("maxSharedEneFrac")),
99  nintSharedEneFrac_(pset.getParameter<int>("nintSharedEneFrac")),
100  minTSTSharedEneFracEfficiency_(pset.getParameter<double>("minTSTSharedEneFracEfficiency")),
101 
102  //Same as above for Tracksters
103  minTSTSharedEneFrac_(pset.getParameter<double>("minTSTSharedEneFrac")),
104  maxTSTSharedEneFrac_(pset.getParameter<double>("maxTSTSharedEneFrac")),
105  nintTSTSharedEneFrac_(pset.getParameter<int>("nintTSTSharedEneFrac")),
106 
107  //Parameters for the total number of SimClusters per thickness
108  minTotNsimClsperthick_(pset.getParameter<double>("minTotNsimClsperthick")),
109  maxTotNsimClsperthick_(pset.getParameter<double>("maxTotNsimClsperthick")),
110  nintTotNsimClsperthick_(pset.getParameter<int>("nintTotNsimClsperthick")),
111 
112  //Parameters for the total number of layer clusters per thickness
113  minTotNClsperthick_(pset.getParameter<double>("minTotNClsperthick")),
114  maxTotNClsperthick_(pset.getParameter<double>("maxTotNClsperthick")),
115  nintTotNClsperthick_(pset.getParameter<int>("nintTotNClsperthick")),
116 
117  //Parameters for the total number of cells per per thickness per layer
118  minTotNcellsperthickperlayer_(pset.getParameter<double>("minTotNcellsperthickperlayer")),
119  maxTotNcellsperthickperlayer_(pset.getParameter<double>("maxTotNcellsperthickperlayer")),
120  nintTotNcellsperthickperlayer_(pset.getParameter<int>("nintTotNcellsperthickperlayer")),
121 
122  //Parameters for the distance of cluster cells to seed cell per thickness per layer
123  minDisToSeedperthickperlayer_(pset.getParameter<double>("minDisToSeedperthickperlayer")),
124  maxDisToSeedperthickperlayer_(pset.getParameter<double>("maxDisToSeedperthickperlayer")),
125  nintDisToSeedperthickperlayer_(pset.getParameter<int>("nintDisToSeedperthickperlayer")),
126 
127  //Parameters for the energy weighted distance of cluster cells to seed cell per thickness per layer
128  minDisToSeedperthickperlayerenewei_(pset.getParameter<double>("minDisToSeedperthickperlayerenewei")),
129  maxDisToSeedperthickperlayerenewei_(pset.getParameter<double>("maxDisToSeedperthickperlayerenewei")),
130  nintDisToSeedperthickperlayerenewei_(pset.getParameter<int>("nintDisToSeedperthickperlayerenewei")),
131 
132  //Parameters for the distance of cluster cells to max cell per thickness per layer
133  minDisToMaxperthickperlayer_(pset.getParameter<double>("minDisToMaxperthickperlayer")),
134  maxDisToMaxperthickperlayer_(pset.getParameter<double>("maxDisToMaxperthickperlayer")),
135  nintDisToMaxperthickperlayer_(pset.getParameter<int>("nintDisToMaxperthickperlayer")),
136 
137  //Parameters for the energy weighted distance of cluster cells to max cell per thickness per layer
138  minDisToMaxperthickperlayerenewei_(pset.getParameter<double>("minDisToMaxperthickperlayerenewei")),
139  maxDisToMaxperthickperlayerenewei_(pset.getParameter<double>("maxDisToMaxperthickperlayerenewei")),
140  nintDisToMaxperthickperlayerenewei_(pset.getParameter<int>("nintDisToMaxperthickperlayerenewei")),
141 
142  //Parameters for the distance of seed cell to max cell per thickness per layer
143  minDisSeedToMaxperthickperlayer_(pset.getParameter<double>("minDisSeedToMaxperthickperlayer")),
144  maxDisSeedToMaxperthickperlayer_(pset.getParameter<double>("maxDisSeedToMaxperthickperlayer")),
145  nintDisSeedToMaxperthickperlayer_(pset.getParameter<int>("nintDisSeedToMaxperthickperlayer")),
146 
147  //Parameters for the energy of a cluster per thickness per layer
148  minClEneperthickperlayer_(pset.getParameter<double>("minClEneperthickperlayer")),
149  maxClEneperthickperlayer_(pset.getParameter<double>("maxClEneperthickperlayer")),
150  nintClEneperthickperlayer_(pset.getParameter<int>("nintClEneperthickperlayer")),
151 
152  //Parameters for the energy density of cluster cells per thickness
153  minCellsEneDensperthick_(pset.getParameter<double>("minCellsEneDensperthick")),
154  maxCellsEneDensperthick_(pset.getParameter<double>("maxCellsEneDensperthick")),
155  nintCellsEneDensperthick_(pset.getParameter<int>("nintCellsEneDensperthick")),
156 
157  //Parameters for the total number of Tracksters per event
158  // Always treat one event as two events, one in +z one in -z
159  minTotNTSTs_(pset.getParameter<double>("minTotNTSTs")),
160  maxTotNTSTs_(pset.getParameter<double>("maxTotNTSTs")),
161  nintTotNTSTs_(pset.getParameter<int>("nintTotNTSTs")),
162 
163  //Parameters for the total number of layer clusters in Trackster
164  minTotNClsinTSTs_(pset.getParameter<double>("minTotNClsinTSTs")),
165  maxTotNClsinTSTs_(pset.getParameter<double>("maxTotNClsinTSTs")),
166  nintTotNClsinTSTs_(pset.getParameter<int>("nintTotNClsinTSTs")),
167 
168  //Parameters for the total number of layer clusters in Trackster per layer
169  minTotNClsinTSTsperlayer_(pset.getParameter<double>("minTotNClsinTSTsperlayer")),
170  maxTotNClsinTSTsperlayer_(pset.getParameter<double>("maxTotNClsinTSTsperlayer")),
171  nintTotNClsinTSTsperlayer_(pset.getParameter<int>("nintTotNClsinTSTsperlayer")),
172 
173  //Parameters for the multiplicity of layer clusters in Trackster
174  minMplofLCs_(pset.getParameter<double>("minMplofLCs")),
175  maxMplofLCs_(pset.getParameter<double>("maxMplofLCs")),
176  nintMplofLCs_(pset.getParameter<int>("nintMplofLCs")),
177 
178  //Parameters for cluster size
179  minSizeCLsinTSTs_(pset.getParameter<double>("minSizeCLsinTSTs")),
180  maxSizeCLsinTSTs_(pset.getParameter<double>("maxSizeCLsinTSTs")),
181  nintSizeCLsinTSTs_(pset.getParameter<int>("nintSizeCLsinTSTs")),
182 
183  //Parameters for the energy of a cluster per thickness per layer
184  minClEnepermultiplicity_(pset.getParameter<double>("minClEnepermultiplicity")),
185  maxClEnepermultiplicity_(pset.getParameter<double>("maxClEnepermultiplicity")),
186  nintClEnepermultiplicity_(pset.getParameter<int>("nintClEnepermultiplicity")),
187 
188  //parameters for x
189  minX_(pset.getParameter<double>("minX")),
190  maxX_(pset.getParameter<double>("maxX")),
191  nintX_(pset.getParameter<int>("nintX")),
192 
193  //parameters for y
194  minY_(pset.getParameter<double>("minY")),
195  maxY_(pset.getParameter<double>("maxY")),
196  nintY_(pset.getParameter<int>("nintY")),
197 
198  //parameters for z
199  minZ_(pset.getParameter<double>("minZ")),
200  maxZ_(pset.getParameter<double>("maxZ")),
201  nintZ_(pset.getParameter<int>("nintZ")) {}
202 
204 
206  histograms.lastLayerEEzm = ibook.bookInt("lastLayerEEzm");
207  histograms.lastLayerFHzm = ibook.bookInt("lastLayerFHzm");
208  histograms.maxlayerzm = ibook.bookInt("maxlayerzm");
209  histograms.lastLayerEEzp = ibook.bookInt("lastLayerEEzp");
210  histograms.lastLayerFHzp = ibook.bookInt("lastLayerFHzp");
211  histograms.maxlayerzp = ibook.bookInt("maxlayerzp");
212 }
213 
216  int pdgid,
217  unsigned int layers) {
218  histograms.h_caloparticle_eta[pdgid] =
219  ibook.book1D("N of caloparticle vs eta", "N of caloParticles vs eta", nintEta_, minEta_, maxEta_);
220  histograms.h_caloparticle_eta_Zorigin[pdgid] =
221  ibook.book2D("Eta vs Zorigin", "Eta vs Zorigin", nintEta_, minEta_, maxEta_, nintZpos_, minZpos_, maxZpos_);
222 
223  histograms.h_caloparticle_energy[pdgid] =
224  ibook.book1D("Energy", "Energy of CaloParticles; Energy [GeV]", nintEne_, minEne_, maxEne_);
225  histograms.h_caloparticle_pt[pdgid] = ibook.book1D("Pt", "Pt of CaloParticles", nintPt_, minPt_, maxPt_);
226  histograms.h_caloparticle_phi[pdgid] = ibook.book1D("Phi", "Phi of CaloParticles", nintPhi_, minPhi_, maxPhi_);
227  histograms.h_caloparticle_selfenergy[pdgid] =
228  ibook.book1D("SelfEnergy", "Total Energy of Hits in Sim Clusters (matched)", nintEne_, minEne_, maxEne_);
229  histograms.h_caloparticle_energyDifference[pdgid] =
230  ibook.book1D("EnergyDifference", "(Energy-SelfEnergy)/Energy", 300., -5., 1.);
231 
232  histograms.h_caloparticle_nSimClusters[pdgid] =
233  ibook.book1D("Num Sim Clusters", "Num Sim Clusters in CaloParticles", 100, 0., 100.);
234  histograms.h_caloparticle_nHitsInSimClusters[pdgid] =
235  ibook.book1D("Num Hits in Sim Clusters", "Num Hits in Sim Clusters in CaloParticles", 1000, 0., 1000.);
236  histograms.h_caloparticle_nHitsInSimClusters_matchedtoRecHit[pdgid] = ibook.book1D(
237  "Num Rec-matched Hits in Sim Clusters", "Num Hits in Sim Clusters (matched) in CaloParticles", 1000, 0., 1000.);
238 
239  histograms.h_caloparticle_nHits_matched_energy[pdgid] =
240  ibook.book1D("Energy of Rec-matched Hits", "Energy of Hits in Sim Clusters (matched)", 100, 0., 10.);
241  histograms.h_caloparticle_nHits_matched_energy_layer[pdgid] =
242  ibook.book2D("Energy of Rec-matched Hits vs layer",
243  "Energy of Hits in Sim Clusters (matched) vs layer",
244  2 * layers,
245  0.,
246  (float)2 * layers,
247  100,
248  0.,
249  10.);
250  histograms.h_caloparticle_nHits_matched_energy_layer_1SimCl[pdgid] =
251  ibook.book2D("Energy of Rec-matched Hits vs layer (1SC)",
252  "Energy of Hits only 1 Sim Clusters (matched) vs layer",
253  2 * layers,
254  0.,
255  (float)2 * layers,
256  100,
257  0.,
258  10.);
259  histograms.h_caloparticle_sum_energy_layer[pdgid] =
260  ibook.book2D("Rec-matched Hits Sum Energy vs layer",
261  "Rescaled Sum Energy of Hits in Sim Clusters (matched) vs layer",
262  2 * layers,
263  0.,
264  (float)2 * layers,
265  110,
266  0.,
267  110.);
268  histograms.h_caloparticle_fractions[pdgid] =
269  ibook.book2D("HitFractions", "Hit fractions;Hit fraction;E_{hit}^{2} fraction", 101, 0, 1.01, 100, 0, 1);
270  histograms.h_caloparticle_fractions_weight[pdgid] = ibook.book2D(
271  "HitFractions_weighted", "Hit fractions weighted;Hit fraction;E_{hit}^{2} fraction", 101, 0, 1.01, 100, 0, 1);
272 
273  histograms.h_caloparticle_firstlayer[pdgid] =
274  ibook.book1D("First Layer", "First layer of the CaloParticles", 2 * layers, 0., (float)2 * layers);
275  histograms.h_caloparticle_lastlayer[pdgid] =
276  ibook.book1D("Last Layer", "Last layer of the CaloParticles", 2 * layers, 0., (float)2 * layers);
277  histograms.h_caloparticle_layersnum[pdgid] =
278  ibook.book1D("Number of Layers", "Number of layers of the CaloParticles", 2 * layers, 0., (float)2 * layers);
279  histograms.h_caloparticle_firstlayer_matchedtoRecHit[pdgid] = ibook.book1D(
280  "First Layer (rec-matched hit)", "First layer of the CaloParticles (matched)", 2 * layers, 0., (float)2 * layers);
281  histograms.h_caloparticle_lastlayer_matchedtoRecHit[pdgid] = ibook.book1D(
282  "Last Layer (rec-matched hit)", "Last layer of the CaloParticles (matched)", 2 * layers, 0., (float)2 * layers);
283  histograms.h_caloparticle_layersnum_matchedtoRecHit[pdgid] =
284  ibook.book1D("Number of Layers (rec-matched hit)",
285  "Number of layers of the CaloParticles (matched)",
286  2 * layers,
287  0.,
288  (float)2 * layers);
289 }
290 
293  unsigned int layers,
294  std::vector<int> thicknesses) {
295  //---------------------------------------------------------------------------------------------------------------------------
296  for (unsigned ilayer = 0; ilayer < 2 * layers; ++ilayer) {
297  auto istr1 = std::to_string(ilayer);
298  while (istr1.size() < 2) {
299  istr1.insert(0, "0");
300  }
301  // Make a mapping to the regural layer naming plus z- or z+ for convenience
302  std::string istr2 = "";
303  // first with the -z endcap
304  if (ilayer < layers) {
305  istr2 = std::to_string(ilayer + 1) + " in z-";
306  } else { // then for the +z
307  istr2 = std::to_string(ilayer - (layers - 1)) + " in z+";
308  }
309  histograms.h_simclusternum_perlayer[ilayer] = ibook.book1D("totsimclusternum_layer_" + istr1,
310  "total number of SimClusters for layer " + istr2,
314 
315  } //end of loop over layers
316  //---------------------------------------------------------------------------------------------------------------------------
317  for (std::vector<int>::iterator it = thicknesses.begin(); it != thicknesses.end(); ++it) {
318  auto istr = std::to_string(*it);
319  histograms.h_simclusternum_perthick[(*it)] = ibook.book1D("totsimclusternum_thick_" + istr,
320  "total number of simclusters for thickness " + istr,
324  } //end of loop over thicknesses
325 
326  //---------------------------------------------------------------------------------------------------------------------------
327  //z-
328  histograms.h_mixedhitssimcluster_zminus =
329  ibook.book1D("mixedhitssimcluster_zminus",
330  "N of simclusters that contain hits of more than one kind in z-",
334  //z+
335  histograms.h_mixedhitssimcluster_zplus =
336  ibook.book1D("mixedhitssimcluster_zplus",
337  "N of simclusters that contain hits of more than one kind in z+",
341 }
342 
345  unsigned int layers,
346  std::vector<int> thicknesses) {
347  std::unordered_map<int, dqm::reco::MonitorElement*> denom_layercl_in_simcl_eta_perlayer;
348  denom_layercl_in_simcl_eta_perlayer.clear();
349  std::unordered_map<int, dqm::reco::MonitorElement*> denom_layercl_in_simcl_phi_perlayer;
350  denom_layercl_in_simcl_phi_perlayer.clear();
351  std::unordered_map<int, dqm::reco::MonitorElement*> score_layercl2simcluster_perlayer;
352  score_layercl2simcluster_perlayer.clear();
353  std::unordered_map<int, dqm::reco::MonitorElement*> sharedenergy_layercl2simcluster_perlayer;
354  sharedenergy_layercl2simcluster_perlayer.clear();
355  std::unordered_map<int, dqm::reco::MonitorElement*> energy_vs_score_layercl2simcluster_perlayer;
356  energy_vs_score_layercl2simcluster_perlayer.clear();
357  std::unordered_map<int, dqm::reco::MonitorElement*> num_layercl_in_simcl_eta_perlayer;
358  num_layercl_in_simcl_eta_perlayer.clear();
359  std::unordered_map<int, dqm::reco::MonitorElement*> num_layercl_in_simcl_phi_perlayer;
360  num_layercl_in_simcl_phi_perlayer.clear();
361  std::unordered_map<int, dqm::reco::MonitorElement*> numMerge_layercl_in_simcl_eta_perlayer;
362  numMerge_layercl_in_simcl_eta_perlayer.clear();
363  std::unordered_map<int, dqm::reco::MonitorElement*> numMerge_layercl_in_simcl_phi_perlayer;
364  numMerge_layercl_in_simcl_phi_perlayer.clear();
365  std::unordered_map<int, dqm::reco::MonitorElement*> sharedenergy_layercl2simcluster_vs_eta_perlayer;
366  sharedenergy_layercl2simcluster_vs_eta_perlayer.clear();
367  std::unordered_map<int, dqm::reco::MonitorElement*> sharedenergy_layercl2simcluster_vs_phi_perlayer;
368  sharedenergy_layercl2simcluster_vs_phi_perlayer.clear();
369  std::unordered_map<int, dqm::reco::MonitorElement*> denom_simcluster_eta_perlayer;
370  denom_simcluster_eta_perlayer.clear();
371  std::unordered_map<int, dqm::reco::MonitorElement*> denom_simcluster_phi_perlayer;
372  denom_simcluster_phi_perlayer.clear();
373  std::unordered_map<int, dqm::reco::MonitorElement*> score_simcluster2layercl_perlayer;
374  score_simcluster2layercl_perlayer.clear();
375  std::unordered_map<int, dqm::reco::MonitorElement*> sharedenergy_simcluster2layercl_perlayer;
376  sharedenergy_simcluster2layercl_perlayer.clear();
377  std::unordered_map<int, dqm::reco::MonitorElement*> energy_vs_score_simcluster2layercl_perlayer;
378  energy_vs_score_simcluster2layercl_perlayer.clear();
379  std::unordered_map<int, dqm::reco::MonitorElement*> num_simcluster_eta_perlayer;
380  num_simcluster_eta_perlayer.clear();
381  std::unordered_map<int, dqm::reco::MonitorElement*> num_simcluster_phi_perlayer;
382  num_simcluster_phi_perlayer.clear();
383  std::unordered_map<int, dqm::reco::MonitorElement*> numDup_simcluster_eta_perlayer;
384  numDup_simcluster_eta_perlayer.clear();
385  std::unordered_map<int, dqm::reco::MonitorElement*> numDup_simcluster_phi_perlayer;
386  numDup_simcluster_phi_perlayer.clear();
387  std::unordered_map<int, dqm::reco::MonitorElement*> sharedenergy_simcluster2layercl_vs_eta_perlayer;
388  sharedenergy_simcluster2layercl_vs_eta_perlayer.clear();
389  std::unordered_map<int, dqm::reco::MonitorElement*> sharedenergy_simcluster2layercl_vs_phi_perlayer;
390  sharedenergy_simcluster2layercl_vs_phi_perlayer.clear();
391 
392  //---------------------------------------------------------------------------------------------------------------------------
393  for (unsigned ilayer = 0; ilayer < 2 * layers; ++ilayer) {
394  auto istr1 = std::to_string(ilayer);
395  while (istr1.size() < 2) {
396  istr1.insert(0, "0");
397  }
398  // Make a mapping to the regural layer naming plus z- or z+ for convenience
399  std::string istr2 = "";
400  // first with the -z endcap
401  if (ilayer < layers) {
402  istr2 = std::to_string(ilayer + 1) + " in z-";
403  } else { // then for the +z
404  istr2 = std::to_string(ilayer - (layers - 1)) + " in z+";
405  }
406  //-------------------------------------------------------------------------------------------------------------------------
407  denom_layercl_in_simcl_eta_perlayer[ilayer] =
408  ibook.book1D("Denom_LayerCluster_in_SimCluster_Eta_perlayer" + istr1,
409  "Denom LayerCluster in SimCluster Eta per Layer Cluster for layer " + istr2,
410  nintEta_,
411  minEta_,
412  maxEta_);
413  //-------------------------------------------------------------------------------------------------------------------------
414  denom_layercl_in_simcl_phi_perlayer[ilayer] =
415  ibook.book1D("Denom_LayerCluster_in_SimCluster_Phi_perlayer" + istr1,
416  "Denom LayerCluster in SimCluster Phi per Layer Cluster for layer " + istr2,
417  nintPhi_,
418  minPhi_,
419  maxPhi_);
420  //-------------------------------------------------------------------------------------------------------------------------
421  score_layercl2simcluster_perlayer[ilayer] = ibook.book1D("Score_layercl2simcluster_perlayer" + istr1,
422  "Score of Layer Cluster per SimCluster for layer " + istr2,
423  nintScore_,
424  minScore_,
425  maxScore_);
426  //-------------------------------------------------------------------------------------------------------------------------
427  score_simcluster2layercl_perlayer[ilayer] = ibook.book1D("Score_simcluster2layercl_perlayer" + istr1,
428  "Score of SimCluster per Layer Cluster for layer " + istr2,
429  nintScore_,
430  minScore_,
431  maxScore_);
432  //-------------------------------------------------------------------------------------------------------------------------
433  energy_vs_score_simcluster2layercl_perlayer[ilayer] =
434  ibook.book2D("Energy_vs_Score_simcluster2layer_perlayer" + istr1,
435  "Energy vs Score of SimCluster per Layer Cluster for layer " + istr2,
436  nintScore_,
437  minScore_,
438  maxScore_,
442  //-------------------------------------------------------------------------------------------------------------------------
443  energy_vs_score_layercl2simcluster_perlayer[ilayer] =
444  ibook.book2D("Energy_vs_Score_layer2simcluster_perlayer" + istr1,
445  "Energy vs Score of Layer Cluster per SimCluster for layer " + istr2,
446  nintScore_,
447  minScore_,
448  maxScore_,
452  //-------------------------------------------------------------------------------------------------------------------------
453  sharedenergy_simcluster2layercl_perlayer[ilayer] =
454  ibook.book1D("SharedEnergy_simcluster2layercl_perlayer" + istr1,
455  "Shared Energy of SimCluster per Layer Cluster for layer " + istr2,
459  //-------------------------------------------------------------------------------------------------------------------------
460  sharedenergy_simcluster2layercl_vs_eta_perlayer[ilayer] =
461  ibook.bookProfile("SharedEnergy_simcluster2layercl_vs_eta_perlayer" + istr1,
462  "Shared Energy of SimCluster vs #eta per best Layer Cluster for layer " + istr2,
463  nintEta_,
464  minEta_,
465  maxEta_,
468  //-------------------------------------------------------------------------------------------------------------------------
469  sharedenergy_simcluster2layercl_vs_phi_perlayer[ilayer] =
470  ibook.bookProfile("SharedEnergy_simcluster2layercl_vs_phi_perlayer" + istr1,
471  "Shared Energy of SimCluster vs #phi per best Layer Cluster for layer " + istr2,
472  nintPhi_,
473  minPhi_,
474  maxPhi_,
477  //-------------------------------------------------------------------------------------------------------------------------
478  sharedenergy_layercl2simcluster_perlayer[ilayer] =
479  ibook.book1D("SharedEnergy_layercluster2simcluster_perlayer" + istr1,
480  "Shared Energy of Layer Cluster per SimCluster for layer " + istr2,
484  //-------------------------------------------------------------------------------------------------------------------------
485  sharedenergy_layercl2simcluster_vs_eta_perlayer[ilayer] =
486  ibook.bookProfile("SharedEnergy_layercl2simcluster_vs_eta_perlayer" + istr1,
487  "Shared Energy of LayerCluster vs #eta per best SimCluster for layer " + istr2,
488  nintEta_,
489  minEta_,
490  maxEta_,
493  //-------------------------------------------------------------------------------------------------------------------------
494  sharedenergy_layercl2simcluster_vs_phi_perlayer[ilayer] =
495  ibook.bookProfile("SharedEnergy_layercl2simcluster_vs_phi_perlayer" + istr1,
496  "Shared Energy of LayerCluster vs #phi per best SimCluster for layer " + istr2,
497  nintPhi_,
498  minPhi_,
499  maxPhi_,
502  //-------------------------------------------------------------------------------------------------------------------------
503  num_simcluster_eta_perlayer[ilayer] = ibook.book1D("Num_SimCluster_Eta_perlayer" + istr1,
504  "Num SimCluster Eta per Layer Cluster for layer " + istr2,
505  nintEta_,
506  minEta_,
507  maxEta_);
508  //-------------------------------------------------------------------------------------------------------------------------
509  numDup_simcluster_eta_perlayer[ilayer] =
510  ibook.book1D("NumDup_SimCluster_Eta_perlayer" + istr1,
511  "Num Duplicate SimCluster Eta per Layer Cluster for layer " + istr2,
512  nintEta_,
513  minEta_,
514  maxEta_);
515  //-------------------------------------------------------------------------------------------------------------------------
516  denom_simcluster_eta_perlayer[ilayer] = ibook.book1D("Denom_SimCluster_Eta_perlayer" + istr1,
517  "Denom SimCluster Eta per Layer Cluster for layer " + istr2,
518  nintEta_,
519  minEta_,
520  maxEta_);
521  //-------------------------------------------------------------------------------------------------------------------------
522  num_simcluster_phi_perlayer[ilayer] = ibook.book1D("Num_SimCluster_Phi_perlayer" + istr1,
523  "Num SimCluster Phi per Layer Cluster for layer " + istr2,
524  nintPhi_,
525  minPhi_,
526  maxPhi_);
527  //-------------------------------------------------------------------------------------------------------------------------
528  numDup_simcluster_phi_perlayer[ilayer] =
529  ibook.book1D("NumDup_SimCluster_Phi_perlayer" + istr1,
530  "Num Duplicate SimCluster Phi per Layer Cluster for layer " + istr2,
531  nintPhi_,
532  minPhi_,
533  maxPhi_);
534  //-------------------------------------------------------------------------------------------------------------------------
535  denom_simcluster_phi_perlayer[ilayer] = ibook.book1D("Denom_SimCluster_Phi_perlayer" + istr1,
536  "Denom SimCluster Phi per Layer Cluster for layer " + istr2,
537  nintPhi_,
538  minPhi_,
539  maxPhi_);
540  //-------------------------------------------------------------------------------------------------------------------------
541  num_layercl_in_simcl_eta_perlayer[ilayer] =
542  ibook.book1D("Num_LayerCluster_in_SimCluster_Eta_perlayer" + istr1,
543  "Num LayerCluster Eta per Layer Cluster in SimCluster for layer " + istr2,
544  nintEta_,
545  minEta_,
546  maxEta_);
547  //-------------------------------------------------------------------------------------------------------------------------
548  numMerge_layercl_in_simcl_eta_perlayer[ilayer] =
549  ibook.book1D("NumMerge_LayerCluster_in_SimCluster_Eta_perlayer" + istr1,
550  "Num Merge LayerCluster Eta per Layer Cluster in SimCluster for layer " + istr2,
551  nintEta_,
552  minEta_,
553  maxEta_);
554  //-------------------------------------------------------------------------------------------------------------------------
555  num_layercl_in_simcl_phi_perlayer[ilayer] =
556  ibook.book1D("Num_LayerCluster_in_SimCluster_Phi_perlayer" + istr1,
557  "Num LayerCluster Phi per Layer Cluster in SimCluster for layer " + istr2,
558  nintPhi_,
559  minPhi_,
560  maxPhi_);
561  //-------------------------------------------------------------------------------------------------------------------------
562  numMerge_layercl_in_simcl_phi_perlayer[ilayer] =
563  ibook.book1D("NumMerge_LayerCluster_in_SimCluster_Phi_perlayer" + istr1,
564  "Num Merge LayerCluster Phi per Layer Cluster in SimCluster for layer " + istr2,
565  nintPhi_,
566  minPhi_,
567  maxPhi_);
568 
569  } //end of loop over layers
570 
571  histograms.h_denom_layercl_in_simcl_eta_perlayer.push_back(std::move(denom_layercl_in_simcl_eta_perlayer));
572  histograms.h_denom_layercl_in_simcl_phi_perlayer.push_back(std::move(denom_layercl_in_simcl_phi_perlayer));
573  histograms.h_score_layercl2simcluster_perlayer.push_back(std::move(score_layercl2simcluster_perlayer));
574  histograms.h_sharedenergy_layercl2simcluster_perlayer.push_back(std::move(sharedenergy_layercl2simcluster_perlayer));
575  histograms.h_energy_vs_score_layercl2simcluster_perlayer.push_back(
576  std::move(energy_vs_score_layercl2simcluster_perlayer));
577  histograms.h_num_layercl_in_simcl_eta_perlayer.push_back(std::move(num_layercl_in_simcl_eta_perlayer));
578  histograms.h_num_layercl_in_simcl_phi_perlayer.push_back(std::move(num_layercl_in_simcl_phi_perlayer));
579  histograms.h_numMerge_layercl_in_simcl_eta_perlayer.push_back(std::move(numMerge_layercl_in_simcl_eta_perlayer));
580  histograms.h_numMerge_layercl_in_simcl_phi_perlayer.push_back(std::move(numMerge_layercl_in_simcl_phi_perlayer));
581  histograms.h_sharedenergy_layercl2simcluster_vs_eta_perlayer.push_back(
582  std::move(sharedenergy_layercl2simcluster_vs_eta_perlayer));
583  histograms.h_sharedenergy_layercl2simcluster_vs_phi_perlayer.push_back(
584  std::move(sharedenergy_layercl2simcluster_vs_phi_perlayer));
585  histograms.h_denom_simcluster_eta_perlayer.push_back(std::move(denom_simcluster_eta_perlayer));
586  histograms.h_denom_simcluster_phi_perlayer.push_back(std::move(denom_simcluster_phi_perlayer));
587  histograms.h_score_simcluster2layercl_perlayer.push_back(std::move(score_simcluster2layercl_perlayer));
588  histograms.h_sharedenergy_simcluster2layercl_perlayer.push_back(std::move(sharedenergy_simcluster2layercl_perlayer));
589  histograms.h_energy_vs_score_simcluster2layercl_perlayer.push_back(
590  std::move(energy_vs_score_simcluster2layercl_perlayer));
591  histograms.h_num_simcluster_eta_perlayer.push_back(std::move(num_simcluster_eta_perlayer));
592  histograms.h_num_simcluster_phi_perlayer.push_back(std::move(num_simcluster_phi_perlayer));
593  histograms.h_numDup_simcluster_eta_perlayer.push_back(std::move(numDup_simcluster_eta_perlayer));
594  histograms.h_numDup_simcluster_phi_perlayer.push_back(std::move(numDup_simcluster_phi_perlayer));
595  histograms.h_sharedenergy_simcluster2layercl_vs_eta_perlayer.push_back(
596  std::move(sharedenergy_simcluster2layercl_vs_eta_perlayer));
597  histograms.h_sharedenergy_simcluster2layercl_vs_phi_perlayer.push_back(
598  std::move(sharedenergy_simcluster2layercl_vs_phi_perlayer));
599 }
602  unsigned int layers,
603  std::vector<int> thicknesses,
604  std::string pathtomatbudfile) {
605  //---------------------------------------------------------------------------------------------------------------------------
606  histograms.h_cluster_eta.push_back(
607  ibook.book1D("num_reco_cluster_eta", "N of reco clusters vs eta", nintEta_, minEta_, maxEta_));
608 
609  //---------------------------------------------------------------------------------------------------------------------------
610  //z-
611  histograms.h_mixedhitscluster_zminus.push_back(
612  ibook.book1D("mixedhitscluster_zminus",
613  "N of reco clusters that contain hits of more than one kind in z-",
617  //z+
618  histograms.h_mixedhitscluster_zplus.push_back(
619  ibook.book1D("mixedhitscluster_zplus",
620  "N of reco clusters that contain hits of more than one kind in z+",
624 
625  //---------------------------------------------------------------------------------------------------------------------------
626  //z-
627  histograms.h_energyclustered_zminus.push_back(
628  ibook.book1D("energyclustered_zminus",
629  "percent of total energy clustered by all layer clusters over CaloParticless energy in z-",
630  nintEneCl_,
631  minEneCl_,
632  maxEneCl_));
633  //z+
634  histograms.h_energyclustered_zplus.push_back(
635  ibook.book1D("energyclustered_zplus",
636  "percent of total energy clustered by all layer clusters over CaloParticless energy in z+",
637  nintEneCl_,
638  minEneCl_,
639  maxEneCl_));
640 
641  //---------------------------------------------------------------------------------------------------------------------------
642  //z-
643  std::string subpathtomat = pathtomatbudfile.substr(pathtomatbudfile.find("Validation"));
644  histograms.h_longdepthbarycentre_zminus.push_back(
645  ibook.book1D("longdepthbarycentre_zminus",
646  "The longitudinal depth barycentre in z- for " + subpathtomat,
649  maxLongDepBary_));
650  //z+
651  histograms.h_longdepthbarycentre_zplus.push_back(
652  ibook.book1D("longdepthbarycentre_zplus",
653  "The longitudinal depth barycentre in z+ for " + subpathtomat,
656  maxLongDepBary_));
657 
658  //---------------------------------------------------------------------------------------------------------------------------
659  for (unsigned ilayer = 0; ilayer < 2 * layers; ++ilayer) {
660  auto istr1 = std::to_string(ilayer);
661  while (istr1.size() < 2) {
662  istr1.insert(0, "0");
663  }
664  // Make a mapping to the regural layer naming plus z- or z+ for convenience
665  std::string istr2 = "";
666  // first with the -z endcap
667  if (ilayer < layers) {
668  istr2 = std::to_string(ilayer + 1) + " in z-";
669  } else { // then for the +z
670  istr2 = std::to_string(ilayer - (layers - 1)) + " in z+";
671  }
672  histograms.h_clusternum_perlayer[ilayer] = ibook.book1D("totclusternum_layer_" + istr1,
673  "total number of layer clusters for layer " + istr2,
677  histograms.h_energyclustered_perlayer[ilayer] = ibook.book1D(
678  "energyclustered_perlayer" + istr1,
679  "percent of total energy clustered by layer clusters over CaloParticless energy for layer " + istr2,
683  }
684 
685  //---------------------------------------------------------------------------------------------------------------------------
686  for (std::vector<int>::iterator it = thicknesses.begin(); it != thicknesses.end(); ++it) {
687  auto istr = std::to_string(*it);
688  histograms.h_clusternum_perthick[(*it)] = ibook.book1D("totclusternum_thick_" + istr,
689  "total number of layer clusters for thickness " + istr,
693  }
694  //---------------------------------------------------------------------------------------------------------------------------
695 }
696 
699  unsigned int layers) {
700  //----------------------------------------------------------------------------------------------------------------------------
701  for (unsigned ilayer = 0; ilayer < 2 * layers; ++ilayer) {
702  auto istr1 = std::to_string(ilayer);
703  while (istr1.size() < 2) {
704  istr1.insert(0, "0");
705  }
706  // Make a mapping to the regural layer naming plus z- or z+ for convenience
707  std::string istr2 = "";
708  // first with the -z endcap
709  if (ilayer < layers) {
710  istr2 = std::to_string(ilayer + 1) + " in z-";
711  } else { // then for the +z
712  istr2 = std::to_string(ilayer - (layers - 1)) + " in z+";
713  }
714  histograms.h_score_layercl2caloparticle_perlayer[ilayer] =
715  ibook.book1D("Score_layercl2caloparticle_perlayer" + istr1,
716  "Score of Layer Cluster per CaloParticle for layer " + istr2,
717  nintScore_,
718  minScore_,
719  maxScore_);
720  histograms.h_score_caloparticle2layercl_perlayer[ilayer] =
721  ibook.book1D("Score_caloparticle2layercl_perlayer" + istr1,
722  "Score of CaloParticle per Layer Cluster for layer " + istr2,
723  nintScore_,
724  minScore_,
725  maxScore_);
726  histograms.h_energy_vs_score_caloparticle2layercl_perlayer[ilayer] =
727  ibook.book2D("Energy_vs_Score_caloparticle2layer_perlayer" + istr1,
728  "Energy vs Score of CaloParticle per Layer Cluster for layer " + istr2,
729  nintScore_,
730  minScore_,
731  maxScore_,
735  histograms.h_energy_vs_score_layercl2caloparticle_perlayer[ilayer] =
736  ibook.book2D("Energy_vs_Score_layer2caloparticle_perlayer" + istr1,
737  "Energy vs Score of Layer Cluster per CaloParticle Layer for layer " + istr2,
738  nintScore_,
739  minScore_,
740  maxScore_,
744  histograms.h_sharedenergy_caloparticle2layercl_perlayer[ilayer] =
745  ibook.book1D("SharedEnergy_caloparticle2layercl_perlayer" + istr1,
746  "Shared Energy of CaloParticle per Layer Cluster for layer " + istr2,
750  histograms.h_sharedenergy_caloparticle2layercl_vs_eta_perlayer[ilayer] =
751  ibook.bookProfile("SharedEnergy_caloparticle2layercl_vs_eta_perlayer" + istr1,
752  "Shared Energy of CaloParticle vs #eta per best Layer Cluster for layer " + istr2,
753  nintEta_,
754  minEta_,
755  maxEta_,
758  histograms.h_sharedenergy_caloparticle2layercl_vs_phi_perlayer[ilayer] =
759  ibook.bookProfile("SharedEnergy_caloparticle2layercl_vs_phi_perlayer" + istr1,
760  "Shared Energy of CaloParticle vs #phi per best Layer Cluster for layer " + istr2,
761  nintPhi_,
762  minPhi_,
763  maxPhi_,
766  histograms.h_sharedenergy_layercl2caloparticle_perlayer[ilayer] =
767  ibook.book1D("SharedEnergy_layercluster2caloparticle_perlayer" + istr1,
768  "Shared Energy of Layer Cluster per Layer Calo Particle for layer " + istr2,
772  histograms.h_sharedenergy_layercl2caloparticle_vs_eta_perlayer[ilayer] =
773  ibook.bookProfile("SharedEnergy_layercl2caloparticle_vs_eta_perlayer" + istr1,
774  "Shared Energy of LayerCluster vs #eta per best Calo Particle for layer " + istr2,
775  nintEta_,
776  minEta_,
777  maxEta_,
780  histograms.h_sharedenergy_layercl2caloparticle_vs_phi_perlayer[ilayer] =
781  ibook.bookProfile("SharedEnergy_layercl2caloparticle_vs_phi_perlayer" + istr1,
782  "Shared Energy of LayerCluster vs #phi per best Calo Particle for layer " + istr2,
783  nintPhi_,
784  minPhi_,
785  maxPhi_,
788  histograms.h_num_caloparticle_eta_perlayer[ilayer] =
789  ibook.book1D("Num_CaloParticle_Eta_perlayer" + istr1,
790  "Num CaloParticle Eta per Layer Cluster for layer " + istr2,
791  nintEta_,
792  minEta_,
793  maxEta_);
794  histograms.h_numDup_caloparticle_eta_perlayer[ilayer] =
795  ibook.book1D("NumDup_CaloParticle_Eta_perlayer" + istr1,
796  "Num Duplicate CaloParticle Eta per Layer Cluster for layer " + istr2,
797  nintEta_,
798  minEta_,
799  maxEta_);
800  histograms.h_denom_caloparticle_eta_perlayer[ilayer] =
801  ibook.book1D("Denom_CaloParticle_Eta_perlayer" + istr1,
802  "Denom CaloParticle Eta per Layer Cluster for layer " + istr2,
803  nintEta_,
804  minEta_,
805  maxEta_);
806  histograms.h_num_caloparticle_phi_perlayer[ilayer] =
807  ibook.book1D("Num_CaloParticle_Phi_perlayer" + istr1,
808  "Num CaloParticle Phi per Layer Cluster for layer " + istr2,
809  nintPhi_,
810  minPhi_,
811  maxPhi_);
812  histograms.h_numDup_caloparticle_phi_perlayer[ilayer] =
813  ibook.book1D("NumDup_CaloParticle_Phi_perlayer" + istr1,
814  "Num Duplicate CaloParticle Phi per Layer Cluster for layer " + istr2,
815  nintPhi_,
816  minPhi_,
817  maxPhi_);
818  histograms.h_denom_caloparticle_phi_perlayer[ilayer] =
819  ibook.book1D("Denom_CaloParticle_Phi_perlayer" + istr1,
820  "Denom CaloParticle Phi per Layer Cluster for layer " + istr2,
821  nintPhi_,
822  minPhi_,
823  maxPhi_);
824  histograms.h_num_layercl_eta_perlayer[ilayer] =
825  ibook.book1D("Num_LayerCluster_Eta_perlayer" + istr1,
826  "Num LayerCluster Eta per Layer Cluster for layer " + istr2,
827  nintEta_,
828  minEta_,
829  maxEta_);
830  histograms.h_numMerge_layercl_eta_perlayer[ilayer] =
831  ibook.book1D("NumMerge_LayerCluster_Eta_perlayer" + istr1,
832  "Num Merge LayerCluster Eta per Layer Cluster for layer " + istr2,
833  nintEta_,
834  minEta_,
835  maxEta_);
836  histograms.h_denom_layercl_eta_perlayer[ilayer] =
837  ibook.book1D("Denom_LayerCluster_Eta_perlayer" + istr1,
838  "Denom LayerCluster Eta per Layer Cluster for layer " + istr2,
839  nintEta_,
840  minEta_,
841  maxEta_);
842  histograms.h_num_layercl_phi_perlayer[ilayer] =
843  ibook.book1D("Num_LayerCluster_Phi_perlayer" + istr1,
844  "Num LayerCluster Phi per Layer Cluster for layer " + istr2,
845  nintPhi_,
846  minPhi_,
847  maxPhi_);
848  histograms.h_numMerge_layercl_phi_perlayer[ilayer] =
849  ibook.book1D("NumMerge_LayerCluster_Phi_perlayer" + istr1,
850  "Num Merge LayerCluster Phi per Layer Cluster for layer " + istr2,
851  nintPhi_,
852  minPhi_,
853  maxPhi_);
854  histograms.h_denom_layercl_phi_perlayer[ilayer] =
855  ibook.book1D("Denom_LayerCluster_Phi_perlayer" + istr1,
856  "Denom LayerCluster Phi per Layer Cluster for layer " + istr2,
857  nintPhi_,
858  minPhi_,
859  maxPhi_);
860  }
861  //---------------------------------------------------------------------------------------------------------------------------
862 }
863 
866  unsigned int layers,
867  std::vector<int> thicknesses) {
868  //----------------------------------------------------------------------------------------------------------------------------
869  for (unsigned ilayer = 0; ilayer < 2 * layers; ++ilayer) {
870  auto istr1 = std::to_string(ilayer);
871  while (istr1.size() < 2) {
872  istr1.insert(0, "0");
873  }
874  // Make a mapping to the regural layer naming plus z- or z+ for convenience
875  std::string istr2 = "";
876  // first with the -z endcap
877  if (ilayer < layers) {
878  istr2 = std::to_string(ilayer + 1) + " in z-";
879  } else { // then for the +z
880  istr2 = std::to_string(ilayer - (layers - 1)) + " in z+";
881  }
882  histograms.h_cellAssociation_perlayer[ilayer] =
883  ibook.book1D("cellAssociation_perlayer" + istr1, "Cell Association for layer " + istr2, 5, -4., 1.);
884  histograms.h_cellAssociation_perlayer[ilayer]->setBinLabel(2, "TN(purity)");
885  histograms.h_cellAssociation_perlayer[ilayer]->setBinLabel(3, "FN(ineff.)");
886  histograms.h_cellAssociation_perlayer[ilayer]->setBinLabel(4, "FP(fake)");
887  histograms.h_cellAssociation_perlayer[ilayer]->setBinLabel(5, "TP(eff.)");
888  }
889  //----------------------------------------------------------------------------------------------------------------------------
890  for (std::vector<int>::iterator it = thicknesses.begin(); it != thicknesses.end(); ++it) {
891  auto istr = std::to_string(*it);
892  histograms.h_cellsenedens_perthick[(*it)] = ibook.book1D("cellsenedens_thick_" + istr,
893  "energy density of cluster cells for thickness " + istr,
897  }
898  //----------------------------------------------------------------------------------------------------------------------------
899  //Not all combination exists but should keep them all for cross checking reason.
900  for (std::vector<int>::iterator it = thicknesses.begin(); it != thicknesses.end(); ++it) {
901  for (unsigned ilayer = 0; ilayer < 2 * layers; ++ilayer) {
902  auto istr1 = std::to_string(*it);
903  auto istr2 = std::to_string(ilayer);
904  while (istr2.size() < 2)
905  istr2.insert(0, "0");
906  auto istr = istr1 + "_" + istr2;
907  // Make a mapping to the regural layer naming plus z- or z+ for convenience
908  std::string istr3 = "";
909  // first with the -z endcap
910  if (ilayer < layers) {
911  istr3 = std::to_string(ilayer + 1) + " in z- ";
912  } else { // then for the +z
913  istr3 = std::to_string(ilayer - (layers - 1)) + " in z+ ";
914  }
915  //---
916  histograms.h_cellsnum_perthickperlayer[istr] =
917  ibook.book1D("cellsnum_perthick_perlayer_" + istr,
918  "total number of cells for layer " + istr3 + " for thickness " + istr1,
922  //---
923  histograms.h_distancetoseedcell_perthickperlayer[istr] =
924  ibook.book1D("distancetoseedcell_perthickperlayer_" + istr,
925  "distance of cluster cells to seed cell for layer " + istr3 + " for thickness " + istr1,
929  //---
930  histograms.h_distancetoseedcell_perthickperlayer_eneweighted[istr] = ibook.book1D(
931  "distancetoseedcell_perthickperlayer_eneweighted_" + istr,
932  "energy weighted distance of cluster cells to seed cell for layer " + istr3 + " for thickness " + istr1,
936  //---
937  histograms.h_distancetomaxcell_perthickperlayer[istr] =
938  ibook.book1D("distancetomaxcell_perthickperlayer_" + istr,
939  "distance of cluster cells to max cell for layer " + istr3 + " for thickness " + istr1,
943  //---
944  histograms.h_distancetomaxcell_perthickperlayer_eneweighted[istr] = ibook.book1D(
945  "distancetomaxcell_perthickperlayer_eneweighted_" + istr,
946  "energy weighted distance of cluster cells to max cell for layer " + istr3 + " for thickness " + istr1,
950  //---
951  histograms.h_distancebetseedandmaxcell_perthickperlayer[istr] =
952  ibook.book1D("distancebetseedandmaxcell_perthickperlayer_" + istr,
953  "distance of seed cell to max cell for layer " + istr3 + " for thickness " + istr1,
957  //---
958  histograms.h_distancebetseedandmaxcellvsclusterenergy_perthickperlayer[istr] = ibook.book2D(
959  "distancebetseedandmaxcellvsclusterenergy_perthickperlayer_" + istr,
960  "distance of seed cell to max cell vs cluster energy for layer " + istr3 + " for thickness " + istr1,
967  }
968  }
969 }
970 //----------------------------------------------------------------------------------------------------------------------------
971 
973  std::unordered_map<int, dqm::reco::MonitorElement*> clusternum_in_trackster_perlayer;
974  clusternum_in_trackster_perlayer.clear();
975 
976  for (unsigned ilayer = 0; ilayer < 2 * layers; ++ilayer) {
977  auto istr1 = std::to_string(ilayer);
978  while (istr1.size() < 2) {
979  istr1.insert(0, "0");
980  }
981  // Make a mapping to the regural layer naming plus z- or z+ for convenience
982  std::string istr2 = "";
983  // first with the -z endcap
984  if (ilayer < layers) {
985  istr2 = std::to_string(ilayer + 1) + " in z-";
986  } else { // then for the +z
987  istr2 = std::to_string(ilayer - (layers - 1)) + " in z+";
988  }
989 
990  clusternum_in_trackster_perlayer[ilayer] = ibook.book1D("clusternum_in_trackster_perlayer" + istr1,
991  "Number of layer clusters in Trackster for layer " + istr2,
995  }
996 
997  histograms.h_clusternum_in_trackster_perlayer.push_back(std::move(clusternum_in_trackster_perlayer));
998 
999  histograms.h_tracksternum.push_back(ibook.book1D(
1000  "tottracksternum", "total number of Tracksters;# of Tracksters", nintTotNTSTs_, minTotNTSTs_, maxTotNTSTs_));
1001 
1002  histograms.h_conttracksternum.push_back(ibook.book1D(
1003  "conttracksternum", "number of Tracksters with 3 contiguous layers", nintTotNTSTs_, minTotNTSTs_, maxTotNTSTs_));
1004 
1005  histograms.h_nonconttracksternum.push_back(ibook.book1D("nonconttracksternum",
1006  "number of Tracksters without 3 contiguous layers",
1007  nintTotNTSTs_,
1008  minTotNTSTs_,
1009  maxTotNTSTs_));
1010 
1011  histograms.h_clusternum_in_trackster.push_back(
1012  ibook.book1D("clusternum_in_trackster",
1013  "total number of layer clusters in Trackster;# of LayerClusters",
1017 
1018  histograms.h_clusternum_in_trackster_vs_layer.push_back(ibook.bookProfile(
1019  "clusternum_in_trackster_vs_layer",
1020  "Profile of 2d layer clusters in Trackster vs layer number;layer number;<2D LayerClusters in Trackster>",
1021  2 * layers,
1022  0.,
1023  2. * layers,
1026 
1027  histograms.h_multiplicityOfLCinTST.push_back(
1028  ibook.book2D("multiplicityOfLCinTST",
1029  "Multiplicity vs Layer cluster size in Tracksters;LayerCluster multiplicity in Tracksters;Cluster "
1030  "size (n_{hits})",
1031  nintMplofLCs_,
1032  minMplofLCs_,
1033  maxMplofLCs_,
1037 
1038  histograms.h_multiplicity_numberOfEventsHistogram.push_back(ibook.book1D("multiplicity_numberOfEventsHistogram",
1039  "multiplicity numberOfEventsHistogram",
1040  nintMplofLCs_,
1041  minMplofLCs_,
1042  maxMplofLCs_));
1043 
1044  histograms.h_multiplicity_zminus_numberOfEventsHistogram.push_back(
1045  ibook.book1D("multiplicity_zminus_numberOfEventsHistogram",
1046  "multiplicity numberOfEventsHistogram in z-",
1047  nintMplofLCs_,
1048  minMplofLCs_,
1049  maxMplofLCs_));
1050 
1051  histograms.h_multiplicity_zplus_numberOfEventsHistogram.push_back(
1052  ibook.book1D("multiplicity_zplus_numberOfEventsHistogram",
1053  "multiplicity numberOfEventsHistogram in z+",
1054  nintMplofLCs_,
1055  minMplofLCs_,
1056  maxMplofLCs_));
1057 
1058  histograms.h_multiplicityOfLCinTST_vs_layercluster_zminus.push_back(
1059  ibook.book2D("multiplicityOfLCinTST_vs_layercluster_zminus",
1060  "Multiplicity vs Layer number in z-;LayerCluster multiplicity in Tracksters;layer number",
1061  nintMplofLCs_,
1062  minMplofLCs_,
1063  maxMplofLCs_,
1064  layers,
1065  0.,
1066  (float)layers));
1067 
1068  histograms.h_multiplicityOfLCinTST_vs_layercluster_zplus.push_back(
1069  ibook.book2D("multiplicityOfLCinTST_vs_layercluster_zplus",
1070  "Multiplicity vs Layer number in z+;LayerCluster multiplicity in Tracksters;layer number",
1071  nintMplofLCs_,
1072  minMplofLCs_,
1073  maxMplofLCs_,
1074  layers,
1075  0.,
1076  (float)layers));
1077 
1078  histograms.h_multiplicityOfLCinTST_vs_layerclusterenergy.push_back(
1079  ibook.book2D("multiplicityOfLCinTST_vs_layerclusterenergy",
1080  "Multiplicity vs Layer cluster energy;LayerCluster multiplicity in Tracksters;Cluster energy [GeV]",
1081  nintMplofLCs_,
1082  minMplofLCs_,
1083  maxMplofLCs_,
1087 
1088  histograms.h_trackster_pt.push_back(
1089  ibook.book1D("trackster_pt", "Pt of the Trackster;Trackster p_{T} [GeV]", nintPt_, minPt_, maxPt_));
1090  histograms.h_trackster_eta.push_back(
1091  ibook.book1D("trackster_eta", "Eta of the Trackster;Trackster #eta", nintEta_, minEta_, maxEta_));
1092  histograms.h_trackster_phi.push_back(
1093  ibook.book1D("trackster_phi", "Phi of the Trackster;Trackster #phi", nintPhi_, minPhi_, maxPhi_));
1094  histograms.h_trackster_energy.push_back(
1095  ibook.book1D("trackster_energy", "Energy of the Trackster;Trackster energy [GeV]", nintEne_, minEne_, maxEne_));
1096  histograms.h_trackster_x.push_back(
1097  ibook.book1D("trackster_x", "X position of the Trackster;Trackster x", nintX_, minX_, maxX_));
1098  histograms.h_trackster_y.push_back(
1099  ibook.book1D("trackster_y", "Y position of the Trackster;Trackster y", nintY_, minY_, maxY_));
1100  histograms.h_trackster_z.push_back(
1101  ibook.book1D("trackster_z", "Z position of the Trackster;Trackster z", nintZ_, minZ_, maxZ_));
1102  histograms.h_trackster_firstlayer.push_back(ibook.book1D(
1103  "trackster_firstlayer", "First layer of the Trackster;Trackster First Layer", 2 * layers, 0., (float)2 * layers));
1104  histograms.h_trackster_lastlayer.push_back(ibook.book1D(
1105  "trackster_lastlayer", "Last layer of the Trackster;Trackster Last Layer", 2 * layers, 0., (float)2 * layers));
1106  histograms.h_trackster_layersnum.push_back(
1107  ibook.book1D("trackster_layersnum",
1108  "Number of layers of the Trackster;Trackster Number of Layers",
1109  2 * layers,
1110  0.,
1111  (float)2 * layers));
1112 }
1113 
1116  const validationType valType) {
1117  const string ref[] = {"caloparticle", "simtrackster", "simtrackster_fromCP"};
1118  const string refT[] = {"CaloParticle", "SimTrackster", "SimTrackster_fromCP"};
1119  // Must be in sync with labels in PostProcessorHGCAL_cfi.py
1120  const string val[] = {"_Link", "_PR"};
1121  //const string val[] = {"_CP", "_PR", "_Link"};
1122  const string rtos = ";score Reco-to-Sim";
1123  const string stor = ";score Sim-to-Reco";
1124  const string shREnFr = ";shared Reco energy fraction";
1125  const string shSEnFr = ";shared Sim energy fraction";
1126 
1127  histograms.h_score_trackster2caloparticle[valType].push_back(
1128  ibook.book1D("Score_trackster2" + ref[valType],
1129  "Score of Trackster per " + refT[valType] + rtos,
1130  nintScore_,
1131  minScore_,
1132  maxScore_));
1133  histograms.h_score_trackster2bestCaloparticle[valType].push_back(
1134  ibook.book1D("ScoreFake_trackster2" + ref[valType],
1135  "Score of Trackster per best " + refT[valType] + rtos,
1136  nintScore_,
1137  minScore_,
1138  maxScore_));
1139  histograms.h_score_trackster2bestCaloparticle2[valType].push_back(
1140  ibook.book1D("ScoreMerge_trackster2" + ref[valType],
1141  "Score of Trackster per 2^{nd} best " + refT[valType] + rtos,
1142  nintScore_,
1143  minScore_,
1144  maxScore_));
1145  histograms.h_score_caloparticle2trackster[valType].push_back(
1146  ibook.book1D("Score_" + ref[valType] + "2trackster",
1147  "Score of " + refT[valType] + " per Trackster" + stor,
1148  nintScore_,
1149  minScore_,
1150  maxScore_));
1151  histograms.h_scorePur_caloparticle2trackster[valType].push_back(
1152  ibook.book1D("ScorePur_" + ref[valType] + "2trackster",
1153  "Score of " + refT[valType] + " per best Trackster" + stor,
1154  nintScore_,
1155  minScore_,
1156  maxScore_));
1157  histograms.h_scoreDupl_caloparticle2trackster[valType].push_back(
1158  ibook.book1D("ScoreDupl_" + ref[valType] + "2trackster",
1159  "Score of " + refT[valType] + " per 2^{nd} best Trackster" + stor,
1160  nintScore_,
1161  minScore_,
1162  maxScore_));
1163  histograms.h_energy_vs_score_trackster2caloparticle[valType].push_back(
1164  ibook.book2D("Energy_vs_Score_trackster2" + refT[valType],
1165  "Energy vs Score of Trackster per " + refT[valType] + rtos + shREnFr,
1166  nintScore_,
1167  minScore_,
1168  maxScore_,
1172  histograms.h_energy_vs_score_trackster2bestCaloparticle[valType].push_back(
1173  ibook.book2D("Energy_vs_Score_trackster2best" + refT[valType],
1174  "Energy vs Score of Trackster per best " + refT[valType] + rtos + shREnFr,
1175  nintScore_,
1176  minScore_,
1177  maxScore_,
1181  histograms.h_energy_vs_score_trackster2bestCaloparticle2[valType].push_back(
1182  ibook.book2D("Energy_vs_Score_trackster2secBest" + refT[valType],
1183  "Energy vs Score of Trackster per 2^{nd} best " + refT[valType] + rtos + shREnFr,
1184  nintScore_,
1185  minScore_,
1186  maxScore_,
1190  histograms.h_energy_vs_score_caloparticle2trackster[valType].push_back(
1191  ibook.book2D("Energy_vs_Score_" + ref[valType] + "2Trackster",
1192  "Energy vs Score of " + refT[valType] + " per Trackster" + stor + shSEnFr,
1193  nintScore_,
1194  minScore_,
1195  maxScore_,
1199  histograms.h_energy_vs_score_caloparticle2bestTrackster[valType].push_back(
1200  ibook.book2D("Energy_vs_Score_" + ref[valType] + "2bestTrackster",
1201  "Energy vs Score of " + refT[valType] + " per best Trackster" + stor + shSEnFr,
1202  nintScore_,
1203  minScore_,
1204  maxScore_,
1208  histograms.h_energy_vs_score_caloparticle2bestTrackster2[valType].push_back(
1209  ibook.book2D("Energy_vs_Score_" + ref[valType] + "2secBestTrackster",
1210  "Energy vs Score of " + refT[valType] + " per 2^{nd} best Trackster" + stor + shSEnFr,
1211  nintScore_,
1212  minScore_,
1213  maxScore_,
1217 
1218  // Back to all Tracksters
1219  // eta
1220  histograms.h_num_trackster_eta[valType].push_back(ibook.book1D(
1221  "Num_Trackster_Eta" + val[valType], "Num Trackster Eta per Trackster;#eta", nintEta_, minEta_, maxEta_));
1222  histograms.h_numMerge_trackster_eta[valType].push_back(ibook.book1D("NumMerge_Trackster_Eta" + val[valType],
1223  "Num Merge Trackster Eta per Trackster;#eta",
1224  nintEta_,
1225  minEta_,
1226  maxEta_));
1227  histograms.h_denom_trackster_eta[valType].push_back(ibook.book1D(
1228  "Denom_Trackster_Eta" + val[valType], "Denom Trackster Eta per Trackster;#eta", nintEta_, minEta_, maxEta_));
1229  // phi
1230  histograms.h_num_trackster_phi[valType].push_back(ibook.book1D(
1231  "Num_Trackster_Phi" + val[valType], "Num Trackster Phi per Trackster;#phi", nintPhi_, minPhi_, maxPhi_));
1232  histograms.h_numMerge_trackster_phi[valType].push_back(ibook.book1D("NumMerge_Trackster_Phi" + val[valType],
1233  "Num Merge Trackster Phi per Trackster;#phi",
1234  nintPhi_,
1235  minPhi_,
1236  maxPhi_));
1237  histograms.h_denom_trackster_phi[valType].push_back(ibook.book1D(
1238  "Denom_Trackster_Phi" + val[valType], "Denom Trackster Phi per Trackster;#phi", nintPhi_, minPhi_, maxPhi_));
1239  // energy
1240  histograms.h_num_trackster_en[valType].push_back(ibook.book1D("Num_Trackster_Energy" + val[valType],
1241  "Num Trackster Energy per Trackster;energy [GeV]",
1242  nintEne_,
1243  minEne_,
1244  maxEne_));
1245  histograms.h_numMerge_trackster_en[valType].push_back(
1246  ibook.book1D("NumMerge_Trackster_Energy" + val[valType],
1247  "Num Merge Trackster Energy per Trackster;energy [GeV]",
1248  nintEne_,
1249  minEne_,
1250  maxEne_));
1251  histograms.h_denom_trackster_en[valType].push_back(ibook.book1D("Denom_Trackster_Energy" + val[valType],
1252  "Denom Trackster Energy per Trackster;energy [GeV]",
1253  nintEne_,
1254  minEne_,
1255  maxEne_));
1256  // pT
1257  histograms.h_num_trackster_pt[valType].push_back(ibook.book1D(
1258  "Num_Trackster_Pt" + val[valType], "Num Trackster p_{T} per Trackster;p_{T} [GeV]", nintPt_, minPt_, maxPt_));
1259  histograms.h_numMerge_trackster_pt[valType].push_back(
1260  ibook.book1D("NumMerge_Trackster_Pt" + val[valType],
1261  "Num Merge Trackster p_{T} per Trackster;p_{T} [GeV]",
1262  nintPt_,
1263  minPt_,
1264  maxPt_));
1265  histograms.h_denom_trackster_pt[valType].push_back(ibook.book1D(
1266  "Denom_Trackster_Pt" + val[valType], "Denom Trackster p_{T} per Trackster;p_{T} [GeV]", nintPt_, minPt_, maxPt_));
1267 
1268  histograms.h_sharedenergy_trackster2caloparticle[valType].push_back(
1269  ibook.book1D("SharedEnergy_trackster2" + ref[valType],
1270  "Shared Energy of Trackster per " + refT[valType] + shREnFr,
1274  histograms.h_sharedenergy_trackster2bestCaloparticle[valType].push_back(
1275  ibook.book1D("SharedEnergy_trackster2" + ref[valType] + "_assoc",
1276  "Shared Energy of Trackster per best " + refT[valType] + shREnFr,
1280  histograms.h_sharedenergy_trackster2bestCaloparticle_vs_eta[valType].push_back(
1281  ibook.bookProfile("SharedEnergy_trackster2" + ref[valType] + "_assoc_vs_eta",
1282  "Shared Energy of Trackster vs #eta per best " + refT[valType] + ";Trackster #eta" + shREnFr,
1283  nintEta_,
1284  minEta_,
1285  maxEta_,
1288  histograms.h_sharedenergy_trackster2bestCaloparticle_vs_phi[valType].push_back(
1289  ibook.bookProfile("SharedEnergy_trackster2" + ref[valType] + "_assoc_vs_phi",
1290  "Shared Energy of Trackster vs #phi per best " + refT[valType] + ";Trackster #phi" + shREnFr,
1291  nintPhi_,
1292  minPhi_,
1293  maxPhi_,
1296  histograms.h_sharedenergy_trackster2bestCaloparticle2[valType].push_back(
1297  ibook.book1D("SharedEnergy_trackster2" + ref[valType] + "_assoc2",
1298  "Shared Energy of Trackster per 2^{nd} best " + refT[valType] + shREnFr,
1302 
1303  histograms.h_sharedenergy_caloparticle2trackster[valType].push_back(
1304  ibook.book1D("SharedEnergy_" + ref[valType] + "2trackster",
1305  "Shared Energy of " + refT[valType] + " per Trackster" + shSEnFr,
1309  histograms.h_sharedenergy_caloparticle2trackster_assoc[valType].push_back(
1310  ibook.book1D("SharedEnergy_" + ref[valType] + "2trackster_assoc",
1311  "Shared Energy of " + refT[valType] + " per best Trackster" + shSEnFr,
1315  histograms.h_sharedenergy_caloparticle2trackster_assoc_vs_eta[valType].push_back(ibook.bookProfile(
1316  "SharedEnergy_" + ref[valType] + "2trackster_assoc_vs_eta",
1317  "Shared Energy of " + refT[valType] + " vs #eta per best Trackster;" + refT[valType] + " #eta" + shSEnFr,
1318  nintEta_,
1319  minEta_,
1320  maxEta_,
1323  histograms.h_sharedenergy_caloparticle2trackster_assoc_vs_phi[valType].push_back(ibook.bookProfile(
1324  "SharedEnergy_" + ref[valType] + "2trackster_assoc_vs_phi",
1325  "Shared Energy of " + refT[valType] + " vs #phi per best Trackster;" + refT[valType] + " #phi" + shSEnFr,
1326  nintPhi_,
1327  minPhi_,
1328  maxPhi_,
1331  histograms.h_sharedenergy_caloparticle2trackster_assoc2[valType].push_back(
1332  ibook.book1D("SharedEnergy_" + ref[valType] + "2trackster_assoc2",
1333  "Shared Energy of " + refT[valType] + " per 2^{nd} best Trackster;" + shSEnFr,
1337 
1338  // eta
1339  histograms.h_numEff_caloparticle_eta[valType].push_back(
1340  ibook.book1D("NumEff_" + refT[valType] + "_Eta",
1341  "Num Efficiency " + refT[valType] + " Eta per Trackster;#eta",
1342  nintEta_,
1343  minEta_,
1344  maxEta_));
1345  histograms.h_num_caloparticle_eta[valType].push_back(
1346  ibook.book1D("Num_" + refT[valType] + "_Eta",
1347  "Num Purity " + refT[valType] + " Eta per Trackster;#eta",
1348  nintEta_,
1349  minEta_,
1350  maxEta_));
1351  histograms.h_numDup_trackster_eta[valType].push_back(ibook.book1D(
1352  "NumDup_Trackster_Eta" + val[valType], "Num Duplicate Trackster vs Eta;#eta", nintEta_, minEta_, maxEta_));
1353  histograms.h_denom_caloparticle_eta[valType].push_back(
1354  ibook.book1D("Denom_" + refT[valType] + "_Eta",
1355  "Denom " + refT[valType] + " Eta per Trackster;#eta",
1356  nintEta_,
1357  minEta_,
1358  maxEta_));
1359  // phi
1360  histograms.h_numEff_caloparticle_phi[valType].push_back(
1361  ibook.book1D("NumEff_" + refT[valType] + "_Phi",
1362  "Num Efficiency " + refT[valType] + " Phi per Trackster;#phi",
1363  nintPhi_,
1364  minPhi_,
1365  maxPhi_));
1366  histograms.h_num_caloparticle_phi[valType].push_back(
1367  ibook.book1D("Num_" + refT[valType] + "_Phi",
1368  "Num Purity " + refT[valType] + " Phi per Trackster;#phi",
1369  nintPhi_,
1370  minPhi_,
1371  maxPhi_));
1372  histograms.h_numDup_trackster_phi[valType].push_back(ibook.book1D(
1373  "NumDup_Trackster_Phi" + val[valType], "Num Duplicate Trackster vs Phi;#phi", nintPhi_, minPhi_, maxPhi_));
1374  histograms.h_denom_caloparticle_phi[valType].push_back(
1375  ibook.book1D("Denom_" + refT[valType] + "_Phi",
1376  "Denom " + refT[valType] + " Phi per Trackster;#phi",
1377  nintPhi_,
1378  minPhi_,
1379  maxPhi_));
1380  // energy
1381  histograms.h_numEff_caloparticle_en[valType].push_back(
1382  ibook.book1D("NumEff_" + refT[valType] + "_Energy",
1383  "Num Efficiency " + refT[valType] + " Energy per Trackster;energy [GeV]",
1384  nintEne_,
1385  minEne_,
1386  maxEne_));
1387  histograms.h_num_caloparticle_en[valType].push_back(
1388  ibook.book1D("Num_" + refT[valType] + "_Energy",
1389  "Num Purity " + refT[valType] + " Energy per Trackster;energy [GeV]",
1390  nintEne_,
1391  minEne_,
1392  maxEne_));
1393  histograms.h_numDup_trackster_en[valType].push_back(ibook.book1D("NumDup_Trackster_Energy" + val[valType],
1394  "Num Duplicate Trackster vs Energy;energy [GeV]",
1395  nintEne_,
1396  minEne_,
1397  maxEne_));
1398  histograms.h_denom_caloparticle_en[valType].push_back(
1399  ibook.book1D("Denom_" + refT[valType] + "_Energy",
1400  "Denom " + refT[valType] + " Energy per Trackster;energy [GeV]",
1401  nintEne_,
1402  minEne_,
1403  maxEne_));
1404  // pT
1405  histograms.h_numEff_caloparticle_pt[valType].push_back(
1406  ibook.book1D("NumEff_" + refT[valType] + "_Pt",
1407  "Num Efficiency " + refT[valType] + " p_{T} per Trackster;p_{T} [GeV]",
1408  nintPt_,
1409  minPt_,
1410  maxPt_));
1411  histograms.h_num_caloparticle_pt[valType].push_back(
1412  ibook.book1D("Num_" + refT[valType] + "_Pt",
1413  "Num Purity " + refT[valType] + " p_{T} per Trackster;p_{T} [GeV]",
1414  nintPt_,
1415  minPt_,
1416  maxPt_));
1417  histograms.h_numDup_trackster_pt[valType].push_back(ibook.book1D(
1418  "NumDup_Trackster_Pt" + val[valType], "Num Duplicate Trackster vs p_{T};p_{T} [GeV]", nintPt_, minPt_, maxPt_));
1419  histograms.h_denom_caloparticle_pt[valType].push_back(
1420  ibook.book1D("Denom_" + refT[valType] + "_Pt",
1421  "Denom " + refT[valType] + " p_{T} per Trackster;p_{T} [GeV]",
1422  nintPt_,
1423  minPt_,
1424  maxPt_));
1425 }
1426 
1428  // Save some info straight from geometry to avoid mistakes from updates
1429  //----------- TODO ----------------------------------------------------------
1430  // For now values returned for 'lastLayerFHzp': '104', 'lastLayerFHzm': '52' are not the one expected.
1431  // Will come back to this when there will be info in CMSSW to put in DQM file.
1432  histograms.lastLayerEEzm->Fill(recHitTools_->lastLayerEE());
1433  histograms.lastLayerFHzm->Fill(recHitTools_->lastLayerFH());
1434  histograms.maxlayerzm->Fill(layers);
1435  histograms.lastLayerEEzp->Fill(recHitTools_->lastLayerEE() + layers);
1436  histograms.lastLayerFHzp->Fill(recHitTools_->lastLayerFH() + layers);
1437  histograms.maxlayerzp->Fill(layers + layers);
1438 }
1439 
1441  int pdgid,
1442  const CaloParticle& caloParticle,
1443  std::vector<SimVertex> const& simVertices,
1444  unsigned int layers,
1445  std::unordered_map<DetId, const HGCRecHit*> const& hitMap) const {
1446  const auto eta = getEta(caloParticle.eta());
1447  if (histograms.h_caloparticle_eta.count(pdgid)) {
1448  histograms.h_caloparticle_eta.at(pdgid)->Fill(eta);
1449  }
1450  if (histograms.h_caloparticle_eta_Zorigin.count(pdgid)) {
1451  histograms.h_caloparticle_eta_Zorigin.at(pdgid)->Fill(
1452  simVertices.at(caloParticle.g4Tracks()[0].vertIndex()).position().z(), eta);
1453  }
1454 
1455  if (histograms.h_caloparticle_energy.count(pdgid)) {
1456  histograms.h_caloparticle_energy.at(pdgid)->Fill(caloParticle.energy());
1457  }
1458  if (histograms.h_caloparticle_pt.count(pdgid)) {
1459  histograms.h_caloparticle_pt.at(pdgid)->Fill(caloParticle.pt());
1460  }
1461  if (histograms.h_caloparticle_phi.count(pdgid)) {
1462  histograms.h_caloparticle_phi.at(pdgid)->Fill(caloParticle.phi());
1463  }
1464 
1465  if (histograms.h_caloparticle_nSimClusters.count(pdgid)) {
1466  histograms.h_caloparticle_nSimClusters.at(pdgid)->Fill(caloParticle.simClusters().size());
1467 
1468  int simHits = 0;
1469  int minLayerId = 999;
1470  int maxLayerId = 0;
1471 
1472  int simHits_matched = 0;
1473  int minLayerId_matched = 999;
1474  int maxLayerId_matched = 0;
1475 
1476  float energy = 0.;
1477  std::map<int, double> totenergy_layer;
1478 
1479  float hitEnergyWeight_invSum = 0;
1480  std::vector<std::pair<DetId, float>> haf_cp;
1481  for (const auto& sc : caloParticle.simClusters()) {
1482  LogDebug("HGCalValidator") << " This sim cluster has " << sc->hits_and_fractions().size() << " simHits and "
1483  << sc->energy() << " energy. " << std::endl;
1484  simHits += sc->hits_and_fractions().size();
1485  for (auto const& h_and_f : sc->hits_and_fractions()) {
1486  const auto hitDetId = h_and_f.first;
1487  const int layerId =
1488  recHitTools_->getLayerWithOffset(hitDetId) + layers * ((recHitTools_->zside(hitDetId) + 1) >> 1) - 1;
1489  // set to 0 if matched RecHit not found
1490  int layerId_matched_min = 999;
1491  int layerId_matched_max = 0;
1492  std::unordered_map<DetId, const HGCRecHit*>::const_iterator itcheck = hitMap.find(hitDetId);
1493  if (itcheck != hitMap.end()) {
1494  layerId_matched_min = layerId;
1495  layerId_matched_max = layerId;
1496  simHits_matched++;
1497 
1498  const auto hitEn = itcheck->second->energy();
1499  hitEnergyWeight_invSum += pow(hitEn, 2);
1500  const auto hitFr = h_and_f.second;
1501  const auto hitEnFr = hitEn * hitFr;
1502  energy += hitEnFr;
1503  histograms.h_caloparticle_nHits_matched_energy.at(pdgid)->Fill(hitEnFr);
1504  histograms.h_caloparticle_nHits_matched_energy_layer.at(pdgid)->Fill(layerId, hitEnFr);
1505 
1506  if (totenergy_layer.find(layerId) != totenergy_layer.end()) {
1507  totenergy_layer[layerId] = totenergy_layer.at(layerId) + hitEn;
1508  } else {
1509  totenergy_layer.emplace(layerId, hitEn);
1510  }
1511  if (caloParticle.simClusters().size() == 1)
1512  histograms.h_caloparticle_nHits_matched_energy_layer_1SimCl.at(pdgid)->Fill(layerId, hitEnFr);
1513 
1514  auto found = std::find_if(std::begin(haf_cp),
1515  std::end(haf_cp),
1516  [&hitDetId](const std::pair<DetId, float>& v) { return v.first == hitDetId; });
1517  if (found != haf_cp.end())
1518  found->second += hitFr;
1519  else
1520  haf_cp.emplace_back(hitDetId, hitFr);
1521 
1522  } else {
1523  LogDebug("HGCalValidator") << " matched to RecHit NOT found !" << std::endl;
1524  }
1525 
1526  minLayerId = std::min(minLayerId, layerId);
1527  maxLayerId = std::max(maxLayerId, layerId);
1528  minLayerId_matched = std::min(minLayerId_matched, layerId_matched_min);
1529  maxLayerId_matched = std::max(maxLayerId_matched, layerId_matched_max);
1530  }
1531  LogDebug("HGCalValidator") << std::endl;
1532  } // End loop over SimClusters of CaloParticle
1533  if (hitEnergyWeight_invSum)
1534  hitEnergyWeight_invSum = 1 / hitEnergyWeight_invSum;
1535 
1536  histograms.h_caloparticle_firstlayer.at(pdgid)->Fill(minLayerId);
1537  histograms.h_caloparticle_lastlayer.at(pdgid)->Fill(maxLayerId);
1538  histograms.h_caloparticle_layersnum.at(pdgid)->Fill(int(maxLayerId - minLayerId));
1539 
1540  histograms.h_caloparticle_firstlayer_matchedtoRecHit.at(pdgid)->Fill(minLayerId_matched);
1541  histograms.h_caloparticle_lastlayer_matchedtoRecHit.at(pdgid)->Fill(maxLayerId_matched);
1542  histograms.h_caloparticle_layersnum_matchedtoRecHit.at(pdgid)->Fill(int(maxLayerId_matched - minLayerId_matched));
1543 
1544  histograms.h_caloparticle_nHitsInSimClusters.at(pdgid)->Fill((float)simHits);
1545  histograms.h_caloparticle_nHitsInSimClusters_matchedtoRecHit.at(pdgid)->Fill((float)simHits_matched);
1546  histograms.h_caloparticle_selfenergy.at(pdgid)->Fill((float)energy);
1547  histograms.h_caloparticle_energyDifference.at(pdgid)->Fill((float)1. - energy / caloParticle.energy());
1548 
1549  //Calculate sum energy per-layer
1550  auto i = totenergy_layer.begin();
1551  double sum_energy = 0.0;
1552  while (i != totenergy_layer.end()) {
1553  sum_energy += i->second;
1554  histograms.h_caloparticle_sum_energy_layer.at(pdgid)->Fill(i->first, sum_energy / caloParticle.energy() * 100.);
1555  i++;
1556  }
1557 
1558  for (auto const& haf : haf_cp) {
1559  const auto hitEn = hitMap.find(haf.first)->second->energy();
1560  const auto weight = pow(hitEn, 2);
1561  histograms.h_caloparticle_fractions.at(pdgid)->Fill(haf.second, weight * hitEnergyWeight_invSum);
1562  histograms.h_caloparticle_fractions_weight.at(pdgid)->Fill(haf.second, weight * hitEnergyWeight_invSum, weight);
1563  }
1564  }
1565 }
1566 
1567 void HGVHistoProducerAlgo::HGVHistoProducerAlgo::fill_simCluster_histos(const Histograms& histograms,
1568  std::vector<SimCluster> const& simClusters,
1569  unsigned int layers,
1570  std::vector<int> thicknesses) const {
1571  //Each event to be treated as two events: an event in +ve endcap,
1572  //plus another event in -ve endcap. In this spirit there will be
1573  //a layer variable (layerid) that maps the layers in :
1574  //-z: 0->49
1575  //+z: 50->99
1576 
1577  //To keep track of total num of simClusters per layer
1578  //tnscpl[layerid]
1579  std::vector<int> tnscpl(1000, 0); //tnscpl.clear(); tnscpl.reserve(1000);
1580 
1581  //To keep track of the total num of clusters per thickness in plus and in minus endcaps
1582  std::map<std::string, int> tnscpthplus;
1583  tnscpthplus.clear();
1584  std::map<std::string, int> tnscpthminus;
1585  tnscpthminus.clear();
1586  //At the beginning of the event all layers should be initialized to zero total clusters per thickness
1587  for (std::vector<int>::iterator it = thicknesses.begin(); it != thicknesses.end(); ++it) {
1588  tnscpthplus.insert(std::pair<std::string, int>(std::to_string(*it), 0));
1589  tnscpthminus.insert(std::pair<std::string, int>(std::to_string(*it), 0));
1590  }
1591  //To keep track of the total num of simClusters with mixed thickness hits per event
1592  tnscpthplus.insert(std::pair<std::string, int>("mixed", 0));
1593  tnscpthminus.insert(std::pair<std::string, int>("mixed", 0));
1594 
1595  //loop through simClusters
1596  for (const auto& sc : simClusters) {
1597  //Auxillary variables to count the number of different kind of hits in each simCluster
1598  int nthhits120p = 0;
1599  int nthhits200p = 0;
1600  int nthhits300p = 0;
1601  int nthhitsscintp = 0;
1602  int nthhits120m = 0;
1603  int nthhits200m = 0;
1604  int nthhits300m = 0;
1605  int nthhitsscintm = 0;
1606  //For the hits thickness of the layer cluster.
1607  double thickness = 0.;
1608  //To keep track if we added the simCluster in a specific layer
1609  std::vector<int> occurenceSCinlayer(1000, 0); //[layerid][0 if not added]
1610 
1611  //loop through hits of the simCluster
1612  for (const auto& hAndF : sc.hits_and_fractions()) {
1613  const DetId sh_detid = hAndF.first;
1614 
1615  //The layer the cluster belongs to. As mentioned in the mapping above, it takes into account -z and +z.
1616  int layerid =
1617  recHitTools_->getLayerWithOffset(sh_detid) + layers * ((recHitTools_->zside(sh_detid) + 1) >> 1) - 1;
1618  //zside that the current cluster belongs to.
1619  int zside = recHitTools_->zside(sh_detid);
1620 
1621  //add the simCluster to the relevant layer. A SimCluster may give contribution to several layers.
1622  if (occurenceSCinlayer[layerid] == 0) {
1623  tnscpl[layerid]++;
1624  }
1625  occurenceSCinlayer[layerid]++;
1626 
1627  if (sh_detid.det() == DetId::Forward || sh_detid.det() == DetId::HGCalEE || sh_detid.det() == DetId::HGCalHSi) {
1628  thickness = recHitTools_->getSiThickness(sh_detid);
1629  } else if (sh_detid.det() == DetId::HGCalHSc) {
1630  thickness = -1;
1631  } else {
1632  LogDebug("HGCalValidator") << "These are HGCal simClusters, you shouldn't be here !!! " << layerid << "\n";
1633  continue;
1634  }
1635 
1636  if ((thickness == 120.) && (zside > 0.)) {
1637  nthhits120p++;
1638  } else if ((thickness == 120.) && (zside < 0.)) {
1639  nthhits120m++;
1640  } else if ((thickness == 200.) && (zside > 0.)) {
1641  nthhits200p++;
1642  } else if ((thickness == 200.) && (zside < 0.)) {
1643  nthhits200m++;
1644  } else if ((thickness == 300.) && (zside > 0.)) {
1645  nthhits300p++;
1646  } else if ((thickness == 300.) && (zside < 0.)) {
1647  nthhits300m++;
1648  } else if ((thickness == -1) && (zside > 0.)) {
1649  nthhitsscintp++;
1650  } else if ((thickness == -1) && (zside < 0.)) {
1651  nthhitsscintm++;
1652  } else { //assert(0);
1653  LogDebug("HGCalValidator")
1654  << " You are running a geometry that contains thicknesses different than the normal ones. "
1655  << "\n";
1656  }
1657 
1658  } //end of loop through hits
1659 
1660  //Check for simultaneously having hits of different kind. Checking at least two combinations is sufficient.
1661  if ((nthhits120p != 0 && nthhits200p != 0) || (nthhits120p != 0 && nthhits300p != 0) ||
1662  (nthhits120p != 0 && nthhitsscintp != 0) || (nthhits200p != 0 && nthhits300p != 0) ||
1663  (nthhits200p != 0 && nthhitsscintp != 0) || (nthhits300p != 0 && nthhitsscintp != 0)) {
1664  tnscpthplus["mixed"]++;
1665  } else if ((nthhits120p != 0 || nthhits200p != 0 || nthhits300p != 0 || nthhitsscintp != 0)) {
1666  //This is a cluster with hits of one kind
1667  tnscpthplus[std::to_string((int)thickness)]++;
1668  }
1669  if ((nthhits120m != 0 && nthhits200m != 0) || (nthhits120m != 0 && nthhits300m != 0) ||
1670  (nthhits120m != 0 && nthhitsscintm != 0) || (nthhits200m != 0 && nthhits300m != 0) ||
1671  (nthhits200m != 0 && nthhitsscintm != 0) || (nthhits300m != 0 && nthhitsscintm != 0)) {
1672  tnscpthminus["mixed"]++;
1673  } else if ((nthhits120m != 0 || nthhits200m != 0 || nthhits300m != 0 || nthhitsscintm != 0)) {
1674  //This is a cluster with hits of one kind
1675  tnscpthminus[std::to_string((int)thickness)]++;
1676  }
1677 
1678  } //end of loop through SimClusters of the event
1679 
1680  //Per layer : Loop 0->99
1681  for (unsigned ilayer = 0; ilayer < layers * 2; ++ilayer)
1682  if (histograms.h_simclusternum_perlayer.count(ilayer))
1683  histograms.h_simclusternum_perlayer.at(ilayer)->Fill(tnscpl[ilayer]);
1684 
1685  //Per thickness
1686  for (std::vector<int>::iterator it = thicknesses.begin(); it != thicknesses.end(); ++it) {
1687  if (histograms.h_simclusternum_perthick.count(*it)) {
1688  histograms.h_simclusternum_perthick.at(*it)->Fill(tnscpthplus[std::to_string(*it)]);
1689  histograms.h_simclusternum_perthick.at(*it)->Fill(tnscpthminus[std::to_string(*it)]);
1690  }
1691  }
1692  //Mixed thickness clusters
1693  histograms.h_mixedhitssimcluster_zplus->Fill(tnscpthplus["mixed"]);
1694  histograms.h_mixedhitssimcluster_zminus->Fill(tnscpthminus["mixed"]);
1695 }
1696 
1697 void HGVHistoProducerAlgo::HGVHistoProducerAlgo::fill_simClusterAssociation_histos(
1698  const Histograms& histograms,
1699  const int count,
1702  edm::Handle<std::vector<SimCluster>> simClusterHandle,
1703  std::vector<SimCluster> const& simClusters,
1704  std::vector<size_t> const& sCIndices,
1705  const std::vector<float>& mask,
1706  std::unordered_map<DetId, const HGCRecHit*> const& hitMap,
1707  unsigned int layers,
1708  const hgcal::RecoToSimCollectionWithSimClusters& scsInLayerClusterMap,
1709  const hgcal::SimToRecoCollectionWithSimClusters& lcsInSimClusterMap) const {
1710  //Each event to be treated as two events: an event in +ve endcap,
1711  //plus another event in -ve endcap. In this spirit there will be
1712  //a layer variable (layerid) that maps the layers in :
1713  //-z: 0->49
1714  //+z: 50->99
1715 
1716  //Will add some general plots on the specific mask in the future.
1717 
1718  layerClusters_to_SimClusters(histograms,
1719  count,
1720  clusterHandle,
1721  clusters,
1722  simClusterHandle,
1723  simClusters,
1724  sCIndices,
1725  mask,
1726  hitMap,
1727  layers,
1728  scsInLayerClusterMap,
1729  lcsInSimClusterMap);
1730 }
1731 
1733  const int count,
1734  const reco::CaloCluster& cluster) const {
1735  const auto eta = getEta(cluster.eta());
1736  histograms.h_cluster_eta[count]->Fill(eta);
1737 }
1738 
1742  edm::Handle<std::vector<CaloParticle>> caloParticleHandle,
1743  std::vector<CaloParticle> const& cP,
1744  std::vector<size_t> const& cPIndices,
1745  std::vector<size_t> const& cPSelectedIndices,
1746  std::unordered_map<DetId, const HGCRecHit*> const& hitMap,
1747  unsigned int layers,
1748  const hgcal::RecoToSimCollection& cpsInLayerClusterMap,
1749  const hgcal::SimToRecoCollection& cPOnLayerMap) const {
1750  const auto nLayerClusters = clusters.size();
1751 
1752  std::unordered_map<DetId, std::vector<HGVHistoProducerAlgo::detIdInfoInCluster>> detIdToCaloParticleId_Map;
1753  std::unordered_map<DetId, std::vector<HGVHistoProducerAlgo::detIdInfoInCluster>> detIdToLayerClusterId_Map;
1754 
1755  // The association has to be done in an all-vs-all fashion.
1756  // For this reason use the full set of CaloParticles, with the only filter on bx
1757  for (const auto& cpId : cPIndices) {
1758  for (const auto& simCluster : cP[cpId].simClusters()) {
1759  for (const auto& it_haf : simCluster->hits_and_fractions()) {
1760  const DetId hitid = (it_haf.first);
1761  if (hitMap.find(hitid) != hitMap.end()) {
1762  if (detIdToCaloParticleId_Map.find(hitid) == detIdToCaloParticleId_Map.end()) {
1763  detIdToCaloParticleId_Map[hitid] = std::vector<HGVHistoProducerAlgo::detIdInfoInCluster>();
1764  detIdToCaloParticleId_Map[hitid].emplace_back(
1765  HGVHistoProducerAlgo::detIdInfoInCluster{cpId, it_haf.second});
1766  } else {
1767  auto findHitIt =
1768  std::find(detIdToCaloParticleId_Map[hitid].begin(),
1769  detIdToCaloParticleId_Map[hitid].end(),
1771  cpId, 0.f}); // only the first element is used for the matching (overloaded operator==)
1772  if (findHitIt != detIdToCaloParticleId_Map[hitid].end())
1773  findHitIt->fraction += it_haf.second;
1774  else
1775  detIdToCaloParticleId_Map[hitid].emplace_back(
1776  HGVHistoProducerAlgo::detIdInfoInCluster{cpId, it_haf.second});
1777  }
1778  }
1779  }
1780  }
1781  }
1782 
1783  for (unsigned int lcId = 0; lcId < nLayerClusters; ++lcId) {
1784  const auto& hits_and_fractions = clusters[lcId].hitsAndFractions();
1785  const auto numberOfHitsInLC = hits_and_fractions.size();
1786 
1787  // This vector will store, for each hit in the Layercluster, the index of
1788  // the CaloParticle that contributed the most, in terms of energy, to it.
1789  // Special values are:
1790  //
1791  // -2 --> the reconstruction fraction of the RecHit is 0 (used in the past to monitor Halo Hits)
1792  // -3 --> same as before with the added condition that no CaloParticle has been linked to this RecHit
1793  // -1 --> the reco fraction is >0, but no CaloParticle has been linked to it
1794  // >=0 --> index of the linked CaloParticle
1795  std::vector<int> hitsToCaloParticleId(numberOfHitsInLC);
1796  const auto firstHitDetId = hits_and_fractions[0].first;
1797  int lcLayerId =
1798  recHitTools_->getLayerWithOffset(firstHitDetId) + layers * ((recHitTools_->zside(firstHitDetId) + 1) >> 1) - 1;
1799 
1800  // This will store the fraction of the CaloParticle energy shared with the LayerCluster: e_shared/cp_energy
1801  std::unordered_map<unsigned, float> CPEnergyInLC;
1802 
1803  for (unsigned int iHit = 0; iHit < numberOfHitsInLC; iHit++) {
1804  const DetId rh_detid = hits_and_fractions[iHit].first;
1805  const auto rhFraction = hits_and_fractions[iHit].second;
1806 
1807  std::unordered_map<DetId, const HGCRecHit*>::const_iterator itcheck = hitMap.find(rh_detid);
1808  const HGCRecHit* hit = itcheck->second;
1809 
1810  if (detIdToLayerClusterId_Map.find(rh_detid) == detIdToLayerClusterId_Map.end()) {
1811  detIdToLayerClusterId_Map[rh_detid] = std::vector<HGVHistoProducerAlgo::detIdInfoInCluster>();
1812  }
1813  detIdToLayerClusterId_Map[rh_detid].emplace_back(HGVHistoProducerAlgo::detIdInfoInCluster{lcId, rhFraction});
1814 
1815  const auto& hit_find_in_CP = detIdToCaloParticleId_Map.find(rh_detid);
1816 
1817  // if the fraction is zero or the hit does not belong to any calo
1818  // particle, set the caloparticleId for the hit to -1 this will
1819  // contribute to the number of noise hits
1820 
1821  // MR Remove the case in which the fraction is 0, since this could be a
1822  // real hit that has been marked as halo.
1823  if (rhFraction == 0.) {
1824  hitsToCaloParticleId[iHit] = -2;
1825  }
1826  if (hit_find_in_CP == detIdToCaloParticleId_Map.end()) {
1827  hitsToCaloParticleId[iHit] -= 1;
1828  } else {
1829  auto maxCPEnergyInLC = 0.f;
1830  auto maxCPId = -1;
1831  for (auto& h : hit_find_in_CP->second) {
1832  const auto iCP = h.clusterId;
1833  CPEnergyInLC[iCP] += h.fraction * hit->energy();
1834  // Keep track of which CaloParticle contributed the most, in terms
1835  // of energy, to this specific LayerCluster.
1836  if (CPEnergyInLC[iCP] > maxCPEnergyInLC) {
1837  maxCPEnergyInLC = CPEnergyInLC[iCP];
1838  maxCPId = iCP;
1839  }
1840  }
1841  hitsToCaloParticleId[iHit] = maxCPId;
1842  }
1843  histograms.h_cellAssociation_perlayer.at(lcLayerId)->Fill(
1844  hitsToCaloParticleId[iHit] > 0. ? 0. : hitsToCaloParticleId[iHit]);
1845  } // End loop over hits on a LayerCluster
1846 
1847  } // End of loop over LayerClusters
1848 
1849  // Fill the plots to compute the different metrics linked to
1850  // reco-level, namely fake-rate an merge-rate. In this loop should *not*
1851  // restrict only to the selected caloParaticles.
1852  for (unsigned int lcId = 0; lcId < nLayerClusters; ++lcId) {
1853  const auto firstHitDetId = (clusters[lcId].hitsAndFractions())[0].first;
1854  const int lcLayerId =
1855  recHitTools_->getLayerWithOffset(firstHitDetId) + layers * ((recHitTools_->zside(firstHitDetId) + 1) >> 1) - 1;
1856  histograms.h_denom_layercl_eta_perlayer.at(lcLayerId)->Fill(clusters[lcId].eta());
1857  histograms.h_denom_layercl_phi_perlayer.at(lcLayerId)->Fill(clusters[lcId].phi());
1858  //
1859  const edm::Ref<reco::CaloClusterCollection> lcRef(clusterHandle, lcId);
1860  const auto& cpsIt = cpsInLayerClusterMap.find(lcRef);
1861  if (cpsIt == cpsInLayerClusterMap.end())
1862  continue;
1863 
1864  const auto lc_en = clusters[lcId].energy();
1865  const auto& cps = cpsIt->val;
1866  if (lc_en == 0. && !cps.empty()) {
1867  for (const auto& cpPair : cps)
1868  histograms.h_score_layercl2caloparticle_perlayer.at(lcLayerId)->Fill(cpPair.second);
1869  continue;
1870  }
1871  for (const auto& cpPair : cps) {
1872  LogDebug("HGCalValidator") << "layerCluster Id: \t" << lcId << "\t CP id: \t" << cpPair.first.index()
1873  << "\t score \t" << cpPair.second << std::endl;
1874  histograms.h_score_layercl2caloparticle_perlayer.at(lcLayerId)->Fill(cpPair.second);
1875  auto const& cp_linked =
1876  std::find_if(std::begin(cPOnLayerMap[cpPair.first]),
1877  std::end(cPOnLayerMap[cpPair.first]),
1878  [&lcRef](const std::pair<edm::Ref<reco::CaloClusterCollection>, std::pair<float, float>>& p) {
1879  return p.first == lcRef;
1880  });
1881  if (cp_linked ==
1882  cPOnLayerMap[cpPair.first].end()) // This should never happen by construction of the association maps
1883  continue;
1884  histograms.h_sharedenergy_layercl2caloparticle_perlayer.at(lcLayerId)->Fill(cp_linked->second.first / lc_en,
1885  lc_en);
1886  histograms.h_energy_vs_score_layercl2caloparticle_perlayer.at(lcLayerId)->Fill(cpPair.second,
1887  cp_linked->second.first / lc_en);
1888  }
1889  const auto assoc =
1890  std::count_if(std::begin(cps), std::end(cps), [](const auto& obj) { return obj.second < ScoreCutLCtoCP_; });
1891  if (assoc) {
1892  histograms.h_num_layercl_eta_perlayer.at(lcLayerId)->Fill(clusters[lcId].eta());
1893  histograms.h_num_layercl_phi_perlayer.at(lcLayerId)->Fill(clusters[lcId].phi());
1894  if (assoc > 1) {
1895  histograms.h_numMerge_layercl_eta_perlayer.at(lcLayerId)->Fill(clusters[lcId].eta());
1896  histograms.h_numMerge_layercl_phi_perlayer.at(lcLayerId)->Fill(clusters[lcId].phi());
1897  }
1898  const auto& best = std::min_element(
1899  std::begin(cps), std::end(cps), [](const auto& obj1, const auto& obj2) { return obj1.second < obj2.second; });
1900  const auto& best_cp_linked =
1901  std::find_if(std::begin(cPOnLayerMap[best->first]),
1902  std::end(cPOnLayerMap[best->first]),
1903  [&lcRef](const std::pair<edm::Ref<reco::CaloClusterCollection>, std::pair<float, float>>& p) {
1904  return p.first == lcRef;
1905  });
1906  if (best_cp_linked ==
1907  cPOnLayerMap[best->first].end()) // This should never happen by construction of the association maps
1908  continue;
1909  histograms.h_sharedenergy_layercl2caloparticle_vs_eta_perlayer.at(lcLayerId)->Fill(
1910  clusters[lcId].eta(), best_cp_linked->second.first / lc_en);
1911  histograms.h_sharedenergy_layercl2caloparticle_vs_phi_perlayer.at(lcLayerId)->Fill(
1912  clusters[lcId].phi(), best_cp_linked->second.first / lc_en);
1913  }
1914  } // End of loop over LayerClusters
1915 
1916  // Here Fill the plots to compute the different metrics linked to
1917  // gen-level, namely efficiency and duplicate. In this loop should restrict
1918  // only to the selected caloParaticles.
1919  for (const auto& cpId : cPSelectedIndices) {
1920  const edm::Ref<CaloParticleCollection> cpRef(caloParticleHandle, cpId);
1921  const auto& lcsIt = cPOnLayerMap.find(cpRef);
1922 
1923  std::map<unsigned int, float> cPEnergyOnLayer;
1924  for (unsigned int layerId = 0; layerId < layers * 2; ++layerId)
1925  cPEnergyOnLayer[layerId] = 0;
1926 
1927  for (const auto& simCluster : cP[cpId].simClusters()) {
1928  for (const auto& it_haf : simCluster->hits_and_fractions()) {
1929  const DetId hitid = (it_haf.first);
1930  const auto hitLayerId =
1931  recHitTools_->getLayerWithOffset(hitid) + layers * ((recHitTools_->zside(hitid) + 1) >> 1) - 1;
1932  std::unordered_map<DetId, const HGCRecHit*>::const_iterator itcheck = hitMap.find(hitid);
1933  if (itcheck != hitMap.end()) {
1934  const HGCRecHit* hit = itcheck->second;
1935  cPEnergyOnLayer[hitLayerId] += it_haf.second * hit->energy();
1936  }
1937  }
1938  }
1939 
1940  for (unsigned int layerId = 0; layerId < layers * 2; ++layerId) {
1941  if (!cPEnergyOnLayer[layerId])
1942  continue;
1943 
1944  histograms.h_denom_caloparticle_eta_perlayer.at(layerId)->Fill(cP[cpId].g4Tracks()[0].momentum().eta());
1945  histograms.h_denom_caloparticle_phi_perlayer.at(layerId)->Fill(cP[cpId].g4Tracks()[0].momentum().phi());
1946 
1947  if (lcsIt == cPOnLayerMap.end())
1948  continue;
1949  const auto& lcs = lcsIt->val;
1950 
1951  auto getLCLayerId = [&](const unsigned int lcId) {
1952  const auto firstHitDetId = (clusters[lcId].hitsAndFractions())[0].first;
1953  const auto lcLayerId = recHitTools_->getLayerWithOffset(firstHitDetId) +
1954  layers * ((recHitTools_->zside(firstHitDetId) + 1) >> 1) - 1;
1955  return lcLayerId;
1956  };
1957 
1958  for (const auto& lcPair : lcs) {
1959  if (getLCLayerId(lcPair.first.index()) != layerId)
1960  continue;
1961  histograms.h_score_caloparticle2layercl_perlayer.at(layerId)->Fill(lcPair.second.second);
1962  histograms.h_sharedenergy_caloparticle2layercl_perlayer.at(layerId)->Fill(
1963  lcPair.second.first / cPEnergyOnLayer[layerId], cPEnergyOnLayer[layerId]);
1964  histograms.h_energy_vs_score_caloparticle2layercl_perlayer.at(layerId)->Fill(
1965  lcPair.second.second, lcPair.second.first / cPEnergyOnLayer[layerId]);
1966  }
1967  const auto assoc = std::count_if(std::begin(lcs), std::end(lcs), [&](const auto& obj) {
1968  if (getLCLayerId(obj.first.index()) != layerId)
1969  return false;
1970  else
1971  return obj.second.second < ScoreCutCPtoLC_;
1972  });
1973  if (assoc) {
1974  histograms.h_num_caloparticle_eta_perlayer.at(layerId)->Fill(cP[cpId].g4Tracks()[0].momentum().eta());
1975  histograms.h_num_caloparticle_phi_perlayer.at(layerId)->Fill(cP[cpId].g4Tracks()[0].momentum().phi());
1976  if (assoc > 1) {
1977  histograms.h_numDup_caloparticle_eta_perlayer.at(layerId)->Fill(cP[cpId].g4Tracks()[0].momentum().eta());
1978  histograms.h_numDup_caloparticle_phi_perlayer.at(layerId)->Fill(cP[cpId].g4Tracks()[0].momentum().phi());
1979  }
1980  const auto best = std::min_element(std::begin(lcs), std::end(lcs), [&](const auto& obj1, const auto& obj2) {
1981  if (getLCLayerId(obj1.first.index()) != layerId)
1982  return false;
1983  else if (getLCLayerId(obj2.first.index()) == layerId)
1984  return obj1.second.second < obj2.second.second;
1985  else
1986  return true;
1987  });
1988  histograms.h_sharedenergy_caloparticle2layercl_vs_eta_perlayer.at(layerId)->Fill(
1989  cP[cpId].g4Tracks()[0].momentum().eta(), best->second.first / cPEnergyOnLayer[layerId]);
1990  histograms.h_sharedenergy_caloparticle2layercl_vs_phi_perlayer.at(layerId)->Fill(
1991  cP[cpId].g4Tracks()[0].momentum().phi(), best->second.first / cPEnergyOnLayer[layerId]);
1992  }
1993  }
1994  }
1995 }
1996 
1998  const Histograms& histograms,
1999  const int count,
2002  edm::Handle<std::vector<SimCluster>> simClusterHandle,
2003  std::vector<SimCluster> const& sC,
2004  std::vector<size_t> const& sCIndices,
2005  const std::vector<float>& mask,
2006  std::unordered_map<DetId, const HGCRecHit*> const& hitMap,
2007  unsigned int layers,
2008  const hgcal::RecoToSimCollectionWithSimClusters& scsInLayerClusterMap,
2009  const hgcal::SimToRecoCollectionWithSimClusters& lcsInSimClusterMap) const {
2010  // Here fill the plots to compute the different metrics linked to
2011  // reco-level, namely fake-rate and merge-rate. In this loop should *not*
2012  // restrict only to the selected SimClusters.
2013  for (unsigned int lcId = 0; lcId < clusters.size(); ++lcId) {
2014  if (mask[lcId] != 0.) {
2015  LogDebug("HGCalValidator") << "Skipping layer cluster " << lcId << " not belonging to mask" << std::endl;
2016  continue;
2017  }
2018  const auto firstHitDetId = (clusters[lcId].hitsAndFractions())[0].first;
2019  const auto lcLayerId =
2020  recHitTools_->getLayerWithOffset(firstHitDetId) + layers * ((recHitTools_->zside(firstHitDetId) + 1) >> 1) - 1;
2021  //Although the ones below are already created in the LC to CP association, will
2022  //recreate them here since in the post processor it looks in a specific directory.
2023  histograms.h_denom_layercl_in_simcl_eta_perlayer[count].at(lcLayerId)->Fill(clusters[lcId].eta());
2024  histograms.h_denom_layercl_in_simcl_phi_perlayer[count].at(lcLayerId)->Fill(clusters[lcId].phi());
2025  //
2026  const edm::Ref<reco::CaloClusterCollection> lcRef(clusterHandle, lcId);
2027  const auto& scsIt = scsInLayerClusterMap.find(lcRef);
2028  if (scsIt == scsInLayerClusterMap.end())
2029  continue;
2030 
2031  const auto lc_en = clusters[lcId].energy();
2032  const auto& scs = scsIt->val;
2033  // If a reconstructed LayerCluster has energy 0 but is linked to at least a
2034  // SimCluster, then his score should be 1 as set in the associator
2035  if (lc_en == 0. && !scs.empty()) {
2036  for (const auto& scPair : scs) {
2037  histograms.h_score_layercl2simcluster_perlayer[count].at(lcLayerId)->Fill(scPair.second);
2038  }
2039  continue;
2040  }
2041  //Loop through all SimClusters linked to the layer cluster under study
2042  for (const auto& scPair : scs) {
2043  LogDebug("HGCalValidator") << "layerCluster Id: \t" << lcId << "\t SC id: \t" << scPair.first.index()
2044  << "\t score \t" << scPair.second << std::endl;
2045  //This should be filled #layerClusters in layer x #linked SimClusters
2046  histograms.h_score_layercl2simcluster_perlayer[count].at(lcLayerId)->Fill(scPair.second);
2047  auto const& sc_linked =
2048  std::find_if(std::begin(lcsInSimClusterMap[scPair.first]),
2049  std::end(lcsInSimClusterMap[scPair.first]),
2050  [&lcRef](const std::pair<edm::Ref<reco::CaloClusterCollection>, std::pair<float, float>>& p) {
2051  return p.first == lcRef;
2052  });
2053  if (sc_linked ==
2054  lcsInSimClusterMap[scPair.first].end()) // This should never happen by construction of the association maps
2055  continue;
2056  histograms.h_sharedenergy_layercl2simcluster_perlayer[count].at(lcLayerId)->Fill(sc_linked->second.first / lc_en,
2057  lc_en);
2058  histograms.h_energy_vs_score_layercl2simcluster_perlayer[count].at(lcLayerId)->Fill(
2059  scPair.second, sc_linked->second.first / lc_en);
2060  }
2061  //Here he counts how many of the linked SimClusters of the layer cluster under study have a score above a certain value.
2062  const auto assoc =
2063  std::count_if(std::begin(scs), std::end(scs), [](const auto& obj) { return obj.second < ScoreCutLCtoSC_; });
2064  if (assoc) {
2065  histograms.h_num_layercl_in_simcl_eta_perlayer[count].at(lcLayerId)->Fill(clusters[lcId].eta());
2066  histograms.h_num_layercl_in_simcl_phi_perlayer[count].at(lcLayerId)->Fill(clusters[lcId].phi());
2067  if (assoc > 1) {
2068  histograms.h_numMerge_layercl_in_simcl_eta_perlayer[count].at(lcLayerId)->Fill(clusters[lcId].eta());
2069  histograms.h_numMerge_layercl_in_simcl_phi_perlayer[count].at(lcLayerId)->Fill(clusters[lcId].phi());
2070  }
2071  const auto& best = std::min_element(
2072  std::begin(scs), std::end(scs), [](const auto& obj1, const auto& obj2) { return obj1.second < obj2.second; });
2073  //From all SimClusters he founds the one with the best (lowest) score and takes his scId
2074  const auto& best_sc_linked =
2075  std::find_if(std::begin(lcsInSimClusterMap[best->first]),
2076  std::end(lcsInSimClusterMap[best->first]),
2077  [&lcRef](const std::pair<edm::Ref<reco::CaloClusterCollection>, std::pair<float, float>>& p) {
2078  return p.first == lcRef;
2079  });
2080  if (best_sc_linked ==
2081  lcsInSimClusterMap[best->first].end()) // This should never happen by construction of the association maps
2082  continue;
2083  histograms.h_sharedenergy_layercl2simcluster_vs_eta_perlayer[count].at(lcLayerId)->Fill(
2084  clusters[lcId].eta(), best_sc_linked->second.first / lc_en);
2085  histograms.h_sharedenergy_layercl2simcluster_vs_phi_perlayer[count].at(lcLayerId)->Fill(
2086  clusters[lcId].phi(), best_sc_linked->second.first / lc_en);
2087  }
2088  } // End of loop over LayerClusters
2089 
2090  // Fill the plots to compute the different metrics linked to
2091  // gen-level, namely efficiency and duplicate. In this loop should restrict
2092  // only to the selected SimClusters.
2093  for (const auto& scId : sCIndices) {
2094  const edm::Ref<SimClusterCollection> scRef(simClusterHandle, scId);
2095  const auto& lcsIt = lcsInSimClusterMap.find(scRef);
2096 
2097  std::map<unsigned int, float> sCEnergyOnLayer;
2098  for (unsigned int layerId = 0; layerId < layers * 2; ++layerId)
2099  sCEnergyOnLayer[layerId] = 0;
2100 
2101  for (const auto& it_haf : sC[scId].hits_and_fractions()) {
2102  const DetId hitid = (it_haf.first);
2103  const auto scLayerId =
2104  recHitTools_->getLayerWithOffset(hitid) + layers * ((recHitTools_->zside(hitid) + 1) >> 1) - 1;
2105  std::unordered_map<DetId, const HGCRecHit*>::const_iterator itcheck = hitMap.find(hitid);
2106  if (itcheck != hitMap.end()) {
2107  const HGCRecHit* hit = itcheck->second;
2108  sCEnergyOnLayer[scLayerId] += it_haf.second * hit->energy();
2109  }
2110  }
2111 
2112  for (unsigned int layerId = 0; layerId < layers * 2; ++layerId) {
2113  if (!sCEnergyOnLayer[layerId])
2114  continue;
2115 
2116  histograms.h_denom_simcluster_eta_perlayer[count].at(layerId)->Fill(sC[scId].eta());
2117  histograms.h_denom_simcluster_phi_perlayer[count].at(layerId)->Fill(sC[scId].phi());
2118 
2119  if (lcsIt == lcsInSimClusterMap.end())
2120  continue;
2121  const auto& lcs = lcsIt->val;
2122 
2123  auto getLCLayerId = [&](const unsigned int lcId) {
2124  const auto firstHitDetId = (clusters[lcId].hitsAndFractions())[0].first;
2125  const unsigned int lcLayerId = recHitTools_->getLayerWithOffset(firstHitDetId) +
2126  layers * ((recHitTools_->zside(firstHitDetId) + 1) >> 1) - 1;
2127  return lcLayerId;
2128  };
2129 
2130  //Loop through layer clusters linked to the SimCluster under study
2131  for (const auto& lcPair : lcs) {
2132  auto lcId = lcPair.first.index();
2133  if (mask[lcId] != 0.) {
2134  LogDebug("HGCalValidator") << "Skipping layer cluster " << lcId << " not belonging to mask" << std::endl;
2135  continue;
2136  }
2137 
2138  if (getLCLayerId(lcId) != layerId)
2139  continue;
2140  histograms.h_score_simcluster2layercl_perlayer[count].at(layerId)->Fill(lcPair.second.second);
2141  histograms.h_sharedenergy_simcluster2layercl_perlayer[count].at(layerId)->Fill(
2142  lcPair.second.first / sCEnergyOnLayer[layerId], sCEnergyOnLayer[layerId]);
2143  histograms.h_energy_vs_score_simcluster2layercl_perlayer[count].at(layerId)->Fill(
2144  lcPair.second.second, lcPair.second.first / sCEnergyOnLayer[layerId]);
2145  }
2146  const auto assoc = std::count_if(std::begin(lcs), std::end(lcs), [&](const auto& obj) {
2147  if (getLCLayerId(obj.first.index()) != layerId)
2148  return false;
2149  else
2150  return obj.second.second < ScoreCutSCtoLC_;
2151  });
2152  if (assoc) {
2153  histograms.h_num_simcluster_eta_perlayer[count].at(layerId)->Fill(sC[scId].eta());
2154  histograms.h_num_simcluster_phi_perlayer[count].at(layerId)->Fill(sC[scId].phi());
2155  if (assoc > 1) {
2156  histograms.h_numDup_simcluster_eta_perlayer[count].at(layerId)->Fill(sC[scId].eta());
2157  histograms.h_numDup_simcluster_phi_perlayer[count].at(layerId)->Fill(sC[scId].phi());
2158  }
2159  const auto best = std::min_element(std::begin(lcs), std::end(lcs), [&](const auto& obj1, const auto& obj2) {
2160  if (getLCLayerId(obj1.first.index()) != layerId)
2161  return false;
2162  else if (getLCLayerId(obj2.first.index()) == layerId)
2163  return obj1.second.second < obj2.second.second;
2164  else
2165  return true;
2166  });
2167  histograms.h_sharedenergy_simcluster2layercl_vs_eta_perlayer[count].at(layerId)->Fill(
2168  sC[scId].eta(), best->second.first / sCEnergyOnLayer[layerId]);
2169  histograms.h_sharedenergy_simcluster2layercl_vs_phi_perlayer[count].at(layerId)->Fill(
2170  sC[scId].phi(), best->second.first / sCEnergyOnLayer[layerId]);
2171  }
2172  }
2173  }
2174 }
2175 
2177  const int count,
2180  edm::Handle<std::vector<CaloParticle>> caloParticleHandle,
2181  std::vector<CaloParticle> const& cP,
2182  std::vector<size_t> const& cPIndices,
2183  std::vector<size_t> const& cPSelectedIndices,
2184  std::unordered_map<DetId, const HGCRecHit*> const& hitMap,
2185  std::map<double, double> cummatbudg,
2186  unsigned int layers,
2187  std::vector<int> thicknesses,
2188  const hgcal::RecoToSimCollection& cpsInLayerClusterMap,
2189  const hgcal::SimToRecoCollection& cPOnLayerMap) const {
2190  //Each event to be treated as two events: an event in +ve endcap,
2191  //plus another event in -ve endcap. In this spirit there will be
2192  //a layer variable (layerid) that maps the layers in :
2193  //-z: 0->51
2194  //+z: 52->103
2195 
2196  //To keep track of total num of layer clusters per layer
2197  //tnlcpl[layerid]
2198  std::vector<int> tnlcpl(1000, 0); //tnlcpl.clear(); tnlcpl.reserve(1000);
2199 
2200  //To keep track of the total num of clusters per thickness in plus and in minus endcaps
2201  std::map<std::string, int> tnlcpthplus;
2202  tnlcpthplus.clear();
2203  std::map<std::string, int> tnlcpthminus;
2204  tnlcpthminus.clear();
2205  //At the beginning of the event all layers should be initialized to zero total clusters per thickness
2206  for (std::vector<int>::iterator it = thicknesses.begin(); it != thicknesses.end(); ++it) {
2207  tnlcpthplus.insert(std::pair<std::string, int>(std::to_string(*it), 0));
2208  tnlcpthminus.insert(std::pair<std::string, int>(std::to_string(*it), 0));
2209  }
2210  //To keep track of the total num of clusters with mixed thickness hits per event
2211  tnlcpthplus.insert(std::pair<std::string, int>("mixed", 0));
2212  tnlcpthminus.insert(std::pair<std::string, int>("mixed", 0));
2213 
2215  clusterHandle,
2216  clusters,
2217  caloParticleHandle,
2218  cP,
2219  cPIndices,
2220  cPSelectedIndices,
2221  hitMap,
2222  layers,
2223  cpsInLayerClusterMap,
2224  cPOnLayerMap);
2225 
2226  //To find out the total amount of energy clustered per layer
2227  //Initialize with zeros because I see clear gives weird numbers.
2228  std::vector<double> tecpl(1000, 0.0); //tecpl.clear(); tecpl.reserve(1000);
2229  //for the longitudinal depth barycenter
2230  std::vector<double> ldbar(1000, 0.0); //ldbar.clear(); ldbar.reserve(1000);
2231 
2232  // Need to compare with the total amount of energy coming from CaloParticles
2233  double caloparteneplus = 0.;
2234  double caloparteneminus = 0.;
2235  for (const auto& cpId : cPIndices) {
2236  if (cP[cpId].eta() >= 0.) {
2237  caloparteneplus = caloparteneplus + cP[cpId].energy();
2238  } else if (cP[cpId].eta() < 0.) {
2239  caloparteneminus = caloparteneminus + cP[cpId].energy();
2240  }
2241  }
2242 
2243  // loop through clusters of the event
2244  for (const auto& lcId : clusters) {
2245  const auto seedid = lcId.seed();
2246  const double seedx = recHitTools_->getPosition(seedid).x();
2247  const double seedy = recHitTools_->getPosition(seedid).y();
2248  DetId maxid = findmaxhit(lcId, hitMap);
2249 
2250  // const DetId maxid = lcId.max();
2251  double maxx = recHitTools_->getPosition(maxid).x();
2252  double maxy = recHitTools_->getPosition(maxid).y();
2253 
2254  //Auxillary variables to count the number of different kind of hits in each cluster
2255  int nthhits120p = 0;
2256  int nthhits200p = 0;
2257  int nthhits300p = 0;
2258  int nthhitsscintp = 0;
2259  int nthhits120m = 0;
2260  int nthhits200m = 0;
2261  int nthhits300m = 0;
2262  int nthhitsscintm = 0;
2263  //For the hits thickness of the layer cluster.
2264  double thickness = 0.;
2265  //The layer the cluster belongs to. As mentioned in the mapping above, it takes into account -z and +z.
2266  int layerid = 0;
2267  // Need another layer variable for the longitudinal material budget file reading.
2268  //In this case need no distinction between -z and +z.
2269  int lay = 0;
2270  // Need to save the combination thick_lay
2271  std::string istr = "";
2272  //boolean to check for the layer that the cluster belong to. Maybe later will check all the layer hits.
2273  bool cluslay = true;
2274  //zside that the current cluster belongs to.
2275  int zside = 0;
2276 
2277  const auto& hits_and_fractions = lcId.hitsAndFractions();
2278  for (std::vector<std::pair<DetId, float>>::const_iterator it_haf = hits_and_fractions.begin();
2279  it_haf != hits_and_fractions.end();
2280  ++it_haf) {
2281  const DetId rh_detid = it_haf->first;
2282  //The layer that the current hit belongs to
2283  layerid = recHitTools_->getLayerWithOffset(rh_detid) + layers * ((recHitTools_->zside(rh_detid) + 1) >> 1) - 1;
2284  lay = recHitTools_->getLayerWithOffset(rh_detid);
2285  zside = recHitTools_->zside(rh_detid);
2286  if (rh_detid.det() == DetId::Forward || rh_detid.det() == DetId::HGCalEE || rh_detid.det() == DetId::HGCalHSi) {
2287  thickness = recHitTools_->getSiThickness(rh_detid);
2288  } else if (rh_detid.det() == DetId::HGCalHSc) {
2289  thickness = -1;
2290  } else {
2291  LogDebug("HGCalValidator") << "These are HGCal layer clusters, you shouldn't be here !!! " << layerid << "\n";
2292  continue;
2293  }
2294 
2295  //Count here only once the layer cluster and save the combination thick_layerid
2296  std::string curistr = std::to_string((int)thickness);
2297  std::string lay_string = std::to_string(layerid);
2298  while (lay_string.size() < 2)
2299  lay_string.insert(0, "0");
2300  curistr += "_" + lay_string;
2301  if (cluslay) {
2302  tnlcpl[layerid]++;
2303  istr = curistr;
2304  cluslay = false;
2305  }
2306 
2307  if ((thickness == 120.) && (recHitTools_->zside(rh_detid) > 0.)) {
2308  nthhits120p++;
2309  } else if ((thickness == 120.) && (recHitTools_->zside(rh_detid) < 0.)) {
2310  nthhits120m++;
2311  } else if ((thickness == 200.) && (recHitTools_->zside(rh_detid) > 0.)) {
2312  nthhits200p++;
2313  } else if ((thickness == 200.) && (recHitTools_->zside(rh_detid) < 0.)) {
2314  nthhits200m++;
2315  } else if ((thickness == 300.) && (recHitTools_->zside(rh_detid) > 0.)) {
2316  nthhits300p++;
2317  } else if ((thickness == 300.) && (recHitTools_->zside(rh_detid) < 0.)) {
2318  nthhits300m++;
2319  } else if ((thickness == -1) && (recHitTools_->zside(rh_detid) > 0.)) {
2320  nthhitsscintp++;
2321  } else if ((thickness == -1) && (recHitTools_->zside(rh_detid) < 0.)) {
2322  nthhitsscintm++;
2323  } else { //assert(0);
2324  LogDebug("HGCalValidator")
2325  << " You are running a geometry that contains thicknesses different than the normal ones. "
2326  << "\n";
2327  }
2328 
2329  std::unordered_map<DetId, const HGCRecHit*>::const_iterator itcheck = hitMap.find(rh_detid);
2330  if (itcheck == hitMap.end()) {
2331  std::ostringstream st1;
2332  if ((rh_detid.det() == DetId::HGCalEE) || (rh_detid.det() == DetId::HGCalHSi)) {
2333  st1 << HGCSiliconDetId(rh_detid);
2334  } else if (rh_detid.det() == DetId::HGCalHSc) {
2335  st1 << HGCScintillatorDetId(rh_detid);
2336  } else {
2337  st1 << HFNoseDetId(rh_detid);
2338  }
2339  LogDebug("HGCalValidator") << " You shouldn't be here - Unable to find a hit " << rh_detid.rawId() << " "
2340  << rh_detid.det() << " " << st1.str() << "\n";
2341  continue;
2342  }
2343 
2344  const HGCRecHit* hit = itcheck->second;
2345 
2346  //Here for the per cell plots
2347  //----
2348  const double hit_x = recHitTools_->getPosition(rh_detid).x();
2349  const double hit_y = recHitTools_->getPosition(rh_detid).y();
2350  double distancetoseed = distance(seedx, seedy, hit_x, hit_y);
2351  double distancetomax = distance(maxx, maxy, hit_x, hit_y);
2352  if (distancetoseed != 0. && histograms.h_distancetoseedcell_perthickperlayer.count(curistr)) {
2353  histograms.h_distancetoseedcell_perthickperlayer.at(curistr)->Fill(distancetoseed);
2354  }
2355  //----
2356  if (distancetoseed != 0. && histograms.h_distancetoseedcell_perthickperlayer_eneweighted.count(curistr)) {
2357  histograms.h_distancetoseedcell_perthickperlayer_eneweighted.at(curistr)->Fill(distancetoseed, hit->energy());
2358  }
2359  //----
2360  if (distancetomax != 0. && histograms.h_distancetomaxcell_perthickperlayer.count(curistr)) {
2361  histograms.h_distancetomaxcell_perthickperlayer.at(curistr)->Fill(distancetomax);
2362  }
2363  //----
2364  if (distancetomax != 0. && histograms.h_distancetomaxcell_perthickperlayer_eneweighted.count(curistr)) {
2365  histograms.h_distancetomaxcell_perthickperlayer_eneweighted.at(curistr)->Fill(distancetomax, hit->energy());
2366  }
2367 
2368  } // end of loop through hits and fractions
2369 
2370  //Check for simultaneously having hits of different kind. Checking at least two combinations is sufficient.
2371  if ((nthhits120p != 0 && nthhits200p != 0) || (nthhits120p != 0 && nthhits300p != 0) ||
2372  (nthhits120p != 0 && nthhitsscintp != 0) || (nthhits200p != 0 && nthhits300p != 0) ||
2373  (nthhits200p != 0 && nthhitsscintp != 0) || (nthhits300p != 0 && nthhitsscintp != 0)) {
2374  tnlcpthplus["mixed"]++;
2375  } else if ((nthhits120p != 0 || nthhits200p != 0 || nthhits300p != 0 || nthhitsscintp != 0)) {
2376  //This is a cluster with hits of one kind
2377  tnlcpthplus[std::to_string((int)thickness)]++;
2378  }
2379  if ((nthhits120m != 0 && nthhits200m != 0) || (nthhits120m != 0 && nthhits300m != 0) ||
2380  (nthhits120m != 0 && nthhitsscintm != 0) || (nthhits200m != 0 && nthhits300m != 0) ||
2381  (nthhits200m != 0 && nthhitsscintm != 0) || (nthhits300m != 0 && nthhitsscintm != 0)) {
2382  tnlcpthminus["mixed"]++;
2383  } else if ((nthhits120m != 0 || nthhits200m != 0 || nthhits300m != 0 || nthhitsscintm != 0)) {
2384  //This is a cluster with hits of one kind
2385  tnlcpthminus[std::to_string((int)thickness)]++;
2386  }
2387 
2388  //To find the thickness with the biggest amount of cells
2389  std::vector<int> bigamoth;
2390  bigamoth.clear();
2391  if (zside > 0) {
2392  bigamoth.push_back(nthhits120p);
2393  bigamoth.push_back(nthhits200p);
2394  bigamoth.push_back(nthhits300p);
2395  bigamoth.push_back(nthhitsscintp);
2396  } else if (zside < 0) {
2397  bigamoth.push_back(nthhits120m);
2398  bigamoth.push_back(nthhits200m);
2399  bigamoth.push_back(nthhits300m);
2400  bigamoth.push_back(nthhitsscintm);
2401  }
2402  auto bgth = std::max_element(bigamoth.begin(), bigamoth.end());
2403  istr = std::to_string(thicknesses[std::distance(bigamoth.begin(), bgth)]);
2404  std::string lay_string = std::to_string(layerid);
2405  while (lay_string.size() < 2)
2406  lay_string.insert(0, "0");
2407  istr += "_" + lay_string;
2408 
2409  //Here for the per cluster plots that need the thickness_layer info
2410  if (histograms.h_cellsnum_perthickperlayer.count(istr)) {
2411  histograms.h_cellsnum_perthickperlayer.at(istr)->Fill(hits_and_fractions.size());
2412  }
2413 
2414  //Now, with the distance between seed and max cell.
2415  double distancebetseedandmax = distance(seedx, seedy, maxx, maxy);
2416  //The thickness_layer combination in this case will use the thickness of the seed as a convention.
2417  std::string seedstr = std::to_string((int)recHitTools_->getSiThickness(seedid)) + "_" + std::to_string(layerid);
2418  seedstr += "_" + lay_string;
2419  if (histograms.h_distancebetseedandmaxcell_perthickperlayer.count(seedstr)) {
2420  histograms.h_distancebetseedandmaxcell_perthickperlayer.at(seedstr)->Fill(distancebetseedandmax);
2421  }
2422  const auto lc_en = lcId.energy();
2423  if (histograms.h_distancebetseedandmaxcellvsclusterenergy_perthickperlayer.count(seedstr)) {
2424  histograms.h_distancebetseedandmaxcellvsclusterenergy_perthickperlayer.at(seedstr)->Fill(distancebetseedandmax,
2425  lc_en);
2426  }
2427 
2428  //Energy clustered per layer
2429  tecpl[layerid] = tecpl[layerid] + lc_en;
2430  ldbar[layerid] = ldbar[layerid] + lc_en * cummatbudg[(double)lay];
2431 
2432  } //end of loop through clusters of the event
2433 
2434  // First a couple of variables to keep the sum of the energy of all clusters
2435  double sumeneallcluspl = 0.;
2436  double sumeneallclusmi = 0.;
2437  // and the longitudinal variable
2438  double sumldbarpl = 0.;
2439  double sumldbarmi = 0.;
2440  //Per layer : Loop 0->103
2441  for (unsigned ilayer = 0; ilayer < layers * 2; ++ilayer) {
2442  if (histograms.h_clusternum_perlayer.count(ilayer)) {
2443  histograms.h_clusternum_perlayer.at(ilayer)->Fill(tnlcpl[ilayer]);
2444  }
2445  // Two times one for plus and one for minus
2446  //First with the -z endcap
2447  if (ilayer < layers) {
2448  if (histograms.h_energyclustered_perlayer.count(ilayer)) {
2449  if (caloparteneminus != 0.) {
2450  histograms.h_energyclustered_perlayer.at(ilayer)->Fill(100. * tecpl[ilayer] / caloparteneminus);
2451  }
2452  }
2453  //Keep here the total energy for the event in -z
2454  sumeneallclusmi = sumeneallclusmi + tecpl[ilayer];
2455  //And for the longitudinal variable
2456  sumldbarmi = sumldbarmi + ldbar[ilayer];
2457  } else { //Then for the +z
2458  if (histograms.h_energyclustered_perlayer.count(ilayer)) {
2459  if (caloparteneplus != 0.) {
2460  histograms.h_energyclustered_perlayer.at(ilayer)->Fill(100. * tecpl[ilayer] / caloparteneplus);
2461  }
2462  }
2463  //Keep here the total energy for the event in -z
2464  sumeneallcluspl = sumeneallcluspl + tecpl[ilayer];
2465  //And for the longitudinal variable
2466  sumldbarpl = sumldbarpl + ldbar[ilayer];
2467  } //end of +z loop
2468 
2469  } //end of loop over layers
2470 
2471  //Per thickness
2472  for (std::vector<int>::iterator it = thicknesses.begin(); it != thicknesses.end(); ++it) {
2473  if (histograms.h_clusternum_perthick.count(*it)) {
2474  histograms.h_clusternum_perthick.at(*it)->Fill(tnlcpthplus[std::to_string(*it)]);
2475  histograms.h_clusternum_perthick.at(*it)->Fill(tnlcpthminus[std::to_string(*it)]);
2476  }
2477  }
2478  //Mixed thickness clusters
2479  histograms.h_mixedhitscluster_zplus[count]->Fill(tnlcpthplus["mixed"]);
2480  histograms.h_mixedhitscluster_zminus[count]->Fill(tnlcpthminus["mixed"]);
2481 
2482  //Total energy clustered from all layer clusters (fraction)
2483  if (caloparteneplus != 0.) {
2484  histograms.h_energyclustered_zplus[count]->Fill(100. * sumeneallcluspl / caloparteneplus);
2485  }
2486  if (caloparteneminus != 0.) {
2487  histograms.h_energyclustered_zminus[count]->Fill(100. * sumeneallclusmi / caloparteneminus);
2488  }
2489 
2490  //For the longitudinal depth barycenter
2491  histograms.h_longdepthbarycentre_zplus[count]->Fill(sumldbarpl / sumeneallcluspl);
2492  histograms.h_longdepthbarycentre_zminus[count]->Fill(sumldbarmi / sumeneallclusmi);
2493 }
2494 
2496  const Histograms& histograms,
2497  const int count,
2498  const ticl::TracksterCollection& tracksters,
2500  const ticl::TracksterCollection& simTSs,
2501  const validationType valType,
2502  const ticl::TracksterCollection& simTSs_fromCP,
2503  const std::map<unsigned int, std::vector<unsigned int>>& cpToSc_SimTrackstersMap,
2504  std::vector<SimCluster> const& sC,
2505  const edm::ProductID& cPHandle_id,
2506  std::vector<CaloParticle> const& cP,
2507  std::vector<size_t> const& cPIndices,
2508  std::vector<size_t> const& cPSelectedIndices,
2509  std::unordered_map<DetId, const HGCRecHit*> const& hitMap,
2510  unsigned int layers) const {
2511  const auto nTracksters = tracksters.size();
2512  const auto nSimTracksters = simTSs.size();
2513 
2514  std::unordered_map<DetId, std::vector<HGVHistoProducerAlgo::detIdInfoInCluster>> detIdSimTSId_Map;
2515  std::unordered_map<DetId, std::vector<HGVHistoProducerAlgo::detIdInfoInTrackster>> detIdToTracksterId_Map;
2516  std::vector<int> tracksters_FakeMerge(nTracksters, 0);
2517  std::vector<int> tracksters_PurityDuplicate(nTracksters, 0);
2518 
2519  // This vector contains the ids of the SimTracksters contributing with at least one hit to the Trackster and the reconstruction error
2520  //stsInTrackster[trackster][STSids]
2521  //Connects a Trackster with all related SimTracksters.
2522  std::vector<std::vector<std::pair<unsigned int, float>>> stsInTrackster;
2523  stsInTrackster.resize(nTracksters);
2524 
2525  // cPOnLayer[caloparticle]:
2526  //1. the sum of all rechits energy times fraction of the relevant simhit related to that calo particle.
2527  //2. the hits and fractions of that calo particle.
2528  //3. the layer clusters with matched rechit id.
2529  std::unordered_map<int, caloParticleOnLayer> cPOnLayer;
2530  std::unordered_map<int, std::vector<caloParticleOnLayer>> sCOnLayer;
2531  //Consider CaloParticles coming from the hard scatterer, excluding the PU contribution.
2532  for (const auto cpIndex : cPIndices) {
2533  cPOnLayer[cpIndex].caloParticleId = cpIndex;
2534  cPOnLayer[cpIndex].energy = 0.f;
2535  cPOnLayer[cpIndex].hits_and_fractions.clear();
2536  const auto nSC_inCP = sC.size();
2537  sCOnLayer[cpIndex].resize(nSC_inCP);
2538  for (unsigned int iSC = 0; iSC < nSC_inCP; iSC++) {
2539  sCOnLayer[cpIndex][iSC].caloParticleId = cpIndex;
2540  sCOnLayer[cpIndex][iSC].energy = 0.f;
2541  sCOnLayer[cpIndex][iSC].hits_and_fractions.clear();
2542  }
2543  }
2544 
2545  auto getCPId = [](const ticl::Trackster& simTS,
2546  const unsigned int iSTS,
2547  const edm::ProductID& cPHandle_id,
2548  const std::map<unsigned int, std::vector<unsigned int>>& cpToSc_SimTrackstersMap,
2549  const ticl::TracksterCollection& simTSs_fromCP) {
2550  unsigned int cpId = -1;
2551 
2552  const auto productID = simTS.seedID();
2553  if (productID == cPHandle_id) {
2554  cpId = simTS.seedIndex();
2555  } else { // SimTrackster from SimCluster
2556  const auto findSimTSFromCP = std::find_if(
2557  std::begin(cpToSc_SimTrackstersMap),
2558  std::end(cpToSc_SimTrackstersMap),
2559  [&](const std::pair<unsigned int, std::vector<unsigned int>>& cpToScs) {
2560  return std::find(std::begin(cpToScs.second), std::end(cpToScs.second), iSTS) != std::end(cpToScs.second);
2561  });
2562  if (findSimTSFromCP != std::end(cpToSc_SimTrackstersMap)) {
2563  cpId = simTSs_fromCP[findSimTSFromCP->first].seedIndex();
2564  }
2565  }
2566 
2567  return cpId;
2568  };
2569 
2570  auto getLCId = [](const std::vector<unsigned int>& tst_vertices,
2572  const DetId& hitid) {
2573  unsigned int lcId = -1;
2574  std::for_each(std::begin(tst_vertices), std::end(tst_vertices), [&](unsigned int idx) {
2575  const auto& lc_haf = layerClusters[idx].hitsAndFractions();
2576  const auto& hitFound = std::find_if(std::begin(lc_haf),
2577  std::end(lc_haf),
2578  [&hitid](const std::pair<DetId, float>& v) { return v.first == hitid; });
2579  if (hitFound != lc_haf.end()) // not all hits may be clusterized
2580  lcId = idx;
2581  });
2582  return lcId;
2583  };
2584 
2585  for (unsigned int iSTS = 0; iSTS < nSimTracksters; ++iSTS) {
2586  const auto cpId = getCPId(simTSs[iSTS], iSTS, cPHandle_id, cpToSc_SimTrackstersMap, simTSs_fromCP);
2587  if (std::find(cPIndices.begin(), cPIndices.end(), cpId) == cPIndices.end())
2588  continue;
2589 
2590  // Loop through SimClusters
2591  for (const auto& simCluster : cP[cpId].simClusters()) {
2592  auto iSim = simTSs[iSTS].seedIndex();
2593  if (simTSs[iSTS].seedID() != cPHandle_id) { // SimTrackster from SimCluster
2594  if (iSim != (&(*simCluster) - &(sC[0])))
2595  continue;
2596  } else
2597  iSim = 0;
2598 
2599  for (const auto& it_haf : simCluster->hits_and_fractions()) {
2600  const auto hitid = (it_haf.first);
2601  const auto lcId = getLCId(simTSs[iSTS].vertices(), layerClusters, hitid);
2602  //V9:maps the layers in -z: 0->51 and in +z: 52->103
2603  //V10:maps the layers in -z: 0->49 and in +z: 50->99
2604  const auto itcheck = hitMap.find(hitid);
2605  //Check whether the current hit belonging to sim cluster has a reconstructed hit
2606  if ((valType == 0 && itcheck != hitMap.end()) || (valType > 0 && int(lcId) >= 0)) {
2607  float lcFraction = 0;
2608  if (valType > 0) {
2609  const auto iLC = std::find(simTSs[iSTS].vertices().begin(), simTSs[iSTS].vertices().end(), lcId);
2610  lcFraction =
2611  1.f / simTSs[iSTS].vertex_multiplicity(std::distance(std::begin(simTSs[iSTS].vertices()), iLC));
2612  }
2613  const auto elemId = (valType == 0) ? hitid : lcId;
2614  const auto elemFr = (valType == 0) ? it_haf.second : lcFraction;
2615  //Since the current hit from SimCluster has a reconstructed hit {with the same detid, belonging to the corresponding SimTrackster},
2616  //make a map that will connect a {detid,lcID} with:
2617  //1. the SimTracksters that have a SimCluster with {sim hits in, LCs containing} that cell via SimTrackster id.
2618  //2. the sum of all {SimHits, LCs} fractions that contributes to that detid.
2619  //So, keep in mind that in case of multiple CaloParticles contributing in the same cell
2620  //the fraction is the sum over all calo particles. So, something like:
2621  //detid: (caloparticle 1, sum of hits fractions in that detid over all cp) , (caloparticle 2, sum of hits fractions in that detid over all cp), (caloparticle 3, sum of hits fractions in that detid over all cp) ...
2622  if (detIdSimTSId_Map.find(elemId) == detIdSimTSId_Map.end()) {
2623  detIdSimTSId_Map[elemId] = std::vector<HGVHistoProducerAlgo::detIdInfoInCluster>();
2624  detIdSimTSId_Map[elemId].emplace_back(HGVHistoProducerAlgo::detIdInfoInCluster{iSTS, elemFr});
2625  } else {
2626  auto findSTSIt =
2627  std::find(detIdSimTSId_Map[elemId].begin(),
2628  detIdSimTSId_Map[elemId].end(),
2630  iSTS, 0}); // only the first element is used for the matching (overloaded operator==)
2631  if (findSTSIt != detIdSimTSId_Map[elemId].end()) {
2632  if (valType == 0)
2633  findSTSIt->fraction += elemFr;
2634  } else {
2635  detIdSimTSId_Map[elemId].emplace_back(HGVHistoProducerAlgo::detIdInfoInCluster{iSTS, elemFr});
2636  }
2637  }
2638  const auto hitEn = itcheck->second->energy();
2639  //Since the current hit from sim cluster has a reconstructed hit with the same detid,
2640  //fill the cPOnLayer[caloparticle][layer] object with energy (sum of all rechits energy times fraction
2641  //of the relevant simhit) and keep the hit (detid and fraction) that contributed.
2642  cPOnLayer[cpId].energy += it_haf.second * hitEn;
2643  sCOnLayer[cpId][iSim].energy += elemFr * hitEn;
2644  // Need to compress the hits and fractions in order to have a
2645  // reasonable score between CP and LC. Imagine, for example, that a
2646  // CP has detID X used by 2 SimClusters with different fractions. If
2647  // a single LC uses X with fraction 1 and is compared to the 2
2648  // contributions separately, it will be assigned a score != 0, which
2649  // is wrong.
2650  auto& haf = cPOnLayer[cpId].hits_and_fractions;
2651  auto found = std::find_if(
2652  std::begin(haf), std::end(haf), [&hitid](const std::pair<DetId, float>& v) { return v.first == hitid; });
2653  if (found != haf.end())
2654  found->second += it_haf.second;
2655  else
2656  haf.emplace_back(hitid, it_haf.second);
2657  // Same for sCOnLayer
2658  auto& haf_sc = sCOnLayer[cpId][iSim].hits_and_fractions;
2659  auto found_sc = std::find_if(std::begin(haf_sc),
2660  std::end(haf_sc),
2661  [&hitid](const std::pair<DetId, float>& v) { return v.first == hitid; });
2662  if (found_sc != haf_sc.end())
2663  found_sc->second += it_haf.second;
2664  else
2665  haf_sc.emplace_back(hitid, it_haf.second);
2666  }
2667  } // end of loop through SimHits
2668  } // end of loop through SimClusters
2669  } // end of loop through SimTracksters
2670 
2671  auto apply_LCMultiplicity = [](const ticl::Trackster& trackster, const reco::CaloClusterCollection& layerClusters) {
2672  std::vector<std::pair<DetId, float>> hits_and_fractions_norm;
2673  int lcInTst = 0;
2674  std::for_each(std::begin(trackster.vertices()), std::end(trackster.vertices()), [&](unsigned int idx) {
2675  const auto fraction = 1.f / trackster.vertex_multiplicity(lcInTst++);
2676  for (const auto& cell : layerClusters[idx].hitsAndFractions()) {
2677  hits_and_fractions_norm.emplace_back(
2678  cell.first, cell.second * fraction); // cell.second is the hit fraction in the layerCluster
2679  }
2680  });
2681  return hits_and_fractions_norm;
2682  };
2683 
2684  auto ScoreCutSTStoTSPurDup = ScoreCutSTStoTSPurDup_[0];
2685  auto ScoreCutTStoSTSFakeMerge = ScoreCutTStoSTSFakeMerge_[0];
2686  // Loop through Tracksters
2687  for (unsigned int tstId = 0; tstId < nTracksters; ++tstId) {
2688  const auto& tst = tracksters[tstId];
2689  if (tstId == 0)
2690  if ((valType > 0) && (tst.ticlIteration() == ticl::Trackster::SIM)) {
2691  ScoreCutSTStoTSPurDup = ScoreCutSTStoTSPurDup_[valType];
2692  ScoreCutTStoSTSFakeMerge = ScoreCutTStoSTSFakeMerge_[valType];
2693  }
2694 
2695  if (tst.vertices().empty())
2696  continue;
2697 
2698  std::unordered_map<unsigned, float> CPEnergyInTS;
2699  int maxCPId_byNumberOfHits = -1;
2700  unsigned int maxCPNumberOfHitsInTS = 0;
2701  int maxCPId_byEnergy = -1;
2702  float maxEnergySharedTSandCP = 0.f;
2703  float energyFractionOfTSinCP = 0.f;
2704  float energyFractionOfCPinTS = 0.f;
2705 
2706  //In case of matched rechit-simhit, so matched
2707  //CaloParticle-LayerCluster-Trackster, he counts and saves the number of
2708  //rechits related to the maximum energy CaloParticle out of all
2709  //CaloParticles related to that layer cluster and Trackster.
2710 
2711  std::unordered_map<unsigned, unsigned> occurrencesCPinTS;
2712  unsigned int numberOfNoiseHitsInTS = 0;
2713 
2714  const auto tst_hitsAndFractions = apply_LCMultiplicity(tst, layerClusters);
2715  const auto numberOfHitsInTS = tst_hitsAndFractions.size();
2716 
2717  //hitsToCaloParticleId is a vector of ints, one for each rechit of the
2718  //layer cluster under study. If negative, there is no simhit from any CaloParticle related.
2719  //If positive, at least one CaloParticle has been found with matched simhit.
2720  //In more detail:
2721  // 1. hitsToCaloParticleId[iHit] = -3
2722  // TN: These represent Halo Cells(N) that have not been
2723  // assigned to any CaloParticle (hence the T).
2724  // 2. hitsToCaloParticleId[iHit] = -2
2725  // FN: There represent Halo Cells(N) that have been assigned
2726  // to a CaloParticle (hence the F, since those should have not been marked as halo)
2727  // 3. hitsToCaloParticleId[iHit] = -1
2728  // FP: These represent Real Cells(P) that have not been
2729  // assigned to any CaloParticle (hence the F, since these are fakes)
2730  // 4. hitsToCaloParticleId[iHit] >= 0
2731  // TP There represent Real Cells(P) that have been assigned
2732  // to a CaloParticle (hence the T)
2733  std::vector<int> hitsToCaloParticleId(numberOfHitsInTS);
2734 
2735  //Loop through the hits of the trackster under study
2736  for (unsigned int iHit = 0; iHit < numberOfHitsInTS; iHit++) {
2737  const auto rh_detid = tst_hitsAndFractions[iHit].first;
2738  const auto rhFraction = tst_hitsAndFractions[iHit].second;
2739 
2740  const auto lcId_r = getLCId(tst.vertices(), layerClusters, rh_detid);
2741  const auto iLC_r = std::find(tst.vertices().begin(), tst.vertices().end(), lcId_r);
2742  const auto lcFraction_r = 1.f / tst.vertex_multiplicity(std::distance(std::begin(tst.vertices()), iLC_r));
2743 
2744  //Make a map that will connect a detid (that belongs to a rechit of the layer cluster under study,
2745  //no need to save others) with:
2746  //1. the layer clusters that have rechits in that detid
2747  //2. the fraction of the rechit of each layer cluster that contributes to that detid.
2748  //So, something like:
2749  //detid: (layer cluster 1, hit fraction) , (layer cluster 2, hit fraction), (layer cluster 3, hit fraction) ...
2750  //here comparing with the calo particle map above the
2751  if (detIdToTracksterId_Map.find(rh_detid) == detIdToTracksterId_Map.end()) {
2752  detIdToTracksterId_Map[rh_detid] = std::vector<HGVHistoProducerAlgo::detIdInfoInTrackster>();
2753  detIdToTracksterId_Map[rh_detid].emplace_back(
2754  HGVHistoProducerAlgo::detIdInfoInTrackster{tstId, lcId_r, rhFraction});
2755  } else {
2756  auto findTSIt =
2757  std::find(detIdToTracksterId_Map[rh_detid].begin(),
2758  detIdToTracksterId_Map[rh_detid].end(),
2760  tstId, 0, 0}); // only the first element is used for the matching (overloaded operator==)
2761  if (findTSIt != detIdToTracksterId_Map[rh_detid].end()) {
2762  if (valType == 0)
2763  findTSIt->fraction += rhFraction;
2764  } else {
2765  detIdToTracksterId_Map[rh_detid].emplace_back(
2766  HGVHistoProducerAlgo::detIdInfoInTrackster{tstId, lcId_r, rhFraction});
2767  }
2768  }
2769 
2770  // if the fraction is zero or the hit does not belong to any calo
2771  // particle, set the caloparticleId for the hit to -1 this will
2772  // contribute to the number of noise hits
2773  // MR Remove the case in which the fraction is 0, since this could be a
2774  // real hit that has been marked as halo.
2775  if (rhFraction == 0.) {
2776  hitsToCaloParticleId[iHit] = -2;
2777  }
2778 
2779  // Check whether the RecHit of the trackster under study has a SimHit in the same cell
2780  const auto elemId = (valType == 0) ? rh_detid.rawId() : lcId_r;
2781  const auto recoFr = (valType == 0) ? rhFraction : lcFraction_r;
2782  const auto& hit_find_in_STS = detIdSimTSId_Map.find(elemId);
2783  if (hit_find_in_STS == detIdSimTSId_Map.end()) {
2784  hitsToCaloParticleId[iHit] -= 1;
2785  } else {
2786  // Since the hit is belonging to the layer cluster, it must be also in the rechits map
2787  const auto hitEn = hitMap.find(rh_detid)->second->energy();
2788  //const auto layerId =
2789  //recHitTools_->getLayerWithOffset(rh_detid) + layers * ((recHitTools_->zside(rh_detid) + 1) >> 1) - 1;
2790  //0;
2791 
2792  auto maxCPEnergyInTS = 0.f;
2793  auto maxCPId = -1;
2794  for (const auto& h : hit_find_in_STS->second) {
2795  const auto shared_fraction = std::min(recoFr, h.fraction);
2796  const auto iSTS = h.clusterId;
2797  const auto& simTS = simTSs[iSTS];
2798  auto iSim = simTS.seedIndex();
2799  if (simTSs[iSTS].seedID() == cPHandle_id) // SimTrackster from CaloParticle
2800  iSim = 0;
2801 
2802  // SimTrackster with simHits connected via detid with the rechit under study
2803  //So, from all layers clusters, find the rechits that are connected with a calo particle and save/calculate the
2804  //energy of that calo particle as the sum over all rechits of the rechits energy weighted
2805  //by the caloparticle's fraction related to that rechit.
2806  const auto cpId = getCPId(simTS, iSTS, cPHandle_id, cpToSc_SimTrackstersMap, simTSs_fromCP);
2807  if (std::find(cPIndices.begin(), cPIndices.end(), cpId) == cPIndices.end())
2808  continue;
2809 
2810  CPEnergyInTS[cpId] += shared_fraction * hitEn;
2811  //Here cPOnLayer[caloparticle][layer] describe above is set.
2812  //Here for Tracksters with matched rechit the CP fraction times hit energy is added and saved .
2813  cPOnLayer[cpId].layerClusterIdToEnergyAndScore[tstId].first += shared_fraction * hitEn;
2814  sCOnLayer[cpId][iSim].layerClusterIdToEnergyAndScore[tstId].first += shared_fraction * hitEn;
2815  cPOnLayer[cpId].layerClusterIdToEnergyAndScore[tstId].second = FLT_MAX;
2816  sCOnLayer[cpId][iSim].layerClusterIdToEnergyAndScore[tstId].second = FLT_MAX;
2817  //stsInTrackster[trackster][STSids]
2818  //Connects a Trackster with all related SimTracksters.
2819  stsInTrackster[tstId].emplace_back(iSTS, FLT_MAX);
2820  //From all CaloParticles related to a layer cluster, it saves id and energy of the calo particle
2821  //that after simhit-rechit matching in layer has the maximum energy.
2822  if (shared_fraction > maxCPEnergyInTS) {
2823  //energy is used only here. cpid is saved for Tracksters
2824  maxCPEnergyInTS = CPEnergyInTS[cpId];
2825  maxCPId = cpId;
2826  }
2827  }
2828  //Keep in mind here maxCPId could be zero. So, below ask for negative not including zero to count noise.
2829  hitsToCaloParticleId[iHit] = maxCPId;
2830  }
2831 
2832  } //end of loop through rechits of the layer cluster.
2833 
2834  //Loop through all rechits to count how many of them are noise and how many are matched.
2835  //In case of matched rechit-simhit, he counts and saves the number of rechits related to the maximum energy CaloParticle.
2836  for (auto c : hitsToCaloParticleId) {
2837  if (c < 0)
2838  numberOfNoiseHitsInTS++;
2839  else
2840  occurrencesCPinTS[c]++;
2841  }
2842 
2843  //Below from all maximum energy CaloParticles, he saves the one with the largest amount
2844  //of related rechits.
2845  for (auto& c : occurrencesCPinTS) {
2846  if (c.second > maxCPNumberOfHitsInTS) {
2847  maxCPId_byNumberOfHits = c.first;
2848  maxCPNumberOfHitsInTS = c.second;
2849  }
2850  }
2851 
2852  //Find the CaloParticle that has the maximum energy shared with the Trackster under study.
2853  for (auto& c : CPEnergyInTS) {
2854  if (c.second > maxEnergySharedTSandCP) {
2855  maxCPId_byEnergy = c.first;
2856  maxEnergySharedTSandCP = c.second;
2857  }
2858  }
2859  //The energy of the CaloParticle that found to have the maximum energy shared with the Trackster under study.
2860  float totalCPEnergyFromLayerCP = 0.f;
2861  if (maxCPId_byEnergy >= 0) {
2862  totalCPEnergyFromLayerCP += cPOnLayer[maxCPId_byEnergy].energy;
2863  energyFractionOfCPinTS = maxEnergySharedTSandCP / totalCPEnergyFromLayerCP;
2864  if (tst.raw_energy() > 0.f) {
2865  energyFractionOfTSinCP = maxEnergySharedTSandCP / tst.raw_energy();
2866  }
2867  }
2868 
2869  LogDebug("HGCalValidator") << std::setw(12) << "Trackster\t" << std::setw(10) << "energy\t" << std::setw(5)
2870  << "nhits\t" << std::setw(12) << "noise hits\t" << std::setw(22)
2871  << "maxCPId_byNumberOfHits\t" << std::setw(8) << "nhitsCP\t" << std::setw(16)
2872  << "maxCPId_byEnergy\t" << std::setw(23) << "maxEnergySharedTSandCP\t" << std::setw(22)
2873  << "totalCPEnergyFromAllLayerCP\t" << std::setw(22) << "energyFractionOfTSinCP\t"
2874  << std::setw(25) << "energyFractionOfCPinTS\t" << std::endl;
2875  LogDebug("HGCalValidator") << std::setw(12) << tstId << "\t" //LogDebug("HGCalValidator")
2876  << std::setw(10) << tst.raw_energy() << "\t" << std::setw(5) << numberOfHitsInTS << "\t"
2877  << std::setw(12) << numberOfNoiseHitsInTS << "\t" << std::setw(22)
2878  << maxCPId_byNumberOfHits << "\t" << std::setw(8) << maxCPNumberOfHitsInTS << "\t"
2879  << std::setw(16) << maxCPId_byEnergy << "\t" << std::setw(23) << maxEnergySharedTSandCP
2880  << "\t" << std::setw(22) << totalCPEnergyFromLayerCP << "\t" << std::setw(22)
2881  << energyFractionOfTSinCP << "\t" << std::setw(25) << energyFractionOfCPinTS
2882  << std::endl;
2883 
2884  } // end of loop through Tracksters
2885 
2886  // Loop through Tracksters
2887  for (unsigned int tstId = 0; tstId < nTracksters; ++tstId) {
2888  const auto& tst = tracksters[tstId];
2889  if (tst.vertices().empty())
2890  continue;
2891 
2892  // find the unique SimTrackster ids contributing to the Trackster
2893  //stsInTrackster[trackster][STSids]
2894  std::sort(stsInTrackster[tstId].begin(), stsInTrackster[tstId].end());
2895  const auto last = std::unique(stsInTrackster[tstId].begin(), stsInTrackster[tstId].end());
2896  stsInTrackster[tstId].erase(last, stsInTrackster[tstId].end());
2897 
2898  if (tst.raw_energy() == 0. && !stsInTrackster[tstId].empty()) {
2899  //Loop through all SimTracksters contributing to Trackster tstId
2900  for (auto& stsPair : stsInTrackster[tstId]) {
2901  // In case of a Trackster with zero energy but related SimTracksters the score is set to 1
2902  stsPair.second = 1.;
2903  LogDebug("HGCalValidator") << "Trackster Id:\t" << tstId << "\tSimTrackster id:\t" << stsPair.first
2904  << "\tscore\t" << stsPair.second << std::endl;
2905  histograms.h_score_trackster2caloparticle[valType][count]->Fill(stsPair.second);
2906  }
2907  continue;
2908  }
2909 
2910  const auto tst_hitsAndFractions = apply_LCMultiplicity(tst, layerClusters);
2911 
2912  // Compute the correct normalization
2913  float tracksterEnergy = 0.f, invTracksterEnergyWeight = 0.f;
2914  for (const auto& haf : tst_hitsAndFractions) {
2915  float hitFr = 0.f;
2916  if (valType == 0) {
2917  hitFr = haf.second;
2918  } else {
2919  const auto lcId = getLCId(tst.vertices(), layerClusters, haf.first);
2920  const auto iLC = std::find(tst.vertices().begin(), tst.vertices().end(), lcId);
2921  hitFr = 1.f / tst.vertex_multiplicity(std::distance(std::begin(tst.vertices()), iLC));
2922  }
2923  tracksterEnergy += hitFr * hitMap.at(haf.first)->energy();
2924  invTracksterEnergyWeight += pow(hitFr * hitMap.at(haf.first)->energy(), 2);
2925  }
2926  if (invTracksterEnergyWeight)
2927  invTracksterEnergyWeight = 1.f / invTracksterEnergyWeight;
2928 
2929  for (const auto& haf : tst_hitsAndFractions) {
2930  const auto rh_detid = haf.first;
2931  unsigned int elemId = 0;
2932  float rhFraction = 0.f;
2933  if (valType == 0) {
2934  elemId = rh_detid.rawId();
2935  rhFraction = haf.second;
2936  } else {
2937  const auto lcId = getLCId(tst.vertices(), layerClusters, rh_detid);
2938  elemId = lcId;
2939  const auto iLC = std::find(tst.vertices().begin(), tst.vertices().end(), lcId);
2940  rhFraction = 1.f / tst.vertex_multiplicity(std::distance(std::begin(tst.vertices()), iLC));
2941  }
2942 
2943  bool hitWithNoSTS = false;
2944  if (detIdSimTSId_Map.find(elemId) == detIdSimTSId_Map.end())
2945  hitWithNoSTS = true;
2946  const HGCRecHit* hit = hitMap.find(rh_detid)->second;
2947  const auto hitEnergyWeight = pow(hit->energy(), 2);
2948 
2949  for (auto& stsPair : stsInTrackster[tstId]) {
2950  float cpFraction = 0.f;
2951  if (!hitWithNoSTS) {
2952  const auto& findSTSIt = std::find(
2953  detIdSimTSId_Map[elemId].begin(),
2954  detIdSimTSId_Map[elemId].end(),
2956  stsPair.first, 0.f}); // only the first element is used for the matching (overloaded operator==)
2957  if (findSTSIt != detIdSimTSId_Map[elemId].end())
2958  cpFraction = findSTSIt->fraction;
2959  }
2960  if (stsPair.second == FLT_MAX) {
2961  stsPair.second = 0.f;
2962  }
2963  stsPair.second +=
2964  min(pow(rhFraction - cpFraction, 2), pow(rhFraction, 2)) * hitEnergyWeight * invTracksterEnergyWeight;
2965  }
2966  } // end of loop through trackster rechits
2967 
2968  //In case of a Trackster with some energy but none related CaloParticles print some info.
2969  if (stsInTrackster[tstId].empty())
2970  LogDebug("HGCalValidator") << "Trackster Id: " << tstId << "\tSimTrackster id: -1"
2971  << "\tscore: -1\n";
2972 
2973  tracksters_FakeMerge[tstId] =
2974  std::count_if(std::begin(stsInTrackster[tstId]),
2975  std::end(stsInTrackster[tstId]),
2976  [ScoreCutTStoSTSFakeMerge](const auto& obj) { return obj.second < ScoreCutTStoSTSFakeMerge; });
2977 
2978  const auto score = std::min_element(std::begin(stsInTrackster[tstId]),
2979  std::end(stsInTrackster[tstId]),
2980  [](const auto& obj1, const auto& obj2) { return obj1.second < obj2.second; });
2981  float score2 = -1;
2982  float sharedEneFrac2 = 0;
2983  for (const auto& stsPair : stsInTrackster[tstId]) {
2984  const auto iSTS = stsPair.first;
2985  const auto iScore = stsPair.second;
2986  const auto cpId = getCPId(simTSs[iSTS], iSTS, cPHandle_id, cpToSc_SimTrackstersMap, simTSs_fromCP);
2987  auto iSim = simTSs[iSTS].seedIndex();
2988  if (simTSs[iSTS].seedID() == cPHandle_id) // SimTrackster from CaloParticle
2989  iSim = 0;
2990  const auto& simOnLayer = (valType == 0) ? cPOnLayer[cpId] : sCOnLayer[cpId][iSim];
2991 
2992  float sharedeneCPallLayers = 0.;
2993  sharedeneCPallLayers += simOnLayer.layerClusterIdToEnergyAndScore.count(tstId)
2994  ? simOnLayer.layerClusterIdToEnergyAndScore.at(tstId).first
2995  : 0;
2996  if (tracksterEnergy == 0)
2997  continue;
2998  const auto sharedEneFrac = sharedeneCPallLayers / tracksterEnergy;
2999  LogDebug("HGCalValidator") << "\nTrackster id: " << tstId << " (" << tst.vertices().size() << " vertices)"
3000  << "\tSimTrackster Id: " << iSTS << " (" << simTSs[iSTS].vertices().size()
3001  << " vertices)"
3002  << " (CP id: " << cpId << ")\tscore: " << iScore
3003  << "\tsharedeneCPallLayers: " << sharedeneCPallLayers << std::endl;
3004 
3005  histograms.h_score_trackster2caloparticle[valType][count]->Fill(iScore);
3006  histograms.h_sharedenergy_trackster2caloparticle[valType][count]->Fill(sharedEneFrac);
3007  histograms.h_energy_vs_score_trackster2caloparticle[valType][count]->Fill(iScore, sharedEneFrac);
3008  if (iSTS == score->first) {
3009  histograms.h_score_trackster2bestCaloparticle[valType][count]->Fill(iScore);
3010  histograms.h_sharedenergy_trackster2bestCaloparticle[valType][count]->Fill(sharedEneFrac);
3011  histograms.h_sharedenergy_trackster2bestCaloparticle_vs_eta[valType][count]->Fill(tst.barycenter().eta(),
3012  sharedEneFrac);
3013  histograms.h_sharedenergy_trackster2bestCaloparticle_vs_phi[valType][count]->Fill(tst.barycenter().phi(),
3014  sharedEneFrac);
3015  histograms.h_energy_vs_score_trackster2bestCaloparticle[valType][count]->Fill(iScore, sharedEneFrac);
3016  } else if (score2 < 0 || iScore < score2) {
3017  score2 = iScore;
3018  sharedEneFrac2 = sharedEneFrac;
3019  }
3020  } // end of loop through SimTracksters associated to Trackster
3021  if (score2 > -1) {
3022  histograms.h_score_trackster2bestCaloparticle2[valType][count]->Fill(score2);
3023  histograms.h_sharedenergy_trackster2bestCaloparticle2[valType][count]->Fill(sharedEneFrac2);
3024  histograms.h_energy_vs_score_trackster2bestCaloparticle2[valType][count]->Fill(score2, sharedEneFrac2);
3025  }
3026  } // end of loop through Tracksters
3027 
3028  std::unordered_map<unsigned int, std::vector<float>> score3d;
3029  std::unordered_map<unsigned int, std::vector<float>> tstSharedEnergy;
3030 
3031  for (unsigned int iSTS = 0; iSTS < nSimTracksters; ++iSTS) {
3032  score3d[iSTS].resize(nTracksters);
3033  tstSharedEnergy[iSTS].resize(nTracksters);
3034  for (unsigned int j = 0; j < nTracksters; ++j) {
3035  score3d[iSTS][j] = FLT_MAX;
3036  tstSharedEnergy[iSTS][j] = 0.f;
3037  }
3038  }
3039 
3040  // Fill the plots to compute the different metrics linked to
3041  // gen-level, namely efficiency, purity and duplicate. In this loop should restrict
3042  // only to the selected caloParaticles.
3043  for (unsigned int iSTS = 0; iSTS < nSimTracksters; ++iSTS) {
3044  const auto& sts = simTSs[iSTS];
3045  const auto& cpId = getCPId(sts, iSTS, cPHandle_id, cpToSc_SimTrackstersMap, simTSs_fromCP);
3046  if (valType == 0 && std::find(cPSelectedIndices.begin(), cPSelectedIndices.end(), cpId) == cPSelectedIndices.end())
3047  continue;
3048 
3049  const auto& hafLC = apply_LCMultiplicity(sts, layerClusters);
3050  float SimEnergy_LC = 0.f;
3051  for (const auto& haf : hafLC) {
3052  const auto lcId = getLCId(sts.vertices(), layerClusters, haf.first);
3053  const auto iLC = std::find(sts.vertices().begin(), sts.vertices().end(), lcId);
3054  SimEnergy_LC +=
3055  hitMap.at(haf.first)->energy() / sts.vertex_multiplicity(std::distance(std::begin(sts.vertices()), iLC));
3056  }
3057 
3058  auto iSim = sts.seedIndex();
3059  if (sts.seedID() == cPHandle_id) // SimTrackster from CaloParticle
3060  iSim = 0;
3061  auto& simOnLayer = (valType == 0) ? cPOnLayer[cpId] : sCOnLayer[cpId][iSim];
3062 
3063  // Keep the Trackster ids that are related to
3064  // SimTrackster under study for the final filling of the score
3065  std::set<unsigned int> stsId_tstId_related;
3066  auto& score3d_iSTS = score3d[iSTS];
3067 
3068  float SimEnergy = 0.f;
3069  float SimEnergyWeight = 0.f, hitsEnergyWeight = 0.f;
3070  //for (unsigned int layerId = 0; layerId < 1/*layers * 2*/; ++layerId) {
3071  const auto SimNumberOfHits = simOnLayer.hits_and_fractions.size();
3072  if (SimNumberOfHits == 0)
3073  continue;
3074  SimEnergy += simOnLayer.energy;
3075  int tstWithMaxEnergyInCP = -1;
3076  //This is the maximum energy related to Trackster per layer.
3077  float maxEnergyTSperlayerinSim = 0.f;
3078  float SimEnergyFractionInTSperlayer = 0.f;
3079  //Remember and not confused by name. layerClusterIdToEnergyAndScore contains the Trackster id.
3080  for (const auto& tst : simOnLayer.layerClusterIdToEnergyAndScore) {
3081  if (tst.second.first > maxEnergyTSperlayerinSim) {
3082  maxEnergyTSperlayerinSim = tst.second.first;
3083  tstWithMaxEnergyInCP = tst.first;
3084  }
3085  }
3086  if (SimEnergy > 0.f)
3087  SimEnergyFractionInTSperlayer = maxEnergyTSperlayerinSim / SimEnergy;
3088 
3089  LogDebug("HGCalValidator") << std::setw(12) << "caloparticle\t" << std::setw(15) << "cp total energy\t"
3090  << std::setw(15) << "cpEnergyOnLayer\t" << std::setw(14) << "CPNhitsOnLayer\t"
3091  << std::setw(18) << "tstWithMaxEnergyInCP\t" << std::setw(15) << "maxEnergyTSinCP\t"
3092  << std::setw(20) << "CPEnergyFractionInTS"
3093  << "\n";
3094  LogDebug("HGCalValidator") << std::setw(12) << cpId << "\t" << std::setw(15) << sts.raw_energy() << "\t"
3095  << std::setw(15) << SimEnergy << "\t" << std::setw(14) << SimNumberOfHits << "\t"
3096  << std::setw(18) << tstWithMaxEnergyInCP << "\t" << std::setw(15)
3097  << maxEnergyTSperlayerinSim << "\t" << std::setw(20) << SimEnergyFractionInTSperlayer
3098  << "\n";
3099 
3100  for (const auto& haf : ((valType == 0) ? simOnLayer.hits_and_fractions : hafLC)) {
3101  const auto& hitDetId = haf.first;
3102  // Compute the correct normalization
3103  // Need to loop on the simOnLayer data structure since this is the
3104  // only one that has the compressed information for multiple usage
3105  // of the same DetId by different SimClusters by a single CaloParticle.
3106  SimEnergyWeight += pow(haf.second * hitMap.at(hitDetId)->energy(), 2);
3107 
3108  const auto lcId = getLCId(sts.vertices(), layerClusters, hitDetId);
3109  float cpFraction = 0.f;
3110  if (valType == 0) {
3111  cpFraction = haf.second;
3112  } else {
3113  const auto iLC = std::find(sts.vertices().begin(), sts.vertices().end(), lcId);
3114  cpFraction = 1.f / sts.vertex_multiplicity(std::distance(std::begin(sts.vertices()), iLC));
3115  }
3116  if (cpFraction == 0.f)
3117  continue; // hopefully this should never happen
3118 
3119  bool hitWithNoTS = false;
3120  if (detIdToTracksterId_Map.find(hitDetId) == detIdToTracksterId_Map.end())
3121  hitWithNoTS = true;
3122  const HGCRecHit* hit = hitMap.find(hitDetId)->second;
3123  const auto hitEnergyWeight = pow(hit->energy(), 2);
3124  hitsEnergyWeight += pow(cpFraction, 2) * hitEnergyWeight;
3125 
3126  for (auto& tsPair : simOnLayer.layerClusterIdToEnergyAndScore) {
3127  const auto tstId = tsPair.first;
3128  stsId_tstId_related.insert(tstId);
3129 
3130  float tstFraction = 0.f;
3131  if (!hitWithNoTS) {
3132  const auto findTSIt =
3133  std::find(detIdToTracksterId_Map[hitDetId].begin(),
3134  detIdToTracksterId_Map[hitDetId].end(),
3136  tstId, 0, 0.f}); // only the first element is used for the matching (overloaded operator==)
3137  if (findTSIt != detIdToTracksterId_Map[hitDetId].end()) {
3138  if (valType == 0) {
3139  tstFraction = findTSIt->fraction;
3140  } else {
3141  const auto iLC = std::find(
3142  tracksters[tstId].vertices().begin(), tracksters[tstId].vertices().end(), findTSIt->clusterId);
3143  if (iLC != tracksters[tstId].vertices().end()) {
3144  tstFraction = 1.f / tracksters[tstId].vertex_multiplicity(
3145  std::distance(std::begin(tracksters[tstId].vertices()), iLC));
3146  }
3147  }
3148  }
3149  }
3150  // Here do not divide as before by the trackster energy weight. Should sum first
3151  // over all layers and divide with the total CP energy over all layers.
3152  if (tsPair.second.second == FLT_MAX) {
3153  tsPair.second.second = 0.f;
3154  }
3155  tsPair.second.second += min(pow(tstFraction - cpFraction, 2), pow(cpFraction, 2)) * hitEnergyWeight;
3156 
3157  LogDebug("HGCalValidator") << "\nTracksterId:\t" << tstId << "\tSimTracksterId:\t" << iSTS << "\tcpId:\t"
3158  << cpId << "\ttstfraction, cpfraction:\t" << tstFraction << ", " << cpFraction
3159  << "\thitEnergyWeight:\t" << hitEnergyWeight << "\tadded delta:\t"
3160  << pow((tstFraction - cpFraction), 2) * hitEnergyWeight
3161  << "\tcurrent Sim-score numerator:\t" << tsPair.second.second
3162  << "\tshared Sim energy:\t" << tsPair.second.first << '\n';
3163  }
3164  } // end of loop through SimCluster SimHits on current layer
3165 
3166  if (simOnLayer.layerClusterIdToEnergyAndScore.empty())
3167  LogDebug("HGCalValidator") << "CP Id:\t" << cpId << "\tTS id:\t-1"
3168  << " Sub score in \t -1\n";
3169 
3170  for (const auto& tsPair : simOnLayer.layerClusterIdToEnergyAndScore) {
3171  const auto tstId = tsPair.first;
3172  // 3D score here without the denominator at this point
3173  if (score3d_iSTS[tstId] == FLT_MAX) {
3174  score3d_iSTS[tstId] = 0.f;
3175  }
3176  score3d_iSTS[tstId] += tsPair.second.second;
3177  tstSharedEnergy[iSTS][tstId] += tsPair.second.first;
3178  }
3179  //} // end of loop through layers
3180 
3181  const auto scoreDenom = (valType == 0) ? SimEnergyWeight : hitsEnergyWeight;
3182  const auto energyDenom = (valType == 0) ? SimEnergy : SimEnergy_LC;
3183 
3184  const auto sts_eta = sts.barycenter().eta();
3185  const auto sts_phi = sts.barycenter().phi();
3186  const auto sts_en = sts.raw_energy();
3187  const auto sts_pt = sts.raw_pt();
3188  histograms.h_denom_caloparticle_eta[valType][count]->Fill(sts_eta);
3189  histograms.h_denom_caloparticle_phi[valType][count]->Fill(sts_phi);
3190  histograms.h_denom_caloparticle_en[valType][count]->Fill(sts_en);
3191  histograms.h_denom_caloparticle_pt[valType][count]->Fill(sts_pt);
3192 
3193  //Loop through related Tracksters here
3194  // In case the threshold to associate a CaloParticle to a Trackster is
3195  // below 50%, there could be cases in which the CP is linked to more than
3196  // one tracksters, leading to efficiencies >1. This boolean is used to
3197  // avoid "over counting".
3198  bool sts_considered_efficient = false;
3199  bool sts_considered_pure = false;
3200  for (const auto tstId : stsId_tstId_related) {
3201  // Now time for the denominator
3202  score3d_iSTS[tstId] /= scoreDenom;
3203  const auto tstSharedEnergyFrac = tstSharedEnergy[iSTS][tstId] / energyDenom;
3204  LogDebug("HGCalValidator") << "STS id: " << iSTS << "\t(CP id: " << cpId << ")\tTS id: " << tstId
3205  << "\nSimEnergy: " << energyDenom << "\tSimEnergyWeight: " << SimEnergyWeight
3206  << "\tTrackste energy: " << tracksters[tstId].raw_energy()
3207  << "\nscore: " << score3d_iSTS[tstId]
3208  << "\tshared energy: " << tstSharedEnergy[iSTS][tstId]
3209  << "\tshared energy fraction: " << tstSharedEnergyFrac << "\n";
3210 
3211  histograms.h_score_caloparticle2trackster[valType][count]->Fill(score3d_iSTS[tstId]);
3212  histograms.h_sharedenergy_caloparticle2trackster[valType][count]->Fill(tstSharedEnergyFrac);
3213  histograms.h_energy_vs_score_caloparticle2trackster[valType][count]->Fill(score3d_iSTS[tstId],
3214  tstSharedEnergyFrac);
3215  // Fill the numerator for the efficiency calculation. The efficiency is computed by considering the energy shared between a Trackster and a _corresponding_ caloParticle. The threshold is configurable via python.
3216  if (!sts_considered_efficient && (tstSharedEnergyFrac >= minTSTSharedEneFracEfficiency_)) {
3217  sts_considered_efficient = true;
3218  histograms.h_numEff_caloparticle_eta[valType][count]->Fill(sts_eta);
3219  histograms.h_numEff_caloparticle_phi[valType][count]->Fill(sts_phi);
3220  histograms.h_numEff_caloparticle_en[valType][count]->Fill(sts_en);
3221  histograms.h_numEff_caloparticle_pt[valType][count]->Fill(sts_pt);
3222  }
3223 
3224  if (score3d_iSTS[tstId] < ScoreCutSTStoTSPurDup) {
3225  if (tracksters_PurityDuplicate[tstId] < 1)
3226  tracksters_PurityDuplicate[tstId]++; // for Purity
3227  if (sts_considered_pure)
3228  tracksters_PurityDuplicate[tstId]++; // for Duplicate
3229  sts_considered_pure = true;
3230  }
3231  } // end of loop through Tracksters related to SimTrackster
3232 
3233  const auto best = std::min_element(std::begin(score3d_iSTS), std::end(score3d_iSTS));
3234  if (best != score3d_iSTS.end()) {
3235  const auto bestTstId = std::distance(std::begin(score3d_iSTS), best);
3236  const auto bestTstSharedEnergyFrac = tstSharedEnergy[iSTS][bestTstId] / energyDenom;
3237  histograms.h_scorePur_caloparticle2trackster[valType][count]->Fill(*best);
3238  histograms.h_sharedenergy_caloparticle2trackster_assoc[valType][count]->Fill(bestTstSharedEnergyFrac);
3239  histograms.h_sharedenergy_caloparticle2trackster_assoc_vs_eta[valType][count]->Fill(sts_eta,
3240  bestTstSharedEnergyFrac);
3241  histograms.h_sharedenergy_caloparticle2trackster_assoc_vs_phi[valType][count]->Fill(sts_phi,
3242  bestTstSharedEnergyFrac);
3243  histograms.h_energy_vs_score_caloparticle2bestTrackster[valType][count]->Fill(*best, bestTstSharedEnergyFrac);
3244  LogDebug("HGCalValidator") << count << " " << sts_eta << " " << sts_phi << " "
3245  << tracksters[bestTstId].raw_energy() << " " << sts.raw_energy() << " "
3246  << bestTstSharedEnergyFrac << "\n";
3247 
3248  if (score3d_iSTS.size() > 1) {
3249  auto best2 = (best == score3d_iSTS.begin()) ? std::next(best, 1) : score3d_iSTS.begin();
3250  for (auto tstId = score3d_iSTS.begin(); tstId != score3d_iSTS.end() && tstId != best; tstId++)
3251  if (*tstId < *best2)
3252  best2 = tstId;
3253  const auto best2TstId = std::distance(std::begin(score3d_iSTS), best2);
3254  const auto best2TstSharedEnergyFrac = tstSharedEnergy[iSTS][best2TstId] / energyDenom;
3255  histograms.h_scoreDupl_caloparticle2trackster[valType][count]->Fill(*best2);
3256  histograms.h_sharedenergy_caloparticle2trackster_assoc2[valType][count]->Fill(best2TstSharedEnergyFrac);
3257  histograms.h_energy_vs_score_caloparticle2bestTrackster2[valType][count]->Fill(*best2,
3258  best2TstSharedEnergyFrac);
3259  }
3260  }
3261  } // end of loop through SimTracksters
3262 
3263  // Fill the plots to compute the different metrics linked to
3264  // reco-level, namely fake-rate an merge-rate. Should *not*
3265  // restrict only to the selected caloParaticles.
3266  for (unsigned int tstId = 0; tstId < nTracksters; ++tstId) {
3267  const auto& tst = tracksters[tstId];
3268  if (tst.vertices().empty())
3269  continue;
3270  const auto iTS_eta = tst.barycenter().eta();
3271  const auto iTS_phi = tst.barycenter().phi();
3272  const auto iTS_en = tst.raw_energy();
3273  const auto iTS_pt = tst.raw_pt();
3274  histograms.h_denom_trackster_eta[valType][count]->Fill(iTS_eta);
3275  histograms.h_denom_trackster_phi[valType][count]->Fill(iTS_phi);
3276  histograms.h_denom_trackster_en[valType][count]->Fill(iTS_en);
3277  histograms.h_denom_trackster_pt[valType][count]->Fill(iTS_pt);
3278 
3279  if (tracksters_PurityDuplicate[tstId] > 0) {
3280  histograms.h_num_caloparticle_eta[valType][count]->Fill(iTS_eta);
3281  histograms.h_num_caloparticle_phi[valType][count]->Fill(iTS_phi);
3282  histograms.h_num_caloparticle_en[valType][count]->Fill(iTS_en);
3283  histograms.h_num_caloparticle_pt[valType][count]->Fill(iTS_pt);
3284 
3285  if (tracksters_PurityDuplicate[tstId] > 1) {
3286  histograms.h_numDup_trackster_eta[valType][count]->Fill(iTS_eta);
3287  histograms.h_numDup_trackster_phi[valType][count]->Fill(iTS_phi);
3288  histograms.h_numDup_trackster_en[valType][count]->Fill(iTS_en);
3289  histograms.h_numDup_trackster_pt[valType][count]->Fill(iTS_pt);
3290  }
3291  }
3292 
3293  if (tracksters_FakeMerge[tstId] > 0) {
3294  histograms.h_num_trackster_eta[valType][count]->Fill(iTS_eta);
3295  histograms.h_num_trackster_phi[valType][count]->Fill(iTS_phi);
3296  histograms.h_num_trackster_en[valType][count]->Fill(iTS_en);
3297  histograms.h_num_trackster_pt[valType][count]->Fill(iTS_pt);
3298 
3299  if (tracksters_FakeMerge[tstId] > 1) {
3300  histograms.h_numMerge_trackster_eta[valType][count]->Fill(iTS_eta);
3301  histograms.h_numMerge_trackster_phi[valType][count]->Fill(iTS_phi);
3302  histograms.h_numMerge_trackster_en[valType][count]->Fill(iTS_en);
3303  histograms.h_numMerge_trackster_pt[valType][count]->Fill(iTS_pt);
3304  }
3305  }
3306  } // End loop over Tracksters
3307 }
3308 
3310  const Histograms& histograms,
3311  const int count,
3312  const ticl::TracksterCollection& tracksters,
3314  const ticl::TracksterCollection& simTSs,
3315  const ticl::TracksterCollection& simTSs_fromCP,
3316  const std::map<unsigned int, std::vector<unsigned int>>& cpToSc_SimTrackstersMap,
3317  std::vector<SimCluster> const& sC,
3318  const edm::ProductID& cPHandle_id,
3319  std::vector<CaloParticle> const& cP,
3320  std::vector<size_t> const& cPIndices,
3321  std::vector<size_t> const& cPSelectedIndices,
3322  std::unordered_map<DetId, const HGCRecHit*> const& hitMap,
3323  unsigned int layers) const {
3324  //Each event to be treated as two events:
3325  //an event in +ve endcap, plus another event in -ve endcap.
3326 
3327  //To keep track of total num of Tracksters
3328  int totNTstZm = 0; //-z
3329  int totNTstZp = 0; //+z
3330  //To count the number of Tracksters with 3 contiguous layers per event.
3331  int totNContTstZp = 0; //+z
3332  int totNContTstZm = 0; //-z
3333  //For the number of Tracksters without 3 contiguous layers per event.
3334  int totNNotContTstZp = 0; //+z
3335  int totNNotContTstZm = 0; //-z
3336  // Check below the score of cont and non cont Tracksters
3337  std::vector<bool> contTracksters;
3338  contTracksters.clear();
3339 
3340  //[tstId]-> vector of 2d layer clusters size
3341  std::unordered_map<unsigned int, std::vector<unsigned int>> multiplicity;
3342  //[tstId]-> [layer][cluster size]
3343  std::unordered_map<unsigned int, std::vector<unsigned int>> multiplicity_vs_layer;
3344  //We will need for the scale text option
3345  // unsigned int totalLcInTsts = 0;
3346  // for (unsigned int tstId = 0; tstId < nTracksters; ++tstId) {
3347  // totalLcInTsts = totalLcInTsts + tracksters[tstId].vertices().size();
3348  // }
3349 
3350  const auto nTracksters = tracksters.size();
3351  // loop through Tracksters
3352  for (unsigned int tstId = 0; tstId < nTracksters; ++tstId) {
3353  const auto& tst = tracksters[tstId];
3354  if (tst.vertices().empty())
3355  continue;
3356 
3357  if (tst.barycenter().z() < 0.)
3358  totNTstZm++;
3359  else if (tst.barycenter().z() > 0.)
3360  totNTstZp++;
3361 
3362  //Total number of layer clusters in Trackster
3363  int tnLcInTst = 0;
3364 
3365  //To keep track of total num of layer clusters per Trackster
3366  //tnLcInTstperlaypz[layerid], tnLcInTstperlaymz[layerid]
3367  std::vector<int> tnLcInTstperlay(1000, 0); //+z
3368 
3369  //For the layers the Trackster expands to. Will use a set because there would be many
3370  //duplicates and then go back to vector for random access, since they say it is faster.
3371  std::set<unsigned int> trackster_layers;
3372 
3373  bool tracksterInZplus = false;
3374  bool tracksterInZminus = false;
3375 
3376  //Loop through layer clusters
3377  for (const auto lcId : tst.vertices()) {
3378  //take the hits and their fraction of the specific layer cluster.
3379  const auto& hits_and_fractions = layerClusters[lcId].hitsAndFractions();
3380 
3381  //For the multiplicity of the 2d layer clusters in Tracksters
3382  multiplicity[tstId].emplace_back(hits_and_fractions.size());
3383 
3384  const auto firstHitDetId = hits_and_fractions[0].first;
3385  //The layer that the layer cluster belongs to
3386  const auto layerid = recHitTools_->getLayerWithOffset(firstHitDetId) +
3387  layers * ((recHitTools_->zside(firstHitDetId) + 1) >> 1) - 1;
3388  trackster_layers.insert(layerid);
3389  multiplicity_vs_layer[tstId].emplace_back(layerid);
3390 
3391  tnLcInTstperlay[layerid]++;
3392  tnLcInTst++;
3393 
3394  if (recHitTools_->zside(firstHitDetId) > 0.)
3395  tracksterInZplus = true;
3396  else if (recHitTools_->zside(firstHitDetId) < 0.)
3397  tracksterInZminus = true;
3398  } // end of loop through layerClusters
3399 
3400  // Per layer : Loop 0->99
3401  for (unsigned ilayer = 0; ilayer < layers * 2; ++ilayer) {
3402  if (histograms.h_clusternum_in_trackster_perlayer[count].count(ilayer) && tnLcInTstperlay[ilayer] != 0) {
3403  histograms.h_clusternum_in_trackster_perlayer[count].at(ilayer)->Fill((float)tnLcInTstperlay[ilayer]);
3404  }
3405  // For the profile now of 2d layer cluster in Tracksters vs layer number.
3406  if (tnLcInTstperlay[ilayer] != 0) {
3407  histograms.h_clusternum_in_trackster_vs_layer[count]->Fill((float)ilayer, (float)tnLcInTstperlay[ilayer]);
3408  }
3409  } // end of loop over layers
3410 
3411  // Looking for Tracksters with 3 contiguous layers per event.
3412  std::vector<int> trackster_layers_vec(trackster_layers.begin(), trackster_layers.end());
3413  // Check also for non contiguous Tracksters
3414  bool contiTrackster = false;
3415  // Start from 1 and go up to size - 1 element.
3416  if (trackster_layers_vec.size() >= 3) {
3417  for (unsigned int iLayer = 1; iLayer < trackster_layers_vec.size() - 1; ++iLayer) {
3418  if ((trackster_layers_vec[iLayer - 1] + 1 == trackster_layers_vec[iLayer]) &&
3419  (trackster_layers_vec[iLayer + 1] - 1 == trackster_layers_vec[iLayer])) {
3420  // Trackster with 3 contiguous layers per event
3421  if (tracksterInZplus)
3422  totNContTstZp++;
3423  else if (tracksterInZminus)
3424  totNContTstZm++;
3425 
3426  contiTrackster = true;
3427  break;
3428  }
3429  }
3430  }
3431  // Count non contiguous Tracksters
3432  if (!contiTrackster) {
3433  if (tracksterInZplus)
3434  totNNotContTstZp++;
3435  else if (tracksterInZminus)
3436  totNNotContTstZm++;
3437  }
3438 
3439  // Save for the score
3440  contTracksters.push_back(contiTrackster);
3441 
3442  histograms.h_clusternum_in_trackster[count]->Fill(tnLcInTst);
3443 
3444  for (unsigned int lc = 0; lc < multiplicity[tstId].size(); ++lc) {
3445  //multiplicity of the current LC
3446  float mlp = std::count(std::begin(multiplicity[tstId]), std::end(multiplicity[tstId]), multiplicity[tstId][lc]);
3447  //LogDebug("HGCalValidator") << "mlp %" << (100. * mlp)/ ((float) nLayerClusters) << std::endl;
3448  // histograms.h_multiplicityOfLCinTST[count]->Fill( mlp , multiplicity[tstId][lc] , 100. / (float) totalLcInTsts );
3449  histograms.h_multiplicityOfLCinTST[count]->Fill(mlp, multiplicity[tstId][lc]);
3450  //When plotting with the text option we want the entries to be the same
3451  //as the % of the current cell over the whole number of layerClusters. For this we need an extra histo.
3452  histograms.h_multiplicity_numberOfEventsHistogram[count]->Fill(mlp);
3453  //For the cluster multiplicity vs layer
3454  //First with the -z endcap (V10:0->49)
3455  if (multiplicity_vs_layer[tstId][lc] < layers) {
3456  histograms.h_multiplicityOfLCinTST_vs_layercluster_zminus[count]->Fill(mlp, multiplicity_vs_layer[tstId][lc]);
3457  histograms.h_multiplicity_zminus_numberOfEventsHistogram[count]->Fill(mlp);
3458  } else { //Then for the +z (V10:50->99)
3459  histograms.h_multiplicityOfLCinTST_vs_layercluster_zplus[count]->Fill(
3460  mlp, multiplicity_vs_layer[tstId][lc] - layers);
3461  histograms.h_multiplicity_zplus_numberOfEventsHistogram[count]->Fill(mlp);
3462  }
3463  //For the cluster multiplicity vs cluster energy
3464  histograms.h_multiplicityOfLCinTST_vs_layerclusterenergy[count]->Fill(mlp,
3465  layerClusters[tst.vertices(lc)].energy());
3466  }
3467 
3468  if (!trackster_layers.empty()) {
3469  histograms.h_trackster_x[count]->Fill(tst.barycenter().x());
3470  histograms.h_trackster_y[count]->Fill(tst.barycenter().y());
3471  histograms.h_trackster_z[count]->Fill(tst.barycenter().z());
3472  histograms.h_trackster_eta[count]->Fill(tst.barycenter().eta());
3473  histograms.h_trackster_phi[count]->Fill(tst.barycenter().phi());
3474 
3475  histograms.h_trackster_firstlayer[count]->Fill((float)*trackster_layers.begin());
3476  histograms.h_trackster_lastlayer[count]->Fill((float)*trackster_layers.rbegin());
3477  histograms.h_trackster_layersnum[count]->Fill((float)trackster_layers.size());
3478 
3479  histograms.h_trackster_pt[count]->Fill(tst.raw_pt());
3480  histograms.h_trackster_energy[count]->Fill(tst.raw_energy());
3481  }
3482 
3483  } //end of loop through Tracksters
3484 
3485  histograms.h_tracksternum[count]->Fill(totNTstZm + totNTstZp);
3486  histograms.h_conttracksternum[count]->Fill(totNContTstZp + totNContTstZm);
3487  histograms.h_nonconttracksternum[count]->Fill(totNNotContTstZp + totNNotContTstZm);
3488 
3489  // CaloParticle
3491  count,
3492  tracksters,
3493  layerClusters,
3494  simTSs_fromCP,
3495  Linking,
3496  simTSs_fromCP,
3497  cpToSc_SimTrackstersMap,
3498  sC,
3499  cPHandle_id,
3500  cP,
3501  cPIndices,
3502  cPSelectedIndices,
3503  hitMap,
3504  layers);
3505 
3506  // Pattern recognition
3508  count,
3509  tracksters,
3510  layerClusters,
3511  simTSs,
3513  simTSs_fromCP,
3514  cpToSc_SimTrackstersMap,
3515  sC,
3516  cPHandle_id,
3517  cP,
3518  cPIndices,
3519  cPSelectedIndices,
3520  hitMap,
3521  layers);
3522 }
3523 
3525  const double y1,
3526  const double x2,
3527  const double y2) const { //distance squared
3528  const double dx = x1 - x2;
3529  const double dy = y1 - y2;
3530  return (dx * dx + dy * dy);
3531 } //distance squaredq
3533  const double y1,
3534  const double x2,
3535  const double y2) const { //2-d distance on the layer (x-y)
3536  return std::sqrt(distance2(x1, y1, x2, y2));
3537 }
3538 
3539 void HGVHistoProducerAlgo::setRecHitTools(std::shared_ptr<hgcal::RecHitTools> recHitTools) {
3540  recHitTools_ = recHitTools;
3541 }
3542 
3544  std::unordered_map<DetId, const HGCRecHit*> const& hitMap) const {
3545  const auto& hits_and_fractions = cluster.hitsAndFractions();
3546 
3547  DetId themaxid;
3548  double maxene = 0.;
3549  for (std::vector<std::pair<DetId, float>>::const_iterator it_haf = hits_and_fractions.begin();
3550  it_haf != hits_and_fractions.end();
3551  ++it_haf) {
3552  const DetId rh_detid = it_haf->first;
3553  const auto hitEn = hitMap.find(rh_detid)->second->energy();
3554 
3555  if (maxene < hitEn) {
3556  maxene = hitEn;
3557  themaxid = rh_detid;
3558  }
3559  }
3560 
3561  return themaxid;
3562 }
3563 
3564 double HGVHistoProducerAlgo::getEta(double eta) const {
3565  if (useFabsEta_)
3566  return fabs(eta);
3567  else
3568  return eta;
3569 }
const float maxPhi_
Definition: Constants.h:79
const std::vector< SimTrack > & g4Tracks() const
Definition: CaloParticle.h:74
const std::vector< std::pair< DetId, float > > & hitsAndFractions() const
Definition: CaloCluster.h:209
const double ScoreCutSCtoLC_
const SimClusterRefVector & simClusters() const
Definition: CaloParticle.h:72
void bookTracksterHistos(DQMStore::IBooker &ibook, Histograms &histograms, unsigned int layers)
void setRecHitTools(std::shared_ptr< hgcal::RecHitTools > recHitTools)
const double ScoreCutLCtoSC_
Definition: weight.py:1
void fill_info_histos(const Histograms &histograms, unsigned int layers) const
void bookClusterHistos_LCtoCP_association(DQMStore::IBooker &ibook, Histograms &histograms, unsigned int layers)
int zside(DetId const &)
void find(edm::Handle< EcalRecHitCollection > &hits, DetId thisDet, std::vector< EcalRecHitCollection::const_iterator > &hit, bool debug=false)
Definition: FindCaloHit.cc:19
constexpr Detector det() const
get the detector field from this detid
Definition: DetId.h:46
const_iterator find(const key_type &k) const
find element with specified reference key
void bookInfo(DQMStore::IBooker &ibook, Histograms &histograms)
static std::string to_string(const XMLCh *ch)
const_iterator end() const
last iterator over the map (read only)
float energy() const
Energy. Note this is taken from the first SimTrack only.
Definition: CaloParticle.h:98
void bookSimClusterAssociationHistos(DQMStore::IBooker &ibook, Histograms &histograms, unsigned int layers, std::vector< int > thicknesses)
DetId findmaxhit(const reco::CaloCluster &cluster, std::unordered_map< DetId, const HGCRecHit *> const &) const
void fill_caloparticle_histos(const Histograms &histograms, int pdgid, const CaloParticle &caloparticle, std::vector< SimVertex > const &simVertices, unsigned int layers, std::unordered_map< DetId, const HGCRecHit *> const &) const
void bookSimClusterHistos(DQMStore::IBooker &ibook, Histograms &histograms, unsigned int layers, std::vector< int > thicknesses)
void fill_cluster_histos(const Histograms &histograms, const int count, const reco::CaloCluster &cluster) const
MonitorElement * bookProfile(TString const &name, TString const &title, int nchX, double lowX, double highX, int, double lowY, double highY, char const *option="s", FUNC onbooking=NOOP())
Definition: DQMStore.h:399
T sqrt(T t)
Definition: SSEVec.h:19
float pt() const
Transverse momentum. Note this is taken from the first SimTrack only.
Definition: CaloParticle.h:130
def unique(seq, keepstr=True)
Definition: tier0.py:24
double distance2(const double x1, const double y1, const double x2, const double y2) const
void layerClusters_to_SimClusters(const Histograms &histograms, const int count, edm::Handle< reco::CaloClusterCollection > clusterHandle, const reco::CaloClusterCollection &clusters, edm::Handle< std::vector< SimCluster >> simClusterHandle, std::vector< SimCluster > const &simClusters, std::vector< size_t > const &sCIndices, const std::vector< float > &mask, std::unordered_map< DetId, const HGCRecHit *> const &, unsigned int layers, const hgcal::RecoToSimCollectionWithSimClusters &recSimColl, const hgcal::SimToRecoCollectionWithSimClusters &simRecColl) const
std::vector< CaloCluster > CaloClusterCollection
collection of CaloCluster objects
double f[11][100]
void bookCaloParticleHistos(DQMStore::IBooker &ibook, Histograms &histograms, int pdgid, unsigned int layers)
void bookTracksterSTSHistos(DQMStore::IBooker &ibook, Histograms &histograms, const validationType valType)
void fill_generic_cluster_histos(const Histograms &histograms, const int count, edm::Handle< reco::CaloClusterCollection > clusterHandle, const reco::CaloClusterCollection &clusters, edm::Handle< std::vector< CaloParticle >> caloParticleHandle, std::vector< CaloParticle > const &cP, std::vector< size_t > const &cPIndices, std::vector< size_t > const &cPSelectedIndices, std::unordered_map< DetId, const HGCRecHit *> const &, std::map< double, double > cummatbudg, unsigned int layers, std::vector< int > thicknesses, const hgcal::RecoToSimCollection &recSimColl, const hgcal::SimToRecoCollection &simRecColl) const
const double ScoreCutTStoSTSFakeMerge_[]
const double ScoreCutLCtoCP_
float phi() const
Momentum azimuthal angle. Note this is taken from the first SimTrack only.
Definition: CaloParticle.h:134
double getEta(double eta) const
std::vector< unsigned int > & vertices()
Definition: Trackster.h:56
Definition: DetId.h:17
size_type size() const
Size of the RefVector.
Definition: RefVector.h:102
void fill_trackster_histos(const Histograms &histograms, const int count, const ticl::TracksterCollection &Tracksters, const reco::CaloClusterCollection &layerClusters, const ticl::TracksterCollection &simTS, const ticl::TracksterCollection &simTS_fromCP, std::map< uint, std::vector< uint >> const &simTrackstersMap, std::vector< SimCluster > const &sC, const edm::ProductID &cPHandle_id, std::vector< CaloParticle > const &cP, std::vector< size_t > const &cPIndices, std::vector< size_t > const &cPSelectedIndices, std::unordered_map< DetId, const HGCRecHit *> const &, unsigned int layers) const
const edm::ProductID & seedID() const
Definition: Trackster.h:127
std::shared_ptr< hgcal::RecHitTools > recHitTools_
constexpr uint32_t rawId() const
get the raw id
Definition: DetId.h:57
std::vector< float > & vertex_multiplicity()
Definition: Trackster.h:57
void tracksters_to_SimTracksters(const Histograms &histograms, const int count, const ticl::TracksterCollection &Tracksters, const reco::CaloClusterCollection &layerClusters, const ticl::TracksterCollection &simTS, const validationType valType, const ticl::TracksterCollection &simTS_fromCP, std::map< uint, std::vector< uint >> const &simTrackstersMap, std::vector< SimCluster > const &sC, const edm::ProductID &cPHandle_id, std::vector< CaloParticle > const &cP, std::vector< size_t > const &cPIndices, std::vector< size_t > const &cPSelectedIndices, std::unordered_map< DetId, const HGCRecHit *> const &, unsigned int layers) const
MonitorElement * book2D(TString const &name, TString const &title, int nchX, double lowX, double highX, int nchY, double lowY, double highY, FUNC onbooking=NOOP())
Definition: DQMStore.h:212
MonitorElement * bookInt(TString const &name, FUNC onbooking=NOOP())
Definition: DQMStore.h:73
const double ScoreCutSTStoTSPurDup_[]
void bookClusterHistos_ClusterLevel(DQMStore::IBooker &ibook, Histograms &histograms, unsigned int layers, std::vector< int > thicknesses, std::string pathtomatbudfile)
const int seedIndex() const
Definition: Trackster.h:128
static int position[264][3]
Definition: ReadPGInfo.cc:289
std::vector< Trackster > TracksterCollection
Definition: Trackster.h:199
double eta() const
pseudorapidity of cluster centroid
Definition: CaloCluster.h:180
void bookClusterHistos_CellLevel(DQMStore::IBooker &ibook, Histograms &histograms, unsigned int layers, std::vector< int > thicknesses)
MonitorElement * book1D(TString const &name, TString const &title, int const nchX, double const lowX, double const highX, FUNC onbooking=NOOP())
Definition: DQMStore.h:98
void layerClusters_to_CaloParticles(const Histograms &histograms, edm::Handle< reco::CaloClusterCollection > clusterHandle, const reco::CaloClusterCollection &clusters, edm::Handle< std::vector< CaloParticle >> caloParticleHandle, std::vector< CaloParticle > const &cP, std::vector< size_t > const &cPIndices, std::vector< size_t > const &cPSelectedIndices, std::unordered_map< DetId, const HGCRecHit *> const &, unsigned int layers, const hgcal::RecoToSimCollection &recSimColl, const hgcal::SimToRecoCollection &simRecColl) const
double distance(const double x1, const double y1, const double x2, const double y2) const
The Signals That Services Can Subscribe To This is based on ActivityRegistry h
Helper function to determine trigger accepts.
Definition: Activities.doc:4
const double ScoreCutCPtoLC_
if(threadIdxLocalY==0 &&threadIdxLocalX==0)
float eta() const
Momentum pseudorapidity. Note this is taken from the simtrack before the calorimeter.
Definition: CaloParticle.h:142
Power< A, B >::type pow(const A &a, const B &b)
Definition: Power.h:29
def move(src, dest)
Definition: eostools.py:511
HGVHistoProducerAlgo(const edm::ParameterSet &pset)
#define LogDebug(id)