CMS 3D CMS Logo

MuonRawDigiTranslator.cc
Go to the documentation of this file.
2 #include "TMath.h"
4 
6  Muon& mu, uint32_t raw_data_spare, uint32_t raw_data_00_31, uint32_t raw_data_32_63, int fed, int fw, int muInBx) {
7  // Need the hw charge to properly compute dPhi
8  mu.setHwCharge((raw_data_32_63 >> chargeShift_) & 0x1);
9 
10  // The position of the eta and phi coordinates in the RAW data changed between the 2016 run and the 2017 run.
11  // Eta and phi at the muon system are replaced by eta and phi at the vertex
12  // Eta and phi at the muon system are moved to spare bits
13  // In Run-3 we have displacement information.
14  // To make room for these data the raw eta value was moved to the second "spare" word which we will have to treat separately
15  // The uGMT (FED 1402) or uGT (FED 1404) FW versions are used to determine the era.
16  if ((fed == kUgmtFedId && fw < kUgmtFwVersionUntil2016) || (fed == kUgtFedId && fw < kUgtFwVersionUntil2016)) {
17  fillMuonCoordinates2016(mu, raw_data_00_31, raw_data_32_63);
18  } else if ((fed == kUgmtFedId && fw < kUgmtFwVersionUntil2017) || (fed == kUgtFedId && fw < kUgtFwVersionUntil2017)) {
19  fillMuonCoordinatesFrom2017(mu, raw_data_00_31, raw_data_32_63);
20  } else if ((fed == kUgmtFedId && fw == kUgmtFwVersionRun3Start) ||
22  // We're unpacking data from the November MWGR where the raw eta values were shifted by one bit.
23  fillMuonQuantitiesRun3(mu, raw_data_spare, raw_data_00_31, raw_data_32_63, muInBx, true);
24  } else {
25  fillMuonQuantitiesRun3(mu, raw_data_spare, raw_data_00_31, raw_data_32_63, muInBx, false);
26  }
27 
28  // Fill pT, qual, iso, charge, index bits, coordinates at vtx
29  fillMuonStableQuantities(mu, raw_data_00_31, raw_data_32_63);
30 }
31 
33  uint32_t raw_data_00_31,
34  uint32_t raw_data_32_63,
35  int fw) {
36  // Need the hw charge to properly compute dPhi
37  mu.setHwCharge((raw_data_32_63 >> chargeShift_) & 0x1);
38 
39  if (fw < kUgmtFwVersionUntil2016) {
40  fillMuonCoordinates2016(mu, raw_data_00_31, raw_data_32_63);
41  } else if (fw < kUgmtFwVersionUntil2017) {
42  fillMuonCoordinatesFrom2017(mu, raw_data_00_31, raw_data_32_63);
43  } else {
44  fillIntermediateMuonQuantitiesRun3(mu, raw_data_00_31, raw_data_32_63);
45  }
46 
47  // Fill pT, qual, iso, charge, index bits, phys. coordinates at vtx & unconstrained pT
48  fillMuonStableQuantities(mu, raw_data_00_31, raw_data_32_63);
49 }
50 
51 void l1t::MuonRawDigiTranslator::fillMuonStableQuantities(Muon& mu, uint32_t raw_data_00_31, uint32_t raw_data_32_63) {
52  mu.setHwPt((raw_data_00_31 >> ptShift_) & ptMask_);
53  mu.setHwQual((raw_data_00_31 >> qualShift_) & qualMask_);
54  mu.setHwIso((raw_data_32_63 >> isoShift_) & isoMask_);
55  // charge is coded as -1^chargeBit
56  mu.setHwChargeValid((raw_data_32_63 >> chargeValidShift_) & 0x1);
57  mu.setTfMuonIndex((raw_data_32_63 >> tfMuonIndexShift_) & tfMuonIndexMask_);
58  if (mu.hwChargeValid()) {
59  mu.setCharge(1 - 2 * mu.hwCharge());
60  } else {
61  mu.setCharge(0);
62  }
63 
64  math::PtEtaPhiMLorentzVector vec{(mu.hwPt() - 1) * 0.5, mu.hwEta() * 0.010875, mu.hwPhi() * 0.010908, 0.0};
65  mu.setP4(vec);
66  // generate a muon at the vertex to extract the physical eta and phi coordinates
68  (mu.hwPt() - 1) * 0.5, mu.hwEtaAtVtx() * 0.010875, mu.hwPhiAtVtx() * 0.010908, 0.0};
69  Muon muAtVtx;
70  muAtVtx.setP4(vecAtVtx);
71  mu.setEtaAtVtx(muAtVtx.eta());
72  mu.setPhiAtVtx(muAtVtx.phi());
73 
74  int hwPtUnconstrained{mu.hwPtUnconstrained()};
75  mu.setPtUnconstrained(
76  hwPtUnconstrained == 0 ? 0 : (hwPtUnconstrained - 1)); // Don't want negative pT, unconstr. pT has LSB of 1 GeV.
77 }
78 
80  Muon& mu, uint32_t raw_data_spare, uint64_t dataword, int fed, int fw, int muInBx) {
81  fillMuon(
82  mu, raw_data_spare, (uint32_t)(dataword & 0xFFFFFFFF), (uint32_t)((dataword >> 32) & 0xFFFFFFFF), fed, fw, muInBx);
83 }
84 
85 void l1t::MuonRawDigiTranslator::fillMuonCoordinates2016(Muon& mu, uint32_t raw_data_00_31, uint32_t raw_data_32_63) {
86  // coordinates at the muon system are in 2016 where in 2017 eta and phi at the vertex are
87  mu.setHwEta(calcHwEta(raw_data_00_31, absEtaAtVtxShift_, etaAtVtxSignShift_));
88  mu.setHwPhi((raw_data_00_31 >> phiAtVtxShift_) & phiMask_);
89 
90  // set the coordiantes at vertex to be the same as the coordinates at the muon system
91  mu.setHwEtaAtVtx(mu.hwEta());
92  mu.setHwPhiAtVtx(mu.hwPhi());
93  // deltas are 0
94  mu.setHwDEtaExtra(0);
95  mu.setHwDPhiExtra(0);
96 }
97 
99  uint32_t raw_data_00_31,
100  uint32_t raw_data_32_63) {
101  // coordinates at the muon system
102  mu.setHwEta(calcHwEta(raw_data_32_63, absEtaShift_, etaSignShift_));
103  mu.setHwPhi((raw_data_32_63 >> phiShift_) & phiMask_);
104 
105  // coordinates at the vertex
106  mu.setHwEtaAtVtx(calcHwEta(raw_data_00_31, absEtaAtVtxShift_, etaAtVtxSignShift_));
107  mu.setHwPhiAtVtx((raw_data_00_31 >> phiAtVtxShift_) & phiMask_);
108  // deltas
109  mu.setHwDEtaExtra(mu.hwEtaAtVtx() - mu.hwEta());
110  int dPhi = mu.hwPhiAtVtx() - mu.hwPhi();
111  if (mu.hwCharge() == 1 && dPhi > 0) {
112  dPhi -= 576;
113  } else if (mu.hwCharge() == 0 && dPhi < 0) {
114  dPhi += 576;
115  }
116  mu.setHwDPhiExtra(dPhi);
117 }
118 
120  uint32_t raw_data_spare,
121  uint32_t raw_data_00_31,
122  uint32_t raw_data_32_63,
123  int muInBx,
124  bool wasSpecialMWGR /*= false*/) {
125  unsigned absEtaMu1Shift{absEtaMu1Shift_};
126  unsigned etaMu1SignShift{etaMu1SignShift_};
127  unsigned absEtaMu2Shift{absEtaMu2Shift_};
128  unsigned etaMu2SignShift{etaMu2SignShift_};
129 
130  // Adjust if we're unpacking data from the November 2020 MWGR.
131  if (wasSpecialMWGR) {
132  --absEtaMu1Shift;
133  --etaMu1SignShift;
134  --absEtaMu2Shift;
135  --etaMu2SignShift;
136  }
137  // coordinates at the muon system
138  // Where to find the raw eta depends on which muon we're looking at
139  if (muInBx == 1) {
140  mu.setHwEta(calcHwEta(raw_data_spare, absEtaMu1Shift, etaMu1SignShift));
141  } else if (muInBx == 2) {
142  mu.setHwEta(calcHwEta(raw_data_spare, absEtaMu2Shift, etaMu2SignShift));
143  } else {
144  edm::LogWarning("L1T") << "Received invalid muon id " << muInBx << ". Cannot fill eta value in the muon system.";
145  }
146  mu.setHwPhi((raw_data_32_63 >> phiShift_) & phiMask_);
147 
148  // coordinates at the vertex
149  mu.setHwEtaAtVtx(calcHwEta(raw_data_00_31, absEtaAtVtxShift_, etaAtVtxSignShift_));
150  mu.setHwPhiAtVtx((raw_data_00_31 >> phiAtVtxShift_) & phiMask_);
151  // deltas
152  mu.setHwDEtaExtra(mu.hwEtaAtVtx() - mu.hwEta());
153  int dPhi = mu.hwPhiAtVtx() - mu.hwPhi();
154  if (mu.hwCharge() == 1 && dPhi > 0) {
155  dPhi -= 576;
156  } else if (mu.hwCharge() == 0 && dPhi < 0) {
157  dPhi += 576;
158  }
159  mu.setHwDPhiExtra(dPhi);
160 
161  // displacement information
162  mu.setHwDXY((raw_data_32_63 >> dxyShift_) & dxyMask_);
163  mu.setHwPtUnconstrained((raw_data_32_63 >> ptUnconstrainedShift_) & ptUnconstrainedMask_);
164 }
165 
167  uint32_t raw_data_00_31,
168  uint32_t raw_data_32_63) {
169  fillMuonCoordinatesFrom2017(mu, raw_data_00_31, raw_data_32_63);
170 
171  // displacement information
172  mu.setHwDXY((raw_data_32_63 >> dxyShift_) & dxyMask_);
173  mu.setHwPtUnconstrained((raw_data_00_31 >> ptUnconstrainedIntermedidateShift_) & ptUnconstrainedMask_);
174 }
175 
177  uint32_t& raw_data_spare,
178  uint32_t& raw_data_00_31,
179  uint32_t& raw_data_32_63,
180  const int fedID,
181  const int fwID,
182  const int muInBx) {
183  int abs_eta = mu.hwEta();
184  if (abs_eta < 0) {
185  abs_eta += (1 << (etaSignShift_ - absEtaShift_));
186  }
187  int abs_eta_at_vtx = mu.hwEtaAtVtx();
188  if (abs_eta_at_vtx < 0) {
189  abs_eta_at_vtx += (1 << (etaAtVtxSignShift_ - absEtaAtVtxShift_));
190  }
191  if ((fedID == kUgmtFedId && fwID < kUgmtFwVersionUntil2016) ||
192  (fedID == kUgtFedId && fwID < kUgtFwVersionUntil2016)) {
193  // For 2016 the non-extrapolated coordiantes were in the place that are now occupied by the extrapolated quantities.
194  raw_data_spare = 0;
195  raw_data_00_31 = (mu.hwPt() & ptMask_) << ptShift_ | (mu.hwQual() & qualMask_) << qualShift_ |
196  (abs_eta & absEtaMask_) << absEtaAtVtxShift_ | (mu.hwEta() < 0) << etaAtVtxSignShift_ |
197  (mu.hwPhi() & phiMask_) << phiAtVtxShift_;
198  raw_data_32_63 = mu.hwCharge() << chargeShift_ | mu.hwChargeValid() << chargeValidShift_ |
199  (mu.tfMuonIndex() & tfMuonIndexMask_) << tfMuonIndexShift_ | (mu.hwIso() & isoMask_) << isoShift_;
200  } else if ((fedID == kUgmtFedId && fwID < kUgmtFwVersionUntil2017) ||
201  (fedID == kUgtFedId && fwID < kUgtFwVersionUntil2017)) {
202  raw_data_spare = 0;
203  raw_data_00_31 = (mu.hwPt() & ptMask_) << ptShift_ | (mu.hwQual() & qualMask_) << qualShift_ |
204  (abs_eta_at_vtx & absEtaMask_) << absEtaAtVtxShift_ | (mu.hwEtaAtVtx() < 0) << etaAtVtxSignShift_ |
205  (mu.hwPhiAtVtx() & phiMask_) << phiAtVtxShift_;
206 
207  raw_data_32_63 = mu.hwCharge() << chargeShift_ | mu.hwChargeValid() << chargeValidShift_ |
208  (mu.tfMuonIndex() & tfMuonIndexMask_) << tfMuonIndexShift_ | (mu.hwIso() & isoMask_) << isoShift_ |
209  (abs_eta & absEtaMask_) << absEtaShift_ | (mu.hwEta() < 0) << etaSignShift_ |
210  (mu.hwPhi() & phiMask_) << phiShift_;
211  } else if ((fedID == kUgmtFedId && fwID == kUgmtFwVersionRun3Start) ||
212  (fedID == kUgtFedId &&
213  fwID < kUgtFwVersionUntilRun3Start)) { // This allows us to unpack data taken in the November 2020 MWGR.
214  generatePackedMuonDataWordsRun3(
215  mu, abs_eta, abs_eta_at_vtx, raw_data_spare, raw_data_00_31, raw_data_32_63, muInBx, true);
216  } else {
217  generatePackedMuonDataWordsRun3(
218  mu, abs_eta, abs_eta_at_vtx, raw_data_spare, raw_data_00_31, raw_data_32_63, muInBx, false);
219  }
220 }
221 
223  const int abs_eta,
224  const int abs_eta_at_vtx,
225  uint32_t& raw_data_spare,
226  uint32_t& raw_data_00_31,
227  uint32_t& raw_data_32_63,
228  const int muInBx,
229  const bool wasSpecialMWGR /*= false*/) {
230  int absEtaShiftRun3{0}, etaSignShiftRun3{0};
231  if (muInBx == 1) {
232  absEtaShiftRun3 = absEtaMu1Shift_;
233  etaSignShiftRun3 = etaMu1SignShift_;
234  } else if (muInBx == 2) {
235  absEtaShiftRun3 = absEtaMu2Shift_;
236  etaSignShiftRun3 = etaMu2SignShift_;
237  }
238 
239  // Adjust if we're packing the November 2020 MWGR
240  if (wasSpecialMWGR && (muInBx == 1 || muInBx == 2)) {
241  --absEtaShiftRun3;
242  --etaSignShiftRun3;
243  }
244 
245  raw_data_spare = (abs_eta & absEtaMask_) << absEtaShiftRun3 | (mu.hwEta() < 0) << etaSignShiftRun3;
246  raw_data_00_31 = (mu.hwPt() & ptMask_) << ptShift_ | (mu.hwQual() & qualMask_) << qualShift_ |
247  (abs_eta_at_vtx & absEtaMask_) << absEtaAtVtxShift_ | (mu.hwEtaAtVtx() < 0) << etaAtVtxSignShift_ |
248  (mu.hwPhiAtVtx() & phiMask_) << phiAtVtxShift_;
249  raw_data_32_63 = mu.hwCharge() << chargeShift_ | mu.hwChargeValid() << chargeValidShift_ |
250  (mu.tfMuonIndex() & tfMuonIndexMask_) << tfMuonIndexShift_ | (mu.hwIso() & isoMask_) << isoShift_ |
251  (mu.hwPhi() & phiMask_) << phiShift_ |
252  (mu.hwPtUnconstrained() & ptUnconstrainedMask_) << ptUnconstrainedShift_ |
253  (mu.hwDXY() & dxyMask_) << dxyShift_;
254 }
255 
257  const Muon& mu, uint32_t& raw_data_spare, uint64_t& dataword, int fedId, int fwId, int muInBx) {
258  uint32_t lsw;
259  uint32_t msw;
260 
261  generatePackedMuonDataWords(mu, raw_data_spare, lsw, msw, fedId, fwId, muInBx);
262  dataword = (((uint64_t)msw) << 32) + lsw;
263 }
264 
265 bool l1t::MuonRawDigiTranslator::showerFired(uint32_t shower_word, int fedId, int fwId) {
266  if ((fedId == kUgmtFedId && fwId >= kUgmtFwVersionFirstWithShowers) ||
267  (fedId == kUgtFedId && fwId >= kUgtFwVersionFirstWithShowers)) {
268  return ((shower_word >> showerShift_) & 1) == 1;
269  }
270  return false;
271 }
272 
273 std::array<std::array<uint32_t, 4>, 2> l1t::MuonRawDigiTranslator::getPackedShowerDataWords(const MuonShower& shower,
274  const int fedId,
275  const int fwId) {
276  std::array<std::array<uint32_t, 4>, 2> res{};
277  if ((fedId == kUgmtFedId && fwId >= kUgmtFwVersionFirstWithShowers) ||
278  (fedId == kUgtFedId && fwId >= kUgtFwVersionFirstWithShowers)) {
279  res.at(0).at(0) = shower.isOneNominalInTime() ? (1 << showerShift_) : 0;
280  res.at(0).at(1) = shower.isOneTightInTime() ? (1 << showerShift_) : 0;
281  }
282  if ((fedId == kUgmtFedId && fwId >= kUgmtFwVersionShowersFrom2023_patched) ||
283  (fedId == kUgtFedId && fwId >= kUgtFwVersionShowersFrom2023)) {
284  res.at(1).at(1) = shower.isTwoLooseDiffSectorsInTime()
285  ? (1 << showerShift_)
286  : 0; // The two loose shower is on the second link in the second muon word.
287  } else if (fedId == kUgmtFedId && fwId >= kUgmtFwVersionShowersFrom2023) {
288  res.at(1).at(0) = shower.isTwoLooseDiffSectorsInTime()
289  ? (1 << showerShift_)
290  : 0; // uGMT was briefly transmitting it on the first link instead.
291  }
292  return res;
293 }
294 
296  const unsigned absEtaShift,
297  const unsigned etaSignShift) {
298  // eta is coded as two's complement
299  int abs_eta = (raw >> absEtaShift) & absEtaMask_;
300  if ((raw >> etaSignShift) & 0x1) {
301  return abs_eta - (1 << (etaSignShift - absEtaShift));
302  } else {
303  return abs_eta;
304  }
305 }
bool isOneTightInTime() const
Definition: MuonShower.h:67
static constexpr int kUgtFwVersionUntil2016
static void fillMuonQuantitiesRun3(Muon &mu, uint32_t raw_data_spare, uint32_t raw_data_00_31, uint32_t raw_data_32_63, int muInBx, bool wasSpecialMWGR=false)
static constexpr int kUgtFwVersionUntil2017
static void fillMuon(Muon &mu, uint32_t raw_data_spare, uint32_t raw_data_00_31, uint32_t raw_data_32_63, int fed, int fw, int muInBx)
static std::array< std::array< uint32_t, 4 >, 2 > getPackedShowerDataWords(const MuonShower &shower, int fedId, int fwId)
static int calcHwEta(const uint32_t &raw, unsigned absEtaShift, unsigned etaSignShift)
static constexpr int kUgmtFedId
Definition: Electron.h:6
static void fillIntermediateMuon(Muon &mu, uint32_t raw_data_00_31, uint32_t raw_data_32_63, int fw)
static constexpr int kUgmtFwVersionRun3Start
static void fillIntermediateMuonQuantitiesRun3(Muon &mu, uint32_t raw_data_00_31, uint32_t raw_data_32_63)
PtEtaPhiMLorentzVectorD PtEtaPhiMLorentzVector
Lorentz vector with cartesian internal representation.
Definition: LorentzVector.h:25
static constexpr int kUgmtFwVersionUntil2016
Definition: Muon.py:1
static constexpr int kUgtFedId
bool isOneNominalInTime() const
Definition: MuonShower.h:66
static bool showerFired(uint32_t shower_word, int fedId, int fwId)
static constexpr unsigned chargeShift_
static void fillMuonStableQuantities(Muon &mu, uint32_t raw_data_00_31, uint32_t raw_data_32_63)
static void generatePackedMuonDataWords(const Muon &mu, uint32_t &raw_data_spare, uint32_t &raw_data_00_31, uint32_t &raw_data_32_63, int fedId, int fwId, int muInBx)
unsigned long long uint64_t
Definition: Time.h:13
static void generate64bitDataWord(const Muon &mu, uint32_t &raw_data_spare, uint64_t &dataword, int fedId, int fwId, int muInBx)
bool isTwoLooseDiffSectorsInTime() const
Definition: MuonShower.h:68
static void fillMuonCoordinatesFrom2017(Muon &mu, uint32_t raw_data_00_31, uint32_t raw_data_32_63)
static void fillMuonCoordinates2016(Muon &mu, uint32_t raw_data_00_31, uint32_t raw_data_32_63)
Log< level::Warning, false > LogWarning
static void generatePackedMuonDataWordsRun3(const Muon &mu, int abs_eta, int abs_eta_at_vtx, uint32_t &raw_data_spare, uint32_t &raw_data_00_31, uint32_t &raw_data_32_63, int muInBx, bool wasSpecialMWGR=false)
double phi() const final
momentum azimuthal angle
void setP4(const LorentzVector &p4) final
set 4-momentum
static constexpr int kUgtFwVersionUntilRun3Start
static constexpr int kUgmtFwVersionUntil2017
double eta() const final
momentum pseudorapidity