CMS 3D CMS Logo

MuScleFitUtils.cc
Go to the documentation of this file.
1 
6 // Some notes:
7 // - M(Z) after simulation needs to be extracted as a function of |y_Z| in order to be
8 // a better reference point for calibration. In fact, the variation of PDF with y_Z
9 // in production is sizable <---- need to check though.
10 // - ResHalfWidth needs to be optimized - this depends on the level of background.
11 // - Background parametrization still to be worked on, so far only a constant (type=1, and
12 // parameter 2 fixed to 0) works.
13 // - weights have to be assigned to dimuon mass values in regions where different resonances
14 // overlap, and one has to decide which resonance mass to assign the event to - this until
15 // we implement in the fitter a sum of probabilities of an event to belong to different
16 // resonances. The weight has to depend on the mass and has relative cross sections of
17 // Y(1S), 2S, 3S as parameters. Some overlap is also expected in the J/psi-Psi(2S) region
18 // when reconstructing masses with Standalone muons.
19 //
20 // MODS 7/7/08 TD:
21 // - changed parametrization of resolution in Pt: from sigma_pt = a*Pt + b*|eta| to
22 // sigma_pt = (a*Pt + b*|eta|)*Pt
23 // which is more correct (I hope)
24 // - changed parametrization of resolution in cotgth: from sigma_cotgth = f(eta) to f(cotgth)
25 // --------------------------------------------------------------------------------------------
26 
27 #include "MuScleFitUtils.h"
32 #include "TString.h"
33 #include "TFile.h"
34 #include "TTree.h"
35 #include "TCanvas.h"
36 #include "TH2F.h"
37 #include "TF1.h"
38 #include "TF2.h"
39 #include <iostream>
40 #include <fstream>
41 #include <memory> // to use the auto_ptr
42 
43 // Includes the definitions of all the bias and scale functions
44 // These functions are selected in the constructor according
45 // to the input parameters.
47 
48 // To use callgrind for code profiling uncomment also the following define.
49 //#define USE_CALLGRIND
50 #ifdef USE_CALLGRIND
51 #include "valgrind/callgrind.h"
52 #endif
53 
54 // Lorenzian Peak function
55 // -----------------------
56 Double_t lorentzianPeak(Double_t *x, Double_t *par) {
57  return (0.5 * par[0] * par[1] / TMath::Pi()) /
58  TMath::Max(1.e-10, (x[0] - par[2]) * (x[0] - par[2]) + .25 * par[1] * par[1]);
59 }
60 
61 // Gaussian function
62 // -----------------
63 Double_t Gaussian(Double_t *x, Double_t *par) {
64  return par[0] * exp(-0.5 * ((x[0] - par[1]) / par[2]) * ((x[0] - par[1]) / par[2]));
65 }
66 
67 // Array with number of parameters in the fitting functions
68 // (not currently in use)
69 // --------------------------------------------------------
70 //const int nparsResol[2] = {6, 4};
71 //const int nparsScale[13] = {2, 2, 2, 3, 3, 3, 4, 4, 2, 3, 4, 6, 8};
72 //const int nparsBgr[3] = {1, 2, 3};
73 
74 // Quantities used for h-value computation
75 // ---------------------------------------
76 double mzsum;
77 double isum;
78 double f[11][100];
79 double g[11][100];
80 
81 // Lorentzian convoluted with a gaussian:
82 // --------------------------------------
83 TF1 *GL = new TF1(
84  "GL", "0.5/3.1415926*[0]/(pow(x-[1],2)+pow(0.5*[0],2))*exp(-0.5*pow((x-[2])/[3],2))/([3]*sqrt(6.283185))", 0, 1000);
85 
86 TF2 *GL2 = new TF2("GL2",
87  "0.5/3.1415926*[0]/(pow(x-[1],2)+pow(0.5*[0],2))*exp(-0.5*pow((x-y)/[2],2))/([2]*sqrt(6.283185))",
88  0,
89  200,
90  0,
91  200);
92 
93 // // Lorentzian convoluted with a gaussian over a linear background:
94 // // ---------------------------------------------------------------
95 // TF1 * GLBL = new TF1 ("GLBL",
96 // "0.5/3.1415926*[0]/(pow(x-[1],2)+pow(0.5*[0],2))*exp(-0.5*pow((x-[2])/[3],2))/([3]*sqrt(6.283185))+[4]+[5]*x",
97 // 0, 1000);
98 
99 // // Lorentzian convoluted with a gaussian over an exponential background:
100 // // ---------------------------------------------------------------
101 // TF1 * GLBE = new TF1 ("GLBE",
102 // "0.5/3.1415926*[0]/(pow(x-[1],2)+pow(0.5*[0],2))*exp(-0.5*pow((x-[2])/[3],2))/([3]*sqrt(6.283185))+exp([4]+[5]*x)",
103 // 0, 1000);
104 
105 std::vector<int> MuScleFitUtils::doResolFit;
106 std::vector<int> MuScleFitUtils::doScaleFit;
107 std::vector<int> MuScleFitUtils::doCrossSectionFit;
108 std::vector<int> MuScleFitUtils::doBackgroundFit;
109 
111 TH1D *MuScleFitUtils::likelihoodInLoop_ = nullptr;
112 TH1D *MuScleFitUtils::signalProb_ = nullptr;
113 TH1D *MuScleFitUtils::backgroundProb_ = nullptr;
114 
115 bool MuScleFitUtils::duringMinos_ = false;
116 
117 const int MuScleFitUtils::totalResNum = 6;
118 
122 // No error, we take functions from the same group for bias and scale.
131 
133 // const int MuScleFitUtils::backgroundFunctionsRegions = 3;
134 // backgroundFunctionBase * MuScleFitUtils::backgroundFunctionForRegion[MuScleFitUtils::backgroundFunctionsRegions];
135 // backgroundFunctionBase * MuScleFitUtils::backgroundFunction[MuScleFitUtils::totalResNum];
137 std::vector<double> MuScleFitUtils::parBias;
138 std::vector<double> MuScleFitUtils::parSmear;
139 std::vector<double> MuScleFitUtils::parResol;
140 std::vector<double> MuScleFitUtils::parResolStep;
141 std::vector<double> MuScleFitUtils::parResolMin;
142 std::vector<double> MuScleFitUtils::parResolMax;
143 std::vector<double> MuScleFitUtils::parScale;
144 std::vector<double> MuScleFitUtils::parScaleStep;
145 std::vector<double> MuScleFitUtils::parScaleMin;
146 std::vector<double> MuScleFitUtils::parScaleMax;
147 std::vector<double> MuScleFitUtils::parCrossSection;
148 std::vector<double> MuScleFitUtils::parBgr;
149 std::vector<int> MuScleFitUtils::parResolFix;
150 std::vector<int> MuScleFitUtils::parScaleFix;
151 std::vector<int> MuScleFitUtils::parCrossSectionFix;
152 std::vector<int> MuScleFitUtils::parBgrFix;
153 std::vector<int> MuScleFitUtils::parResolOrder;
154 std::vector<int> MuScleFitUtils::parScaleOrder;
155 std::vector<int> MuScleFitUtils::parCrossSectionOrder;
156 std::vector<int> MuScleFitUtils::parBgrOrder;
157 
158 std::vector<int> MuScleFitUtils::resfind;
159 int MuScleFitUtils::debug = 0;
160 
161 bool MuScleFitUtils::ResFound = false;
164 
165 std::vector<std::vector<double> > MuScleFitUtils::parvalue;
166 
167 int MuScleFitUtils::FitStrategy = 1; // Strategy in likelihood fit (1 or 2)
168 bool MuScleFitUtils::speedup = false; // Whether to cut corners (no sim study, fewer histos)
169 
170 std::vector<std::pair<lorentzVector, lorentzVector> >
171  MuScleFitUtils::SavedPair; // Pairs of reconstructed muons making resonances
172 std::vector<std::pair<lorentzVector, lorentzVector> >
173  MuScleFitUtils::ReducedSavedPair; // Pairs of reconstructed muons making resonances inside smaller windows
174 std::vector<std::pair<lorentzVector, lorentzVector> >
175  MuScleFitUtils::genPair; // Pairs of generated muons making resonances
176 std::vector<std::pair<MuScleFitMuon, MuScleFitMuon> >
177  MuScleFitUtils::SavedPairMuScleFitMuons; // Pairs of reconstructed muons making resonances
178 std::vector<std::pair<MuScleFitMuon, MuScleFitMuon> >
179  MuScleFitUtils::genMuscleFitPair; // Pairs of generated muons making resonances
180 //std::vector<GenMuonPair> MuScleFitUtils::genPairMuScleMuons; // Pairs of generated muons making resonances
181 std::vector<std::pair<lorentzVector, lorentzVector> >
182  MuScleFitUtils::simPair; // Pairs of simulated muons making resonances
183 
184 // Smearing parameters
185 // -------------------
186 double MuScleFitUtils::x[][10000];
187 
188 // Probability matrices and normalization values
189 // ---------------------------------------------
190 int MuScleFitUtils::nbins = 1000;
191 double MuScleFitUtils::GLZValue[][1001][1001];
192 double MuScleFitUtils::GLZNorm[][1001];
193 double MuScleFitUtils::GLValue[][1001][1001];
194 double MuScleFitUtils::GLNorm[][1001];
196 
197 // Masses and widths from PDG 2006, half widths to be revised
198 // NB in particular, halfwidths have to be made a function of muonType
199 // -------------------------------------------------------------------
200 const double MuScleFitUtils::mMu2 = 0.011163612;
201 const double MuScleFitUtils::muMass = 0.105658;
206 
207 double MuScleFitUtils::ResGamma[] = {2.4952, 0.000020, 0.000032, 0.000054, 0.000317, 0.0000932};
208 // ATTENTION:
209 // This is left because the values are used by the BackgroundHandler to define the center of the regions windows,
210 // but the values used in the code are read computed using the probability histograms ranges.
211 // The histograms are read after the initialization of the BackgroundHandler (this can be improved so that
212 // the background handler too could use the new values).
213 // At this time the values are consistent.
214 double MuScleFitUtils::ResMinMass[] = {-99, -99, -99, -99, -99, -99};
215 double MuScleFitUtils::ResMass[] = {91.1876, 10.3552, 10.0233, 9.4603, 3.68609, 3.0969};
216 // From Summer08 generator production TWiki: https://twiki.cern.ch/twiki/bin/view/CMS/ProductionSummer2008
217 // - Z->mumu 1.233 nb
218 // - Upsilon3S->mumu 0.82 nb
219 // - Upsilon2S->mumu 6.33 nb
220 // - Upsilon1S->mumu 13.9 nb
221 // - Prompt Psi2S->mumu 2.169 nb
222 // - Prompt J/Psi->mumu 127.2 nb
223 // double MuScleFitUtils::crossSection[] = {1.233, 0.82, 6.33, 13.9, 2.169, 127.2};
224 // double MuScleFitUtils::crossSection[] = {1.233, 2.07, 6.33, 13.9, 2.169, 127.2};
225 
226 unsigned int MuScleFitUtils::loopCounter = 5;
227 
228 // According to the pythia manual, there is only a code for the Upsilon and Upsilon'. It does not distinguish
229 // between Upsilon(2S) and Upsilon(3S)
230 const unsigned int MuScleFitUtils::motherPdgIdArray[] = {23, 100553, 100553, 553, 100443, 443};
231 
232 // double MuScleFitUtils::leftWindowFactor = 1.;
233 // double MuScleFitUtils::rightWindowFactor = 1.;
234 
235 // double MuScleFitUtils::internalLeftWindowFactor = 1.;
236 // double MuScleFitUtils::internalRightWindowFactor = 1.;
237 
238 // int MuScleFitUtils::backgroundWindowEvents_ = 0;
239 // int MuScleFitUtils::resonanceWindowEvents_ = 0;
240 
241 // double MuScleFitUtils::oldEventsOutInRatio_ = 0.;
242 
244 
245 bool MuScleFitUtils::sherpa_ = false;
246 
248 
250 
252 double MuScleFitUtils::minMuonPt_ = 0.;
253 double MuScleFitUtils::maxMuonPt_ = 100000000.;
258 double MuScleFitUtils::deltaPhiMinCut_ = -100.;
259 double MuScleFitUtils::deltaPhiMaxCut_ = 100.;
260 
263 
265 TMinuit *MuScleFitUtils::rminPtr_ = nullptr;
268 
272 
273 int MuScleFitUtils::iev_ = 0;
275 
276 // Find the best simulated resonance from a vector of simulated muons (SimTracks)
277 // and return its decay muons
278 // ------------------------------------------------------------------------------
279 std::pair<SimTrack, SimTrack> MuScleFitUtils::findBestSimuRes(const std::vector<SimTrack> &simMuons) {
280  std::pair<SimTrack, SimTrack> simMuFromBestRes;
281  double maxprob = -0.1;
282 
283  // Double loop on muons
284  // --------------------
285  for (std::vector<SimTrack>::const_iterator simMu1 = simMuons.begin(); simMu1 != simMuons.end(); simMu1++) {
286  for (std::vector<SimTrack>::const_iterator simMu2 = simMu1 + 1; simMu2 != simMuons.end(); simMu2++) {
287  if (((*simMu1).charge() * (*simMu2).charge()) > 0) {
288  continue; // this also gets rid of simMu1==simMu2...
289  }
290  // Choose the best resonance using its mass. Check Z, Y(3S,2S,1S), Psi(2S), J/Psi in order
291  // ---------------------------------------------------------------------------------------
292  double mcomb = ((*simMu1).momentum() + (*simMu2).momentum()).mass();
293  double Y = ((*simMu1).momentum() + (*simMu2).momentum()).Rapidity();
294  for (int ires = 0; ires < 6; ires++) {
295  if (resfind[ires] > 0) {
296  double prob = massProb(mcomb, Y, ires, 0.);
297  if (prob > maxprob) {
298  simMuFromBestRes.first = (*simMu1);
299  simMuFromBestRes.second = (*simMu2);
300  maxprob = prob;
301  }
302  }
303  }
304  }
305  }
306 
307  // Return most likely combination of muons making a resonance
308  // ----------------------------------------------------------
309  return simMuFromBestRes;
310 }
311 
312 // Find the best reconstructed resonance from a collection of reconstructed muons
313 // (MuonCollection) and return its decay muons
314 // ------------------------------------------------------------------------------
315 std::pair<MuScleFitMuon, MuScleFitMuon> MuScleFitUtils::findBestRecoRes(const std::vector<MuScleFitMuon> &muons) {
316  // NB this routine returns the resonance, but it also sets the ResFound flag, which
317  // is used in MuScleFit to decide whether to use the event or not.
318  // --------------------------------------------------------------------------------
319  if (debug > 0)
320  std::cout << "In findBestRecoRes" << std::endl;
321  ResFound = false;
322  std::pair<MuScleFitMuon, MuScleFitMuon> recMuFromBestRes;
323 
324  // Choose the best resonance using its mass probability
325  // ----------------------------------------------------
326  double maxprob = -0.1;
327  double minDeltaMass = 999999;
328  std::pair<MuScleFitMuon, MuScleFitMuon> bestMassMuons;
329  for (std::vector<MuScleFitMuon>::const_iterator Muon1 = muons.begin(); Muon1 != muons.end(); ++Muon1) {
330  //rc2010
331  if (debug > 0)
332  std::cout << "muon_1_charge:" << (*Muon1).charge() << std::endl;
333  for (std::vector<MuScleFitMuon>::const_iterator Muon2 = Muon1 + 1; Muon2 != muons.end(); ++Muon2) {
334  //rc2010
335  if (debug > 0)
336  std::cout << "after_2" << std::endl;
337  if ((((*Muon1).charge()) * ((*Muon2).charge())) > 0) {
338  continue; // This also gets rid of Muon1==Muon2...
339  }
340  // To allow the selection of ranges at negative and positive eta independently we define two
341  // ranges of eta: (minMuonEtaFirstRange_, maxMuonEtaFirstRange_) and (minMuonEtaSecondRange_, maxMuonEtaSecondRange_).
342  double ch1 = (*Muon1).charge();
343  double ch2 = (*Muon2).charge();
344  double pt1 = (*Muon1).Pt();
345  double pt2 = (*Muon2).Pt();
346  double eta1 = (*Muon1).Eta();
347  double eta2 = (*Muon2).Eta();
348  if (pt1 >= minMuonPt_ && pt1 < maxMuonPt_ && pt2 >= minMuonPt_ && pt2 < maxMuonPt_ &&
349  ((eta1 >= minMuonEtaFirstRange_ && eta1 < maxMuonEtaFirstRange_ && eta2 >= minMuonEtaSecondRange_ &&
350  eta2 < maxMuonEtaSecondRange_ && ch1 >= ch2 // In the configuration file, MuonOne==MuonPlus
351  ) ||
352  (eta1 >= minMuonEtaSecondRange_ && eta1 < maxMuonEtaSecondRange_ && eta2 >= minMuonEtaFirstRange_ &&
353  eta2 < maxMuonEtaFirstRange_ && ch1 < ch2))) {
354  double mcomb = ((*Muon1).p4() + (*Muon2).p4()).mass();
355  double Y = ((*Muon1).p4() + (*Muon2).p4()).Rapidity();
356  if (debug > 1) {
357  std::cout << "muon1 " << (*Muon1).p4().Px() << ", " << (*Muon1).p4().Py() << ", " << (*Muon1).p4().Pz()
358  << ", " << (*Muon1).p4().E() << ", " << (*Muon1).charge() << std::endl;
359  std::cout << "muon2 " << (*Muon2).p4().Px() << ", " << (*Muon2).p4().Py() << ", " << (*Muon2).p4().Pz()
360  << ", " << (*Muon2).p4().E() << ", " << (*Muon2).charge() << std::endl;
361  std::cout << "mcomb " << mcomb << std::endl;
362  }
363  double massResol = 0.;
364  if (useProbsFile_) {
365  massResol = massResolution((*Muon1).p4(), (*Muon2).p4(), parResol);
366  }
367  double prob = 0;
368  for (int ires = 0; ires < 6; ires++) {
369  if (resfind[ires] > 0) {
370  if (useProbsFile_) {
371  prob = massProb(mcomb, Y, ires, massResol);
372  }
373  if (prob > maxprob) {
374  if (ch1 < 0) { // store first the mu minus and then the mu plus
375  recMuFromBestRes.first = (*Muon1);
376  recMuFromBestRes.second = (*Muon2);
377  } else {
378  recMuFromBestRes.first = (*Muon2);
379  recMuFromBestRes.second = (*Muon1);
380  }
381  if (debug > 0)
382  std::cout << "muon_1_charge (after swapping):" << recMuFromBestRes.first.charge() << std::endl;
383  ResFound = true; // NNBB we accept "resonances" even outside mass bounds
384  maxprob = prob;
385  }
386  // if( ResMass[ires] == 0 ) {
387  // std::cout << "Error: ResMass["<<ires<<"] = " << ResMass[ires] << std::endl;
388  // exit(1);
389  // }
390  double deltaMass = std::abs(mcomb - ResMass[ires]) / ResMass[ires];
391  if (deltaMass < minDeltaMass) {
392  bestMassMuons = std::make_pair((*Muon1), (*Muon2));
393  minDeltaMass = deltaMass;
394  }
395  }
396  }
397  }
398  }
399  }
400  //If outside mass window (maxprob==0) then take the two muons with best invariant mass
401  //(anyway they will not be used in the likelihood calculation, only to fill plots)
402  if (!maxprob) {
403  if (bestMassMuons.first.charge() < 0) {
404  recMuFromBestRes.first = bestMassMuons.first;
405  recMuFromBestRes.second = bestMassMuons.second;
406  } else {
407  recMuFromBestRes.second = bestMassMuons.first;
408  recMuFromBestRes.first = bestMassMuons.second;
409  }
410  }
411  return recMuFromBestRes;
412 }
413 
414 // Resolution smearing function called to worsen muon Pt resolution at start
415 // -------------------------------------------------------------------------
417  double pt = muon.Pt();
418  double eta = muon.Eta();
419  double phi = muon.Phi();
420  double E = muon.E();
421 
422  double y[7] = {};
423  for (int i = 0; i < SmearType + 3; i++) {
424  y[i] = x[i][goodmuon % 10000];
425  }
426 
427  // Use the smear function selected in the constructor
429 
430  if (debug > 9) {
431  std::cout << "Smearing Pt,eta,phi = " << pt << " " << eta << " " << phi << "; x = ";
432  for (int i = 0; i < SmearType + 3; i++) {
433  std::cout << y[i];
434  }
435  std::cout << std::endl;
436  }
437 
438  double ptEtaPhiE[4] = {pt, eta, phi, E};
439  return (fromPtEtaPhiToPxPyPz(ptEtaPhiE));
440 }
441 
442 // Biasing function called to modify muon Pt scale at the start.
443 // -------------------------------------------------------------
445  double ptEtaPhiE[4] = {muon.Pt(), muon.Eta(), muon.Phi(), muon.E()};
446 
447  if (MuScleFitUtils::debug > 1)
448  std::cout << "pt before bias = " << ptEtaPhiE[0] << std::endl;
449 
450  // Use functors (although not with the () operator)
451  // Note that we always pass pt, eta and phi, but internally only the needed
452  // values are used.
453  // The functors used are takend from the same group used for the scaling
454  // thus the name of the method used is "scale".
455  ptEtaPhiE[0] = biasFunction->scale(ptEtaPhiE[0], ptEtaPhiE[1], ptEtaPhiE[2], chg, MuScleFitUtils::parBias);
456 
457  if (MuScleFitUtils::debug > 1)
458  std::cout << "pt after bias = " << ptEtaPhiE[0] << std::endl;
459 
460  return (fromPtEtaPhiToPxPyPz(ptEtaPhiE));
461 }
462 
463 // Version of applyScale accepting a std::vector<double> of parameters
464 // --------------------------------------------------------------
465 lorentzVector MuScleFitUtils::applyScale(const lorentzVector &muon, const std::vector<double> &parval, const int chg) {
466  double *p = new double[(int)(parval.size())];
467  // Replaced by auto_ptr, which handles delete at the end
468  // std::unique_ptr<double> p(new double[(int)(parval.size())]);
469  // Removed auto_ptr, check massResolution for an explanation.
470  int id = 0;
471  for (std::vector<double>::const_iterator it = parval.begin(); it != parval.end(); ++it, ++id) {
472  //(&*p)[id] = *it;
473  // Also ok would be (p.get())[id] = *it;
474  p[id] = *it;
475  }
476  lorentzVector tempScaleVec(applyScale(muon, p, chg));
477  delete[] p;
478  return tempScaleVec;
479 }
480 
481 // This is called by the likelihood to "taste" different values for additional corrections
482 // ---------------------------------------------------------------------------------------
483 lorentzVector MuScleFitUtils::applyScale(const lorentzVector &muon, double *parval, const int chg) {
484  double ptEtaPhiE[4] = {muon.Pt(), muon.Eta(), muon.Phi(), muon.E()};
485  int shift = parResol.size();
486 
487  if (MuScleFitUtils::debug > 1)
488  std::cout << "pt before scale = " << ptEtaPhiE[0] << std::endl;
489 
490  // the address of parval[shift] is passed as pointer to double. Internally it is used as a normal array, thus:
491  // array[0] = parval[shift], array[1] = parval[shift+1], ...
492  ptEtaPhiE[0] = scaleFunction->scale(ptEtaPhiE[0], ptEtaPhiE[1], ptEtaPhiE[2], chg, &(parval[shift]));
493 
494  if (MuScleFitUtils::debug > 1)
495  std::cout << "pt after scale = " << ptEtaPhiE[0] << std::endl;
496 
497  return (fromPtEtaPhiToPxPyPz(ptEtaPhiE));
498 }
499 
500 // Useful function to convert 4-vector coordinates
501 // -----------------------------------------------
503  double px = ptEtaPhiE[0] * cos(ptEtaPhiE[2]);
504  double py = ptEtaPhiE[0] * sin(ptEtaPhiE[2]);
505  double tmp = 2 * atan(exp(-ptEtaPhiE[1]));
506  double pz = ptEtaPhiE[0] * cos(tmp) / sin(tmp);
507  double E = sqrt(px * px + py * py + pz * pz + muMass * muMass);
508 
509  // lorentzVector corrMu(px,py,pz,E);
510  // To fix memory leaks, this is to be substituted with
511  // std::unique_ptr<lorentzVector> corrMu(new lorentzVector(px, py, pz, E));
512 
513  return lorentzVector(px, py, pz, E);
514 }
515 
516 // Dimuon mass
517 // -----------
518 inline double MuScleFitUtils::invDimuonMass(const lorentzVector &mu1, const lorentzVector &mu2) {
519  return (mu1 + mu2).mass();
520 }
521 
522 // Mass resolution - version accepting a std::vector<double> parval
523 // -----------------------------------------------------------
525  const lorentzVector &mu2,
526  const std::vector<double> &parval) {
527  // double * p = new double[(int)(parval.size())];
528  // Replaced by auto_ptr, which handles delete at the end
529  // --------- //
530  // ATTENTION //
531  // --------- //
532  // auto_ptr calls delete, not delete[] and thus it must
533  // not be used with arrays. There are alternatives see
534  // e.g.: http://www.gotw.ca/gotw/042.htm. The best
535  // alternative seems to be to switch to vector though.
536  // std::unique_ptr<double> p(new double[(int)(parval.size())]);
537 
538  double *p = new double[(int)(parval.size())];
539  std::vector<double>::const_iterator it = parval.begin();
540  int id = 0;
541  for (; it != parval.end(); ++it, ++id) {
542  // (&*p)[id] = *it;
543  p[id] = *it;
544  }
545  double massRes = massResolution(mu1, mu2, p);
546  delete[] p;
547  return massRes;
548 }
549 
567 double MuScleFitUtils::massResolution(const lorentzVector &mu1, const lorentzVector &mu2, double *parval) {
568  double mass = (mu1 + mu2).mass();
569  double pt1 = mu1.Pt();
570  double phi1 = mu1.Phi();
571  double eta1 = mu1.Eta();
572  double theta1 = 2 * atan(exp(-eta1));
573  double pt2 = mu2.Pt();
574  double phi2 = mu2.Phi();
575  double eta2 = mu2.Eta();
576  double theta2 = 2 * atan(exp(-eta2));
577 
578  double dmdpt1 = (pt1 / std::pow(sin(theta1), 2) *
579  sqrt((std::pow(pt2 / sin(theta2), 2) + mMu2) / (std::pow(pt1 / sin(theta1), 2) + mMu2)) -
580  pt2 * (cos(phi1 - phi2) + cos(theta1) * cos(theta2) / (sin(theta1) * sin(theta2)))) /
581  mass;
582  double dmdpt2 = (pt2 / std::pow(sin(theta2), 2) *
583  sqrt((std::pow(pt1 / sin(theta1), 2) + mMu2) / (std::pow(pt2 / sin(theta2), 2) + mMu2)) -
584  pt1 * (cos(phi2 - phi1) + cos(theta2) * cos(theta1) / (sin(theta2) * sin(theta1)))) /
585  mass;
586  double dmdphi1 = pt1 * pt2 / mass * sin(phi1 - phi2);
587  double dmdphi2 = pt2 * pt1 / mass * sin(phi2 - phi1);
588  double dmdcotgth1 = (pt1 * pt1 * cos(theta1) / sin(theta1) *
589  sqrt((std::pow(pt2 / sin(theta2), 2) + mMu2) / (std::pow(pt1 / sin(theta1), 2) + mMu2)) -
590  pt1 * pt2 * cos(theta2) / sin(theta2)) /
591  mass;
592  double dmdcotgth2 = (pt2 * pt2 * cos(theta2) / sin(theta2) *
593  sqrt((std::pow(pt1 / sin(theta1), 2) + mMu2) / (std::pow(pt2 / sin(theta2), 2) + mMu2)) -
594  pt2 * pt1 * cos(theta1) / sin(theta1)) /
595  mass;
596 
597  if (debugMassResol_) {
598  massResolComponents.dmdpt1 = dmdpt1;
599  massResolComponents.dmdpt2 = dmdpt2;
600  massResolComponents.dmdphi1 = dmdphi1;
601  massResolComponents.dmdphi2 = dmdphi2;
602  massResolComponents.dmdcotgth1 = dmdcotgth1;
603  massResolComponents.dmdcotgth2 = dmdcotgth2;
604  }
605 
606  // Resolution parameters:
607  // ----------------------
608  double sigma_pt1 = resolutionFunction->sigmaPt(pt1, eta1, parval);
609  double sigma_pt2 = resolutionFunction->sigmaPt(pt2, eta2, parval);
610  double sigma_phi1 = resolutionFunction->sigmaPhi(pt1, eta1, parval);
611  double sigma_phi2 = resolutionFunction->sigmaPhi(pt2, eta2, parval);
612  double sigma_cotgth1 = resolutionFunction->sigmaCotgTh(pt1, eta1, parval);
613  double sigma_cotgth2 = resolutionFunction->sigmaCotgTh(pt2, eta2, parval);
614  double cov_pt1pt2 = resolutionFunction->covPt1Pt2(pt1, eta1, pt2, eta2, parval);
615 
616  // Sigma_Pt is defined as a relative sigmaPt/Pt for this reason we need to
617  // multiply it by pt.
618  double mass_res = sqrt(std::pow(dmdpt1 * sigma_pt1 * pt1, 2) + std::pow(dmdpt2 * sigma_pt2 * pt2, 2) +
619  std::pow(dmdphi1 * sigma_phi1, 2) + std::pow(dmdphi2 * sigma_phi2, 2) +
620  std::pow(dmdcotgth1 * sigma_cotgth1, 2) + std::pow(dmdcotgth2 * sigma_cotgth2, 2) +
621  2 * dmdpt1 * dmdpt2 * cov_pt1pt2 * sigma_pt1 * sigma_pt2);
622 
623  if (debug > 19) {
624  std::cout << " Pt1=" << pt1 << " phi1=" << phi1 << " cotgth1=" << cos(theta1) / sin(theta1) << " - Pt2=" << pt2
625  << " phi2=" << phi2 << " cotgth2=" << cos(theta2) / sin(theta2) << std::endl;
626  std::cout << " P[0]=" << parval[0] << " P[1]=" << parval[1] << "P[2]=" << parval[2] << " P[3]=" << parval[3]
627  << std::endl;
628  std::cout << " Dmdpt1= " << dmdpt1 << " dmdpt2= " << dmdpt2 << " sigma_pt1=" << sigma_pt1
629  << " sigma_pt2=" << sigma_pt2 << std::endl;
630  std::cout << " Dmdphi1= " << dmdphi1 << " dmdphi2= " << dmdphi2 << " sigma_phi1=" << sigma_phi1
631  << " sigma_phi2=" << sigma_phi2 << std::endl;
632  std::cout << " Dmdcotgth1= " << dmdcotgth1 << " dmdcotgth2= " << dmdcotgth2 << " sigma_cotgth1=" << sigma_cotgth1
633  << " sigma_cotgth2=" << sigma_cotgth2 << std::endl;
634  std::cout << " Mass resolution (pval) for muons of Pt = " << pt1 << " " << pt2 << " : " << mass << " +- "
635  << mass_res << std::endl;
636  }
637 
638  // Debug std::cout
639  // ----------
640  bool didit = false;
641  for (int ires = 0; ires < 6; ires++) {
642  if (!didit && resfind[ires] > 0 && std::abs(mass - ResMass[ires]) < ResHalfWidth[ires]) {
643  if (mass_res > ResMaxSigma[ires] && counter_resprob < 100) {
644  counter_resprob++;
645  LogDebug("MuScleFitUtils") << "RESOLUTION PROBLEM: ires=" << ires << std::endl;
646  didit = true;
647  }
648  }
649  }
650 
651  return mass_res;
652 }
653 
659  const lorentzVector &mu2,
660  const ResolutionFunction &resolFunc) {
661  double mass = (mu1 + mu2).mass();
662  double pt1 = mu1.Pt();
663  double phi1 = mu1.Phi();
664  double eta1 = mu1.Eta();
665  double theta1 = 2 * atan(exp(-eta1));
666  double pt2 = mu2.Pt();
667  double phi2 = mu2.Phi();
668  double eta2 = mu2.Eta();
669  double theta2 = 2 * atan(exp(-eta2));
670 
671  double dmdpt1 = (pt1 / std::pow(sin(theta1), 2) *
672  sqrt((std::pow(pt2 / sin(theta2), 2) + mMu2) / (std::pow(pt1 / sin(theta1), 2) + mMu2)) -
673  pt2 * (cos(phi1 - phi2) + cos(theta1) * cos(theta2) / (sin(theta1) * sin(theta2)))) /
674  mass;
675  double dmdpt2 = (pt2 / std::pow(sin(theta2), 2) *
676  sqrt((std::pow(pt1 / sin(theta1), 2) + mMu2) / (std::pow(pt2 / sin(theta2), 2) + mMu2)) -
677  pt1 * (cos(phi2 - phi1) + cos(theta2) * cos(theta1) / (sin(theta2) * sin(theta1)))) /
678  mass;
679  double dmdphi1 = pt1 * pt2 / mass * sin(phi1 - phi2);
680  double dmdphi2 = pt2 * pt1 / mass * sin(phi2 - phi1);
681  double dmdcotgth1 = (pt1 * pt1 * cos(theta1) / sin(theta1) *
682  sqrt((std::pow(pt2 / sin(theta2), 2) + mMu2) / (std::pow(pt1 / sin(theta1), 2) + mMu2)) -
683  pt1 * pt2 * cos(theta2) / sin(theta2)) /
684  mass;
685  double dmdcotgth2 = (pt2 * pt2 * cos(theta2) / sin(theta2) *
686  sqrt((std::pow(pt1 / sin(theta1), 2) + mMu2) / (std::pow(pt2 / sin(theta2), 2) + mMu2)) -
687  pt2 * pt1 * cos(theta1) / sin(theta1)) /
688  mass;
689 
690  // Resolution parameters:
691  // ----------------------
692  double sigma_pt1 = resolFunc.sigmaPt(mu1);
693  double sigma_pt2 = resolFunc.sigmaPt(mu2);
694  double sigma_phi1 = resolFunc.sigmaPhi(mu1);
695  double sigma_phi2 = resolFunc.sigmaPhi(mu2);
696  double sigma_cotgth1 = resolFunc.sigmaCotgTh(mu1);
697  double sigma_cotgth2 = resolFunc.sigmaCotgTh(mu2);
698 
699  // Sigma_Pt is defined as a relative sigmaPt/Pt for this reason we need to
700  // multiply it by pt.
701  double mass_res = sqrt(std::pow(dmdpt1 * sigma_pt1 * pt1, 2) + std::pow(dmdpt2 * sigma_pt2 * pt2, 2) +
702  std::pow(dmdphi1 * sigma_phi1, 2) + std::pow(dmdphi2 * sigma_phi2, 2) +
703  std::pow(dmdcotgth1 * sigma_cotgth1, 2) + std::pow(dmdcotgth2 * sigma_cotgth2, 2));
704 
705  return mass_res;
706 }
707 
708 // Mass probability - version with linear background included, accepts std::vector<double> parval
709 // -----------------------------------------------------------------------------------------
710 double MuScleFitUtils::massProb(const double &mass,
711  const double &resEta,
712  const double &rapidity,
713  const double &massResol,
714  const std::vector<double> &parval,
715  const bool doUseBkgrWindow,
716  const double &eta1,
717  const double &eta2) {
718 #ifdef USE_CALLGRIND
719  CALLGRIND_START_INSTRUMENTATION;
720 #endif
721 
722  double *p = new double[(int)(parval.size())];
723  // Replaced by auto_ptr, which handles delete at the end
724  // Removed auto_ptr, check massResolution for an explanation.
725  // std::unique_ptr<double> p(new double[(int)(parval.size())]);
726 
727  std::vector<double>::const_iterator it = parval.begin();
728  int id = 0;
729  for (; it != parval.end(); ++it, ++id) {
730  // (&*p)[id] = *it;
731  p[id] = *it;
732  }
733  // p must be passed by value as below:
734  double massProbability = massProb(mass, resEta, rapidity, massResol, p, doUseBkgrWindow, eta1, eta2);
735  delete[] p;
736 
737 #ifdef USE_CALLGRIND
738  CALLGRIND_STOP_INSTRUMENTATION;
739  CALLGRIND_DUMP_STATS;
740 #endif
741 
742  return massProbability;
743 }
744 
750 double MuScleFitUtils::probability(const double &mass,
751  const double &massResol,
752  const double GLvalue[][1001][1001],
753  const double GLnorm[][1001],
754  const int iRes,
755  const int iY) {
756  if (iRes == 0 && iY > 23) {
757  std::cout << "WARNING: rapidity bin selected = " << iY << " but there are only histograms for the first 24 bins"
758  << std::endl;
759  }
760 
761  double PS = 0.;
762  bool insideProbMassWindow = true;
763  // Interpolate the four values of GLZValue[] in the
764  // grid square within which the (mass,sigma) values lay
765  // ----------------------------------------------------
766  // This must be done with respect to the width used in the computation of the probability distribution,
767  // so that the bin 0 really matches the bin 0 of that distribution.
768  // double fracMass = (mass-(ResMass[iRes]-ResHalfWidth[iRes]))/(2*ResHalfWidth[iRes]);
769  double fracMass = (mass - ResMinMass[iRes]) / (2 * ResHalfWidth[iRes]);
770  if (debug > 1)
771  std::cout << std::setprecision(9) << "mass ResMinMass[iRes] ResHalfWidth[iRes] ResHalfWidth[iRes]" << mass << " "
772  << ResMinMass[iRes] << " " << ResHalfWidth[iRes] << " " << ResHalfWidth[iRes] << std::endl;
773  int iMassLeft = (int)(fracMass * (double)nbins);
774  int iMassRight = iMassLeft + 1;
775  double fracMassStep = (double)nbins * (fracMass - (double)iMassLeft / (double)nbins);
776  if (debug > 1)
777  std::cout << "nbins iMassLeft fracMass " << nbins << " " << iMassLeft << " " << fracMass << std::endl;
778 
779  // Simple protections for the time being: the region where we fit should not include
780  // values outside the boundaries set by ResMass-ResHalfWidth : ResMass+ResHalfWidth
781  // ---------------------------------------------------------------------------------
782  if (iMassLeft < 0) {
783  edm::LogInfo("probability") << "WARNING: fracMass=" << fracMass << ", iMassLeft=" << iMassLeft
784  << "; mass = " << mass << " and bounds are " << ResMinMass[iRes] << ":"
785  << ResMinMass[iRes] + 2 * ResHalfWidth[iRes] << " - iMassLeft set to 0" << std::endl;
786  iMassLeft = 0;
787  iMassRight = 1;
788  insideProbMassWindow = false;
789  }
790  if (iMassRight > nbins) {
791  edm::LogInfo("probability") << "WARNING: fracMass=" << fracMass << ", iMassRight=" << iMassRight
792  << "; mass = " << mass << " and bounds are " << ResMinMass[iRes] << ":"
793  << ResMass[iRes] + 2 * ResHalfWidth[iRes] << " - iMassRight set to " << nbins - 1
794  << std::endl;
795  iMassLeft = nbins - 1;
796  iMassRight = nbins;
797  insideProbMassWindow = false;
798  }
799  double fracSigma = (massResol / ResMaxSigma[iRes]);
800  int iSigmaLeft = (int)(fracSigma * (double)nbins);
801  int iSigmaRight = iSigmaLeft + 1;
802  double fracSigmaStep = (double)nbins * (fracSigma - (double)iSigmaLeft / (double)nbins);
803  // std::cout << "massResol = " << massResol << std::endl;
804  // std::cout << "ResMaxSigma["<<iRes<<"] = " << ResMaxSigma[iRes] << std::endl;
805  // std::cout << "fracSigma = " << fracSigma << std::endl;
806  // std::cout << "nbins = " << nbins << std::endl;
807  // std::cout << "ISIGMALEFT = " << iSigmaLeft << std::endl;
808  // std::cout << "ISIGMARIGHT = " << iSigmaRight << std::endl;
809  // std::cout << "fracSigmaStep = " << fracSigmaStep << std::endl;
810 
811  // Simple protections for the time being: they should not affect convergence, since
812  // ResMaxSigma is set to very large values, and if massResol exceeds them the fit
813  // should not get any prize for that (for large sigma, the prob. distr. becomes flat)
814  // ----------------------------------------------------------------------------------
815  if (iSigmaLeft < 0) {
816  edm::LogInfo("probability") << "WARNING: fracSigma = " << fracSigma << ", iSigmaLeft=" << iSigmaLeft
817  << ", with massResol = " << massResol
818  << " and ResMaxSigma[iRes] = " << ResMaxSigma[iRes] << " - iSigmaLeft set to 0"
819  << std::endl;
820  iSigmaLeft = 0;
821  iSigmaRight = 1;
822  }
823  if (iSigmaRight > nbins) {
824  if (counter_resprob < 100)
825  edm::LogInfo("probability") << "WARNING: fracSigma = " << fracSigma << ", iSigmaRight=" << iSigmaRight
826  << ", with massResol = " << massResol
827  << " and ResMaxSigma[iRes] = " << ResMaxSigma[iRes] << " - iSigmaRight set to "
828  << nbins - 1 << std::endl;
829  iSigmaLeft = nbins - 1;
830  iSigmaRight = nbins;
831  }
832 
833  // If f11,f12,f21,f22 are the values at the four corners, one finds by linear interpolation the
834  // formula below for PS
835  // --------------------------------------------------------------------------------------------
836  if (insideProbMassWindow) {
837  double f11 = 0.;
838  if (GLnorm[iY][iSigmaLeft] > 0)
839  f11 = GLvalue[iY][iMassLeft][iSigmaLeft] / GLnorm[iY][iSigmaLeft];
840  double f12 = 0.;
841  if (GLnorm[iY][iSigmaRight] > 0)
842  f12 = GLvalue[iY][iMassLeft][iSigmaRight] / GLnorm[iY][iSigmaRight];
843  double f21 = 0.;
844  if (GLnorm[iY][iSigmaLeft] > 0)
845  f21 = GLvalue[iY][iMassRight][iSigmaLeft] / GLnorm[iY][iSigmaLeft];
846  double f22 = 0.;
847  if (GLnorm[iY][iSigmaRight] > 0)
848  f22 = GLvalue[iY][iMassRight][iSigmaRight] / GLnorm[iY][iSigmaRight];
849  PS = f11 + (f12 - f11) * fracSigmaStep + (f21 - f11) * fracMassStep +
850  (f22 - f21 - f12 + f11) * fracMassStep * fracSigmaStep;
851  if (PS > 0.1 || debug > 1)
852  LogDebug("MuScleFitUtils") << "iRes = " << iRes << " PS=" << PS << " f11,f12,f21,f22=" << f11 << " " << f12 << " "
853  << f21 << " " << f22 << " "
854  << " fSS=" << fracSigmaStep << " fMS=" << fracMassStep << " iSL, iSR=" << iSigmaLeft
855  << " " << iSigmaRight << " GLvalue[" << iY << "][" << iMassLeft
856  << "] = " << GLvalue[iY][iMassLeft][iSigmaLeft] << " GLnorm[" << iY << "]["
857  << iSigmaLeft << "] = " << GLnorm[iY][iSigmaLeft] << std::endl;
858 
859  // if (PS>0.1) std::cout << "iRes = " << iRes << " PS=" << PS << " f11,f12,f21,f22="
860  // << f11 << " " << f12 << " " << f21 << " " << f22 << " "
861  // << " fSS=" << fracSigmaStep << " fMS=" << fracMassStep << " iSL, iSR="
862  // << iSigmaLeft << " " << iSigmaRight << " GLV,GLN="
863  // << GLvalue[iY][iMassLeft][iSigmaLeft]
864  // << " " << GLnorm[iY][iSigmaLeft] << std::endl;
865 
866  } else {
867  edm::LogInfo("probability") << "outside mass probability window. Setting PS[" << iRes << "] = 0" << std::endl;
868  }
869 
870  // if( PS != PS ) {
871  // std::cout << "ERROR: PS = " << PS << " for iRes = " << iRes << std::endl;
872 
873  // std::cout << "mass = " << mass << ", massResol = " << massResol << std::endl;
874  // std::cout << "fracMass = " << fracMass << ", iMassLeft = " << iMassLeft
875  // << ", iMassRight = " << iMassRight << ", fracMassStep = " << fracMassStep << std::endl;
876  // std::cout << "fracSigma = " << fracSigma << ", iSigmaLeft = " << iSigmaLeft
877  // << ", iSigmaRight = " << iSigmaRight << ", fracSigmaStep = " << fracSigmaStep << std::endl;
878  // std::cout << "ResMaxSigma["<<iRes<<"] = " << ResMaxSigma[iRes] << std::endl;
879 
880  // std::cout << "GLvalue["<<iY<<"]["<<iMassLeft<<"] = " << GLvalue[iY][iMassLeft][iSigmaLeft]
881  // << " GLnorm["<<iY<<"]["<<iSigmaLeft<<"] = " << GLnorm[iY][iSigmaLeft] << std::endl;
882  // }
883 
884  return PS;
885 }
886 
887 // Mass probability - version with linear background included
888 // ----------------------------------------------------------
889 double MuScleFitUtils::massProb(const double &mass,
890  const double &resEta,
891  const double &rapidity,
892  const double &massResol,
893  double *parval,
894  const bool doUseBkgrWindow,
895  const double &eta1,
896  const double &eta2) {
897  // This routine computes the likelihood that a given measured mass "measMass" is
898  // the result of a reference mass ResMass[] if the resolution
899  // expected for the two muons is massResol.
900  // This version includes two parameters (the last two in parval, by default)
901  // to size up the background fraction and its relative normalization with respect
902  // to the signal shape.
903  //
904  // We model the signal probability with a Lorentz L(M,H) of resonance mass M and natural width H
905  // convoluted with a gaussian G(m,s) of measured mass m and expected mass resolution s,
906  // by integrating over the intersection of the supports of L and G (which can be made to coincide with
907  // the region where L is non-zero, given that H<<s in most cases) the product L(M,H)*G(m,s) dx as follows:
908  //
909  // GL(m,s) = Int(M-10H,M+10H) [ L(x-M,H) * G(x-m,s) ] dx
910  //
911  // The above convolution is computed numerically by an independent root macro, Probs.C, which outputs
912  // the values in six 1001x1001 grids, one per resonance.
913  //
914  // NB THe following block of explanations for background models is outdated, see detailed
915  // explanations where the code computes PB.
916  // +++++++++++++++++++++++
917  // For the background, instead, we have two choices: a linear and an exponential model.
918  // * For the linear model, we choose a one-parameter form whereby the line is automatically normalized
919  // in the support [x1,x2] where we defined our "signal region", as follows:
920  //
921  // B(x;b) = 1/(x2-x1) + {x - (x2+x1)/2} * b
922  //
923  // Defined as above, B(x) is a line passing for the point of coordinates (x1+x2)/2, 1/(x2-x1),
924  // whose slope b has as support the interval ( -2/[(x1-x2)*(x1+x2)], 2/[(x1-x2)*(x1+x2)] )
925  // so that B(x) is always positive-definite in [x1,x2].
926  //
927  // * For the exponential model, we define B(x;b) as
928  //
929  // B(x;b) = b * { exp(-b*x) / [exp(-b*x1)-exp(-b*x2)] }
930  //
931  // This one-parameter definition is automatically normalized to unity in [x1,x2], with a parameter
932  // b which has to be positive in order for the slope to be negative.
933  // Please note that this model is not useful in most circumstances; a more useful form would be one
934  // which included a linear component.
935  // ++++++++++++++++++++++
936  //
937  // Once GL(m,s) and B(x;b) are defined, we introduce a further parameter a, such that we can have the
938  // likelihood control the relative fraction of signal and background. We first normalize GL(m,s) for
939  // any given s by taking the integral
940  //
941  // Int(x1,x2) GL(m,s) dm = K_s
942  //
943  // We then define the probability as
944  //
945  // P(m,s,a,b) = GL(m,s)/K_s * a + B(x,b) * (1-a)
946  //
947  // with a taking on values in the interval [0,1].
948  // Defined as above, the probability is well-behaved, in the sense that it has a value between 0 and 1,
949  // and the four parameters m,s,a,b fully control its shape.
950  //
951  // It is to be noted that the formulation above requires the computation of two rather time-consuming
952  // integrals. The one defining GL(m,s) can be stored in a TH2D and loaded by the constructor from a
953  // file suitably prepared, and this will save loads of computing time.
954  // ----------------------------------------------------------------------------------------------------
955 
956  double P = 0.;
957  int crossSectionParShift = parResol.size() + parScale.size();
958  // Take the relative cross sections
959  std::vector<double> relativeCrossSections =
960  crossSectionHandler->relativeCrossSections(&(parval[crossSectionParShift]), resfind);
961  // for( unsigned int i=0; i<relativeCrossSections.size(); ++i ) {
962  // std::cout << "relativeCrossSections["<<i<<"] = " << relativeCrossSections[i] << std::endl;
963  // std::cout << "parval["<<crossSectionParShift+i<<"] = " << parval[crossSectionParShift+i] << std::endl;
964  // }
965 
966  // int bgrParShift = crossSectionParShift + parCrossSection.size();
967  int bgrParShift = crossSectionParShift + crossSectionHandler->parNum();
968  double Bgrp1 = 0.;
969  // double Bgrp2 = 0.;
970  // double Bgrp3 = 0.;
971 
972  // NB defined as below, P is a non-rigorous "probability" that we observe
973  // a dimuon mass "mass", given ResMass[], gamma, and massResol. It is what we need for the
974  // fit which finds the best resolution parameters, though. A definition which is
975  // more properly a probability is given below (in massProb2()), where the result
976  // cannot be used to fit resolution parameters because the fit would always prefer
977  // to set the res parameters to the minimum possible value (best resolution),
978  // to have a probability close to one of observing any mass.
979  // -------------------------------------------------------------------------------
980 
981  // Determine what resonance(s) we have to deal with
982  // NB for now we assume equal xs for each resonance
983  // so we do not assign them different weights
984  // ------------------------------------------------
985  double PS[6] = {0.};
986  double PB = 0.;
987  double PStot[6] = {0.};
988 
989  // Should be removed because it is not used
990  bool resConsidered[6] = {false};
991 
992  bool useBackgroundWindow = (doBackgroundFit[loopCounter] || doUseBkgrWindow);
993  // bool useBackgroundWindow = (doBackgroundFit[loopCounter]);
994 
995  // First check the Z, which is divided in 24 rapidity bins
996  // NB max value of Z rapidity to be considered is 2.4 here
997  // -------------------------------------------------------
998 
999  // Do this only if we want to use the rapidity bins for the Z
1001  // ATTENTION: cut on Z rapidity at 2.4 since we only have histograms up to that value
1002  // std::pair<double, double> windowFactors = backgroundHandler->windowFactors( useBackgroundWindow, 0 );
1003  std::pair<double, double> windowBorders = backgroundHandler->windowBorders(useBackgroundWindow, 0);
1004  if (resfind[0] > 0
1005  // && checkMassWindow( mass, 0,
1006  // backgroundHandler->resMass( useBackgroundWindow, 0 ),
1007  // windowFactors.first, windowFactors.second )
1008  && checkMassWindow(mass, windowBorders.first, windowBorders.second)
1009  // && std::abs(rapidity)<2.4
1010  ) {
1011  int iY = (int)(std::abs(rapidity) * 10.);
1012  if (iY > 23)
1013  iY = 23;
1014 
1015  if (MuScleFitUtils::debug > 1)
1016  std::cout << "massProb:resFound = 0, rapidity bin =" << iY << std::endl;
1017 
1018  // In this case the last value is the rapidity bin
1019  PS[0] = probability(mass, massResol, GLZValue, GLZNorm, 0, iY);
1020 
1021  if (PS[0] != PS[0]) {
1022  std::cout << "ERROR: PS[0] = nan, setting it to 0" << std::endl;
1023  PS[0] = 0;
1024  }
1025 
1026  // std::pair<double, double> bgrResult = backgroundHandler->backgroundFunction( doBackgroundFit[loopCounter],
1027  // &(parval[bgrParShift]), MuScleFitUtils::totalResNum, 0,
1028  // resConsidered, ResMass, ResHalfWidth, MuonType, mass, resEta );
1029 
1030  std::pair<double, double> bgrResult = backgroundHandler->backgroundFunction(doBackgroundFit[loopCounter],
1031  &(parval[bgrParShift]),
1033  0,
1034  resConsidered,
1035  ResMass,
1036  ResHalfWidth,
1037  MuonType,
1038  mass,
1039  eta1,
1040  eta2);
1041 
1042  Bgrp1 = bgrResult.first;
1043  // When fitting the background we have only one Bgrp1
1044  // When not fitting the background we have many only in a superposition region and this case is treated
1045  // separately after this loop
1046  PB = bgrResult.second;
1047  if (PB != PB)
1048  PB = 0;
1049  PStot[0] = (1 - Bgrp1) * PS[0] + Bgrp1 * PB;
1050 
1051  // PStot[0] *= crossSectionHandler->crossSection(0);
1052  // PStot[0] *= parval[crossSectionParShift];
1053  PStot[0] *= relativeCrossSections[0];
1054  if (MuScleFitUtils::debug > 0)
1055  std::cout << "PStot[" << 0 << "] = "
1056  << "(1-" << Bgrp1 << ")*" << PS[0] << " + " << Bgrp1 << "*" << PB << " = " << PStot[0]
1057  << " (reletiveXS = )" << relativeCrossSections[0] << std::endl;
1058  } else {
1059  if (debug > 0) {
1060  std::cout << "Mass = " << mass << " outside range with rapidity = " << rapidity << std::endl;
1061  std::cout << "with resMass = " << backgroundHandler->resMass(useBackgroundWindow, 0)
1062  << " and left border = " << windowBorders.first << " right border = " << windowBorders.second
1063  << std::endl;
1064  }
1065  }
1066  }
1067  // Next check the other resonances
1068  // -------------------------------
1069  int firstRes = 1;
1071  firstRes = 0;
1072  for (int ires = firstRes; ires < 6; ++ires) {
1073  if (resfind[ires] > 0) {
1074  // First is left, second is right (returns (1,1) in the case of resonances, it could be improved avoiding the call in this case)
1075  // std::pair<double, double> windowFactor = backgroundHandler->windowFactors( useBackgroundWindow, ires );
1076  std::pair<double, double> windowBorder = backgroundHandler->windowBorders(useBackgroundWindow, ires);
1077  if (checkMassWindow(mass, windowBorder.first, windowBorder.second)) {
1078  if (MuScleFitUtils::debug > 1)
1079  std::cout << "massProb:resFound = " << ires << std::endl;
1080 
1081  // In this case the rapidity value is instead the resonance index again.
1082  PS[ires] = probability(mass, massResol, GLValue, GLNorm, ires, ires);
1083 
1084  std::pair<double, double> bgrResult =
1086  &(parval[bgrParShift]),
1088  ires,
1089  // resConsidered, ResMass, ResHalfWidth, MuonType, mass, resEta );
1090  resConsidered,
1091  ResMass,
1092  ResHalfWidth,
1093  MuonType,
1094  mass,
1095  eta1,
1096  eta2);
1097  Bgrp1 = bgrResult.first;
1098  PB = bgrResult.second;
1099 
1100  if (PB != PB)
1101  PB = 0;
1102  PStot[ires] = (1 - Bgrp1) * PS[ires] + Bgrp1 * PB;
1103  if (MuScleFitUtils::debug > 0)
1104  std::cout << "PStot[" << ires << "] = "
1105  << "(1-" << Bgrp1 << ")*" << PS[ires] << " + " << Bgrp1 << "*" << PB << " = " << PStot[ires]
1106  << std::endl;
1107 
1108  PStot[ires] *= relativeCrossSections[ires];
1109  }
1110  }
1111  }
1112 
1113  for (int i = 0; i < 6; ++i) {
1114  P += PStot[i];
1115  }
1116 
1117  if (MuScleFitUtils::signalProb_ != nullptr && MuScleFitUtils::backgroundProb_ != nullptr) {
1118  double PStotTemp = 0.;
1119  for (int i = 0; i < 6; ++i) {
1120  PStotTemp += PS[i] * relativeCrossSections[i];
1121  }
1122  if (PStotTemp != PStotTemp) {
1123  std::cout << "ERROR: PStotTemp = nan!!!!!!!!!" << std::endl;
1124  int parnumber = (int)(parResol.size() + parScale.size() + crossSectionHandler->parNum() + parBgr.size());
1125  for (int i = 0; i < 6; ++i) {
1126  std::cout << "PS[i] = " << PS[i] << std::endl;
1127  if (PS[i] != PS[i]) {
1128  std::cout << "mass = " << mass << std::endl;
1129  std::cout << "massResol = " << massResol << std::endl;
1130  for (int j = 0; j < parnumber; ++j) {
1131  std::cout << "parval[" << j << "] = " << parval[j] << std::endl;
1132  }
1133  }
1134  }
1135  }
1136  if (PStotTemp == PStotTemp) {
1137  MuScleFitUtils::signalProb_->SetBinContent(
1139  MuScleFitUtils::signalProb_->GetBinContent(MuScleFitUtils::minuitLoop_) + PStotTemp);
1140  }
1141  if (debug > 0)
1142  std::cout << "mass = " << mass << ", P = " << P << ", PStot = " << PStotTemp << ", PB = " << PB
1143  << ", bgrp1 = " << Bgrp1 << std::endl;
1144 
1145  MuScleFitUtils::backgroundProb_->SetBinContent(
1147  }
1148  return P;
1149 }
1150 
1151 // Method to check if the mass value is within the mass window of the i-th resonance.
1152 // inline bool MuScleFitUtils::checkMassWindow( const double & mass, const int ires, const double & resMass, const double & leftFactor, const double & rightFactor )
1153 // {
1154 // return( mass-resMass > -leftFactor*massWindowHalfWidth[MuonTypeForCheckMassWindow][ires]
1155 // && mass-resMass < rightFactor*massWindowHalfWidth[MuonTypeForCheckMassWindow][ires] );
1156 // }
1157 inline bool MuScleFitUtils::checkMassWindow(const double &mass, const double &leftBorder, const double &rightBorder) {
1158  return ((mass > leftBorder) && (mass < rightBorder));
1159 }
1160 
1161 // Function that returns the weight for a muon pair
1162 // ------------------------------------------------
1163 double MuScleFitUtils::computeWeight(const double &mass, const int iev, const bool doUseBkgrWindow) {
1164  // Compute weight for this event
1165  // -----------------------------
1166  double weight = 0.;
1167 
1168  // Take the highest-mass resonance within bounds
1169  // NB this must be revised once credible estimates of the relative xs of Y(1S), (2S), and (3S)
1170  // are made. Those are priors in the decision of which resonance to assign to an in-between event.
1171  // -----------------------------------------------------------------------------------------------
1172 
1173  if (doUseBkgrWindow && (debug > 0))
1174  std::cout << "using backgrond window for mass = " << mass << std::endl;
1175  // bool useBackgroundWindow = (doBackgroundFit[loopCounter] || doUseBkgrWindow);
1176  bool useBackgroundWindow = (doBackgroundFit[loopCounter]);
1177 
1178  for (int ires = 0; ires < 6; ires++) {
1179  if (resfind[ires] > 0 && weight == 0.) {
1180  // std::pair<double, double> windowFactor = backgroundHandler->windowFactors( useBackgroundWindow, ires );
1181  std::pair<double, double> windowBorder = backgroundHandler->windowBorders(useBackgroundWindow, ires);
1182  // if( checkMassWindow(mass, ires, backgroundHandler->resMass( useBackgroundWindow, ires ),
1183  // windowFactor.first, windowFactor.second) ) {
1184  if (checkMassWindow(mass, windowBorder.first, windowBorder.second)) {
1185  weight = 1.0;
1186  if (doUseBkgrWindow && (debug > 0))
1187  std::cout << "setting weight to = " << weight << std::endl;
1188  }
1189  }
1190  }
1191 
1192  return weight;
1193 }
1194 
1195 // Likelihood minimization routine
1196 // -------------------------------
1198  // Output file with fit parameters resulting from minimization
1199  // -----------------------------------------------------------
1200  std::ofstream FitParametersFile;
1201  FitParametersFile.open("FitParameters.txt", std::ios::app);
1202  FitParametersFile << "Fitting with resolution, scale, bgr function # " << ResolFitType << " " << ScaleFitType << " "
1203  << BgrFitType << " - Iteration " << loopCounter << std::endl;
1204 
1205  // Fill parvalue and other vectors needed for the fitting
1206  // ------------------------------------------------------
1207 
1208  // ----- //
1209  // FIXME //
1210  // ----- //
1211  // this was changed to verify the possibility that fixed parameters influence the errors.
1212  // It must be 0 otherwise the parameters for resonances will not be passed by minuit (will be always 0).
1213  // Should be removed.
1214  int parForResonanceWindows = 0;
1215  // int parnumber = (int)(parResol.size()+parScale.size()+parCrossSection.size()+parBgr.size() - parForResonanceWindows);
1216  int parnumber =
1217  (int)(parResol.size() + parScale.size() + crossSectionHandler->parNum() + parBgr.size() - parForResonanceWindows);
1218 
1219  int parnumberAll = (int)(parResol.size() + parScale.size() + crossSectionHandler->parNum() + parBgr.size());
1220 
1221  // parvalue is a std::vector<std::vector<double> > storing all the parameters from all the loops
1222  parvalue.push_back(parResol);
1223  std::vector<double> *tmpVec = &(parvalue.back());
1224 
1225  // If this is not the first loop we want to start from neutral values
1226  // Otherwise the scale will start with values correcting again a bias
1227  // that is already corrected.
1228  if (scaleFitNotDone_) {
1229  tmpVec->insert(tmpVec->end(), parScale.begin(), parScale.end());
1230  std::cout << "scaleFitNotDone: tmpVec->size() = " << tmpVec->size() << std::endl;
1231  } else {
1232  scaleFunction->resetParameters(tmpVec);
1233  std::cout << "scaleFitDone: tmpVec->size() = " << tmpVec->size() << std::endl;
1234  }
1235  tmpVec->insert(tmpVec->end(), parCrossSection.begin(), parCrossSection.end());
1236  tmpVec->insert(tmpVec->end(), parBgr.begin(), parBgr.end());
1237  int i = 0;
1238  std::vector<double>::const_iterator it = tmpVec->begin();
1239  for (; it != tmpVec->end(); ++it, ++i) {
1240  std::cout << "tmpVec[" << i << "] = " << *it << std::endl;
1241  }
1242 
1243  // Empty vector of size = number of cross section fitted parameters. Note that the cross section
1244  // fit works in a different way than the others and it uses ratios of the paramters passed via cfg.
1245  // We use this empty vector for compatibility with the rest of the structure.
1246  std::vector<int> crossSectionParNumSizeVec(MuScleFitUtils::crossSectionHandler->parNum(), 0);
1247 
1248  std::vector<int> parfix(parResolFix);
1249  parfix.insert(parfix.end(), parScaleFix.begin(), parScaleFix.end());
1250  parfix.insert(parfix.end(), crossSectionParNumSizeVec.begin(), crossSectionParNumSizeVec.end());
1251  parfix.insert(parfix.end(), parBgrFix.begin(), parBgrFix.end());
1252 
1253  std::vector<int> parorder(parResolOrder);
1254  parorder.insert(parorder.end(), parScaleOrder.begin(), parScaleOrder.end());
1255  parorder.insert(parorder.end(), crossSectionParNumSizeVec.begin(), crossSectionParNumSizeVec.end());
1256  parorder.insert(parorder.end(), parBgrOrder.begin(), parBgrOrder.end());
1257 
1258  // This is filled later
1259  std::vector<double> parerr(3 * parnumberAll, 0.);
1260 
1261  if (debug > 19) {
1262  std::cout << "[MuScleFitUtils-minimizeLikelihood]: Parameters before likelihood " << std::endl;
1263  for (unsigned int i = 0; i < (unsigned int)parnumberAll; i++) {
1264  std::cout << " Par # " << i << " = " << parvalue[loopCounter][i] << " : free = " << parfix[i]
1265  << "; order = " << parorder[i] << std::endl;
1266  }
1267  }
1268 
1269  // // Background rescaling from regions to resonances
1270  // // -----------------------------------------------
1271  // // If we are in a loop > 0 and we are not fitting the background, but we have fitted it in the previous iteration
1272  // if( loopCounter > 0 && !(doBackgroundFit[loopCounter]) && doBackgroundFit[loopCounter-1] ) {
1273  // // This rescales from regions to resonances
1274  // int localMuonType = MuonType;
1275  // if( MuonType > 2 ) localMuonType = 2;
1276  // backgroundHandler->rescale( parBgr, ResMass, massWindowHalfWidth[localMuonType],
1277  // MuScleFitUtils::SavedPair);
1278  // }
1279 
1280  // Init Minuit
1281  // -----------
1282  TMinuit rmin(parnumber);
1283  rminPtr_ = &rmin;
1284  rmin.SetFCN(likelihood); // Unbinned likelihood
1285  // Standard initialization of minuit parameters:
1286  // sets input to be $stdin, output to be $stdout
1287  // and saving to a file.
1288  rmin.mninit(5, 6, 7);
1289  int ierror = 0;
1290  int istat;
1291  double arglis[4];
1292  arglis[0] = FitStrategy; // Strategy 1 or 2
1293  // 1 standard
1294  // 2 try to improve minimum (slower)
1295  rmin.mnexcm("SET STR", arglis, 1, ierror);
1296 
1297  arglis[0] = 10001;
1298  // Set the random seed for the generator used in SEEk to a fixed value for reproducibility
1299  rmin.mnexcm("SET RAN", arglis, 1, ierror);
1300 
1301  // Set fit parameters
1302  // ------------------
1303  double *Start = new double[parnumberAll];
1304  double *Step = new double[parnumberAll];
1305  double *Mini = new double[parnumberAll];
1306  double *Maxi = new double[parnumberAll];
1307  int *ind = new int[parnumberAll]; // Order of release of parameters
1308  TString *parname = new TString[parnumberAll];
1309 
1310  if (!parResolStep.empty() && !parResolMin.empty() && !parResolMax.empty()) {
1312  Start, Step, Mini, Maxi, ind, parname, parResol, parResolOrder, parResolStep, parResolMin, parResolMax, MuonType);
1313  } else {
1315  Start, Step, Mini, Maxi, ind, parname, parResol, parResolOrder, MuonType);
1316  }
1317 
1318  // Take the number of parameters in the resolutionFunction and displace the arrays passed to the scaleFunction
1320 
1321  if (!parScaleStep.empty() && !parScaleMin.empty() && !parScaleMax.empty()) {
1323  &(Step[resParNum]),
1324  &(Mini[resParNum]),
1325  &(Maxi[resParNum]),
1326  &(ind[resParNum]),
1327  &(parname[resParNum]),
1328  parScale,
1329  parScaleOrder,
1330  parScaleStep,
1331  parScaleMin,
1332  parScaleMax,
1333  MuonType);
1334  } else {
1336  &(Step[resParNum]),
1337  &(Mini[resParNum]),
1338  &(Maxi[resParNum]),
1339  &(ind[resParNum]),
1340  &(parname[resParNum]),
1341  parScale,
1342  parScaleOrder,
1343  MuonType);
1344  }
1345 
1346  // Initialize cross section parameters
1347  int crossSectionParShift = resParNum + MuScleFitUtils::scaleFunctionForVec->parNum();
1348  MuScleFitUtils::crossSectionHandler->setParameters(&(Start[crossSectionParShift]),
1349  &(Step[crossSectionParShift]),
1350  &(Mini[crossSectionParShift]),
1351  &(Maxi[crossSectionParShift]),
1352  &(ind[crossSectionParShift]),
1353  &(parname[crossSectionParShift]),
1356  resfind);
1357 
1358  // Initialize background parameters
1359  int bgrParShift = crossSectionParShift + crossSectionHandler->parNum();
1360  MuScleFitUtils::backgroundHandler->setParameters(&(Start[bgrParShift]),
1361  &(Step[bgrParShift]),
1362  &(Mini[bgrParShift]),
1363  &(Maxi[bgrParShift]),
1364  &(ind[bgrParShift]),
1365  &(parname[bgrParShift]),
1366  parBgr,
1367  parBgrOrder,
1368  MuonType);
1369 
1370  for (int ipar = 0; ipar < parnumber; ++ipar) {
1371  std::cout << "parname[" << ipar << "] = " << parname[ipar] << std::endl;
1372  std::cout << "Start[" << ipar << "] = " << Start[ipar] << std::endl;
1373  std::cout << "Step[" << ipar << "] = " << Step[ipar] << std::endl;
1374  std::cout << "Mini[" << ipar << "] = " << Mini[ipar] << std::endl;
1375  std::cout << "Maxi[" << ipar << "] = " << Maxi[ipar] << std::endl;
1376 
1377  rmin.mnparm(ipar, parname[ipar], Start[ipar], Step[ipar], Mini[ipar], Maxi[ipar], ierror);
1378 
1379  // Testing without limits
1380  // rmin.mnparm( ipar, parname[ipar], Start[ipar], Step[ipar], 0, 0, ierror );
1381  }
1382 
1383  // Do minimization
1384  // ---------------
1385  if (debug > 19)
1386  std::cout << "[MuScleFitUtils-minimizeLikelihood]: Starting minimization" << std::endl;
1387  double fmin;
1388  double fdem;
1389  double errdef;
1390  int npari;
1391  int nparx;
1392  rmin.mnexcm("CALL FCN", arglis, 1, ierror);
1393 
1394  // First, fix all parameters
1395  // -------------------------
1396  if (debug > 19)
1397  std::cout << "[MuScleFitUtils-minimizeLikelihood]: First fix all parameters ...";
1398  for (int ipar = 0; ipar < parnumber; ipar++) {
1399  rmin.FixParameter(ipar);
1400  }
1401 
1402  // Then release them in the specified order and refit
1403  // --------------------------------------------------
1404  if (debug > 19)
1405  std::cout << " Then release them in order..." << std::endl;
1406 
1407  TString name;
1408  double pval;
1409  double pmin;
1410  double pmax;
1411  double errp;
1412  double errl;
1413  double errh;
1414  int ivar;
1415  double erro;
1416  double cglo;
1417  int n_times = 0;
1418  // n_times = number of loops required to unlock all parameters.
1419 
1420  if (debug > 19)
1421  std::cout << "Before scale parNum" << std::endl;
1422  int scaleParNum = scaleFunction->parNum();
1423  if (debug > 19)
1424  std::cout << "After scale parNum" << std::endl;
1425  // edm::LogInfo("minimizeLikelihood") << "number of parameters for scaleFunction = " << scaleParNum << std::endl;
1426  // edm::LogInfo("minimizeLikelihood") << "number of parameters for resolutionFunction = " << resParNum << std::endl;
1427  // edm::LogInfo("minimizeLikelihood") << "number of parameters for cross section = " << crossSectionHandler->parNum() << std::endl;
1428  // edm::LogInfo("minimizeLikelihood") << "number of parameters for backgroundFunction = " << parBgr.size() << std::endl;
1429  std::cout << "number of parameters for scaleFunction = " << scaleParNum << std::endl;
1430  std::cout << "number of parameters for resolutionFunction = " << resParNum << std::endl;
1431  std::cout << "number of parameters for cross section = " << crossSectionHandler->parNum() << std::endl;
1432  std::cout << "number of parameters for backgroundFunction = " << parBgr.size() << std::endl;
1433  // edm::LogInfo("minimizeLikelihood") << "number of parameters for backgroundFunction = " << backgroundFunction->parNum() << std::endl;
1434 
1435  for (int i = 0; i < parnumber; i++) {
1436  // NB ind[] has been set as parorder[] previously
1437  if (n_times < ind[i]) {
1438  edm::LogInfo("minimizeLikelihood") << "n_times = " << n_times << ", ind[" << i << "] = " << ind[i]
1439  << ", scaleParNum = " << scaleParNum << ", doScaleFit[" << loopCounter
1440  << "] = " << doScaleFit[loopCounter] << std::endl;
1441  // Set the n_times only if we will do the fit
1442  if (i < resParNum) {
1443  if (doResolFit[loopCounter])
1444  n_times = ind[i];
1445  } else if (i < resParNum + scaleParNum) {
1446  if (doScaleFit[loopCounter])
1447  n_times = ind[i];
1448  } else if (doBackgroundFit[loopCounter])
1449  n_times = ind[i];
1450  }
1451  }
1452  for (int iorder = 0; iorder < n_times + 1; iorder++) { // Repeat fit n_times times
1453  std::cout << "Starting minimization " << iorder << " of " << n_times << std::endl;
1454 
1455  bool somethingtodo = false;
1456 
1457  // Use parameters from cfg to select which fit to do
1458  // -------------------------------------------------
1459  if (doResolFit[loopCounter]) {
1460  // Release resolution parameters and fit them
1461  // ------------------------------------------
1462  for (unsigned int ipar = 0; ipar < parResol.size(); ++ipar) {
1463  if (parfix[ipar] == 0 && ind[ipar] == iorder) {
1464  rmin.Release(ipar);
1465  somethingtodo = true;
1466  }
1467  }
1468  }
1469  if (doScaleFit[loopCounter]) {
1470  // Release scale parameters and fit them
1471  // -------------------------------------
1472  for (unsigned int ipar = parResol.size(); ipar < parResol.size() + parScale.size(); ++ipar) {
1473  if (parfix[ipar] == 0 && ind[ipar] == iorder) { // parfix=0 means parameter is free
1474  rmin.Release(ipar);
1475  somethingtodo = true;
1476  }
1477  }
1478  scaleFitNotDone_ = false;
1479  }
1480  unsigned int crossSectionParShift = parResol.size() + parScale.size();
1482  // Release cross section parameters and fit them
1483  // ---------------------------------------------
1484  // Note that only cross sections of resonances that are being fitted are released
1485  bool doCrossSection =
1486  crossSectionHandler->releaseParameters(rmin, resfind, parfix, ind, iorder, crossSectionParShift);
1487  if (doCrossSection)
1488  somethingtodo = true;
1489  }
1491  // Release background parameters and fit them
1492  // ------------------------------------------
1493  // for( int ipar=parResol.size()+parScale.size(); ipar<parnumber; ++ipar ) {
1494  // Free only the parameters for the regions, as the resonances intervals are never used to fit the background
1495  unsigned int bgrParShift = crossSectionParShift + crossSectionHandler->parNum();
1496  for (unsigned int ipar = bgrParShift; ipar < bgrParShift + backgroundHandler->regionsParNum(); ++ipar) {
1497  // Release only those parameters for the resonances we are fitting
1498  if (parfix[ipar] == 0 && ind[ipar] == iorder &&
1499  backgroundHandler->unlockParameter(resfind, ipar - bgrParShift)) {
1500  rmin.Release(ipar);
1501  somethingtodo = true;
1502  }
1503  }
1504  }
1505 
1506  // OK, now do minimization if some parameter has been released
1507  // -----------------------------------------------------------
1508  if (somethingtodo) {
1509  // #ifdef DEBUG
1510 
1511  std::stringstream fileNum;
1512  fileNum << loopCounter;
1513 
1514  minuitLoop_ = 0;
1515  char name[50];
1516  sprintf(name, "likelihoodInLoop_%d_%d", loopCounter, iorder);
1517  TH1D *tempLikelihoodInLoop = new TH1D(name, "likelihood value in minuit loop", 10000, 0, 10000);
1518  likelihoodInLoop_ = tempLikelihoodInLoop;
1519  char signalProbName[50];
1520  sprintf(signalProbName, "signalProb_%d_%d", loopCounter, iorder);
1521  TH1D *tempSignalProb = new TH1D(signalProbName, "signal probability", 10000, 0, 10000);
1522  signalProb_ = tempSignalProb;
1523  char backgroundProbName[50];
1524  sprintf(backgroundProbName, "backgroundProb_%d_%d", loopCounter, iorder);
1525  TH1D *tempBackgroundProb = new TH1D(backgroundProbName, "background probability", 10000, 0, 10000);
1526  backgroundProb_ = tempBackgroundProb;
1527  // #endif
1528 
1529  // Before we start the minimization we create a list of events with only the events inside a smaller
1530  // window than the one in which the probability is != 0. We will compute the probability for all those
1531  // events and hopefully the margin will avoid them to get a probability = 0 (which causes a discontinuity
1532  // in the likelihood function). The width of this smaller window must be optimized, but we can start using
1533  // an 90% of the normalization window.
1534  double protectionFactor = 0.9;
1535 
1537  for (unsigned int nev = 0; nev < MuScleFitUtils::SavedPair.size(); ++nev) {
1538  const lorentzVector *recMu1 = &(MuScleFitUtils::SavedPair[nev].first);
1539  const lorentzVector *recMu2 = &(MuScleFitUtils::SavedPair[nev].second);
1540  double mass = MuScleFitUtils::invDimuonMass(*recMu1, *recMu2);
1541  // Test all resonances to see if the mass is inside at least one of the windows
1542  bool check = false;
1543  for (int ires = 0; ires < 6; ++ires) {
1544  // std::pair<double, double> windowFactor = backgroundHandler->windowFactors( doBackgroundFit[loopCounter], ires );
1545  std::pair<double, double> windowBorder = backgroundHandler->windowBorders(doBackgroundFit[loopCounter], ires);
1546  // if( resfind[ires] && checkMassWindow( mass, ires, backgroundHandler->resMass( doBackgroundFit[loopCounter], ires ),
1547  // 0.9*windowFactor.first, 0.9*windowFactor.second ) ) {
1548  // double resMassValue = backgroundHandler->resMass( doBackgroundFit[loopCounter], ires );
1549  // double windowBorderLeft = resMassValue - protectionFactor*(resMassValue - windowBorder.first);
1550  // double windowBorderRight = resMassValue + protectionFactor*(windowBorder.second - resMassValue);
1551  double windowBorderShift = (windowBorder.second - windowBorder.first) * (1 - protectionFactor) / 2.;
1552  double windowBorderLeft = windowBorder.first + windowBorderShift;
1553  double windowBorderRight = windowBorder.second - windowBorderShift;
1554  if (resfind[ires] && checkMassWindow(mass, windowBorderLeft, windowBorderRight)) {
1555  check = true;
1556  }
1557  }
1558  if (check) {
1559  MuScleFitUtils::ReducedSavedPair.push_back(std::make_pair(*recMu1, *recMu2));
1560  }
1561  }
1562  std::cout << "Fitting with " << MuScleFitUtils::ReducedSavedPair.size() << " events" << std::endl;
1563 
1564  // rmin.SetMaxIterations(500*parnumber);
1565 
1566  //Print some informations
1567  std::cout << "MINUIT is starting the minimization for the iteration number " << loopCounter << std::endl;
1568 
1569  //Try to set iterations
1570  // rmin.SetMaxIterations(100000);
1571 
1572  std::cout << "maxNumberOfIterations (just set) = " << rmin.GetMaxIterations() << std::endl;
1573 
1575 
1576  // Maximum number of iterations
1577  arglis[0] = 100000;
1578  // tolerance
1579  arglis[1] = 0.1;
1580 
1581  // Run simplex first to get an initial estimate of the minimum
1582  if (startWithSimplex_) {
1583  rmin.mnexcm("SIMPLEX", arglis, 0, ierror);
1584  }
1585 
1586  rmin.mnexcm("MIGRAD", arglis, 2, ierror);
1587 
1588  // #ifdef DEBUG
1589  likelihoodInLoop_->Write();
1590  signalProb_->Write();
1591  backgroundProb_->Write();
1592  delete tempLikelihoodInLoop;
1593  delete tempSignalProb;
1594  delete tempBackgroundProb;
1595  likelihoodInLoop_ = nullptr;
1596  signalProb_ = nullptr;
1597  backgroundProb_ = nullptr;
1598  // #endif
1599 
1600  // Compute again the error matrix
1601  rmin.mnexcm("HESSE", arglis, 0, ierror);
1602 
1603  // Peform minos error analysis.
1604  if (computeMinosErrors_) {
1605  duringMinos_ = true;
1606  rmin.mnexcm("MINOS", arglis, 0, ierror);
1607  duringMinos_ = false;
1608  }
1609 
1610  if (normalizationChanged_ > 1) {
1611  std::cout << "WARNING: normalization changed during fit meaning that events exited from the mass window. This "
1612  "causes a discontinuity in the likelihood function. Please check the scan of the likelihood as a "
1613  "function of the parameters to see if there are discontinuities around the minimum."
1614  << std::endl;
1615  }
1616  }
1617 
1618  // bool notWritten = true;
1619  for (int ipar = 0; ipar < parnumber; ipar++) {
1620  rmin.mnpout(ipar, name, pval, erro, pmin, pmax, ivar);
1621  // Save parameters in parvalue[] vector
1622  // ------------------------------------
1623  if (ierror != 0 && debug > 0) {
1624  std::cout << "[MuScleFitUtils-minimizeLikelihood]: ierror!=0, bogus pars" << std::endl;
1625  }
1626  // for (int ipar=0; ipar<parnumber; ipar++) {
1627  // rmin.mnpout (ipar, name, pval, erro, pmin, pmax, ivar);
1628  parvalue[loopCounter][ipar] = pval;
1629  // }
1630 
1631  // int ilax2 = 0;
1632  // Double_t val2pl, val2mi;
1633  // rmin.mnmnot (ipar+1, ilax2, val2pl, val2mi);
1634  rmin.mnerrs(ipar, errh, errl, errp, cglo);
1635 
1636  // Set error on params
1637  // -------------------
1638  if (errp != 0) {
1639  parerr[3 * ipar] = errp;
1640  } else {
1641  parerr[3 * ipar] = (((errh) > (std::abs(errl))) ? (errh) : (std::abs(errl)));
1642  }
1643  parerr[3 * ipar + 1] = errl;
1644  parerr[3 * ipar + 2] = errh;
1645 
1646  if (ipar == 0) {
1647  FitParametersFile << " Resolution fit parameters:" << std::endl;
1648  }
1649  if (ipar == int(parResol.size())) {
1650  FitParametersFile << " Scale fit parameters:" << std::endl;
1651  }
1652  if (ipar == int(parResol.size() + parScale.size())) {
1653  FitParametersFile << " Cross section fit parameters:" << std::endl;
1654  }
1655  if (ipar == int(parResol.size() + parScale.size() + crossSectionHandler->parNum())) {
1656  FitParametersFile << " Background fit parameters:" << std::endl;
1657  }
1658  // if( ipar >= int(parResol.size()+parScale.size()) && ipar < int(parResol.size()+parScale.size()+crossSectionHandler->parNum()) && notWritted ) {
1659 
1660  // std::vector<double> relativeCrossSections = crossSectionHandler->relativeCrossSections(&(parvalue[loopCounter][parResol.size()+parScale.size()]));
1661  // std::vector<double>::const_iterator it = relativeCrossSections.begin();
1662  // for( ; it != relativeCrossSections.end(); ++it ) {
1663  // FitParametersFile << " Results of the fit: parameter " << ipar << " has value "
1664  // << *it << "+-" << 0
1665  // << " + " << 0 << " - " << 0
1666  // << " /t/t (" << 0 << ")" << std::endl;
1667  // }
1668 
1669  // notWritten = false;
1670  // }
1671  // else {
1672  FitParametersFile << " Results of the fit: parameter " << ipar << " has value " << pval << "+-"
1673  << parerr[3 * ipar] << " + " << parerr[3 * ipar + 1] << " - "
1674  << parerr[3 * ipar + 2]
1675  // << " \t\t (" << parname[ipar] << ")"
1676  << std::endl;
1677  }
1678  rmin.mnstat(fmin, fdem, errdef, npari, nparx, istat); // NNBB Commented for a check!
1679  FitParametersFile << std::endl;
1680 
1681  if (minimumShapePlots_) {
1682  // Create plots of the minimum vs parameters
1683  // -----------------------------------------
1684  // Keep this after the parameters filling because it recomputes the values and it can compromise the fit results.
1685  if (somethingtodo) {
1686  std::stringstream iorderString;
1687  iorderString << iorder;
1688  std::stringstream iLoopString;
1689  iLoopString << loopCounter;
1690 
1691  for (int ipar = 0; ipar < parnumber; ipar++) {
1692  if (parfix[ipar] == 1)
1693  continue;
1694  std::cout << "plotting parameter = " << ipar + 1 << std::endl;
1695  std::stringstream iparString;
1696  iparString << ipar + 1;
1697  std::stringstream iparStringName;
1698  iparStringName << ipar;
1699  rmin.mncomd(("scan " + iparString.str()).c_str(), ierror);
1700  if (ierror == 0) {
1701  TCanvas *canvas = new TCanvas(("likelihoodCanvas_loop_" + iLoopString.str() + "_oder_" +
1702  iorderString.str() + "_par_" + iparStringName.str())
1703  .c_str(),
1704  ("likelihood_" + iparStringName.str()).c_str(),
1705  1000,
1706  800);
1707  canvas->cd();
1708  // arglis[0] = ipar;
1709  // rmin.mnexcm( "SCA", arglis, 0, ierror );
1710  TGraph *graph = (TGraph *)rmin.GetPlot();
1711  graph->Draw("AP");
1712  // graph->SetTitle(("parvalue["+iparStringName.str()+"]").c_str());
1713  graph->SetTitle(parname[ipar]);
1714  // graph->Write();
1715 
1716  canvas->Write();
1717  }
1718  }
1719 
1720  // // Draw contours of the fit
1721  // TCanvas * canvas = new TCanvas(("contourCanvas_oder_"+iorderString.str()).c_str(), "contour", 1000, 800);
1722  // canvas->cd();
1723  // TGraph * contourGraph = (TGraph*)rmin.Contour(4, 2, 4);
1724  // if( (rmin.GetStatus() == 0) || (rmin.GetStatus() >= 3) ) {
1725  // contourGraph->Draw("AP");
1726  // }
1727  // else {
1728  // std::cout << "Contour graph error: status = " << rmin.GetStatus() << std::endl;
1729  // }
1730  // canvas->Write();
1731  }
1732  }
1733 
1734  } // end loop on iorder
1735  FitParametersFile.close();
1736 
1737  std::cout << "[MuScleFitUtils-minimizeLikelihood]: Parameters after likelihood " << std::endl;
1738  for (unsigned int ipar = 0; ipar < (unsigned int)parnumber; ipar++) {
1739  std::cout << ipar << " " << parvalue[loopCounter][ipar] << " : free = " << parfix[ipar]
1740  << "; order = " << parorder[ipar] << std::endl;
1741  }
1742 
1743  // Put back parvalue into parResol, parScale, parCrossSection, parBgr
1744  // ------------------------------------------------------------------
1745  for (int i = 0; i < (int)(parResol.size()); ++i) {
1747  }
1748  for (int i = 0; i < (int)(parScale.size()); ++i) {
1749  parScale[i] = parvalue[loopCounter][i + parResol.size()];
1750  }
1751  parCrossSection =
1753  for (unsigned int i = 0; i < parCrossSection.size(); ++i) {
1754  // parCrossSection[i] = parvalue[loopCounter][i+parResol.size()+parScale.size()];
1755  std::cout << "relative cross section[" << i << "] = " << parCrossSection[i] << std::endl;
1756  }
1757  // Save only the fitted background parameters
1758  for (unsigned int i = 0; i < (parBgr.size() - parForResonanceWindows); ++i) {
1760  }
1761 
1762  // Background rescaling from regions to resonances
1763  // -----------------------------------------------
1764  // Only if we fitted the background
1766  // This rescales from regions to resonances
1767  int localMuonType = MuonType;
1768  if (MuonType > 2)
1769  localMuonType = 2;
1771  }
1772 
1773  // Delete the arrays used to set some parameters
1774  delete[] Start;
1775  delete[] Step;
1776  delete[] Mini;
1777  delete[] Maxi;
1778  delete[] ind;
1779  delete[] parname;
1780 }
1781 
1782 // Likelihood function
1783 // -------------------
1784 extern "C" void likelihood(int &npar, double *grad, double &fval, double *xval, int flag) {
1785  if (MuScleFitUtils::debug > 19)
1786  std::cout << "[MuScleFitUtils-likelihood]: In likelihood function" << std::endl;
1787 
1788  const lorentzVector *recMu1;
1789  const lorentzVector *recMu2;
1790  lorentzVector corrMu1;
1791  lorentzVector corrMu2;
1792 
1793  // if (MuScleFitUtils::debug>19) {
1794  // int parnumber = (int)(MuScleFitUtils::parResol.size()+MuScleFitUtils::parScale.size()+
1795  // MuScleFitUtils::parCrossSection.size()+MuScleFitUtils::parBgr.size());
1796  // std::cout << "[MuScleFitUtils-likelihood]: Looping on tree with ";
1797  // for (int ipar=0; ipar<parnumber; ipar++) {
1798  // std::cout << "Parameter #" << ipar << " with value " << xval[ipar] << " ";
1799  // }
1800  // std::cout << std::endl;
1801  // }
1802 
1803  // Loop on the tree
1804  // ----------------
1805  double flike = 0;
1806  int evtsinlik = 0;
1807  int evtsoutlik = 0;
1808  // std::cout << "SavedPair.size() = " << MuScleFitUtils::SavedPair.size() << std::endl;
1809  if (MuScleFitUtils::debug > 0) {
1810  std::cout << "SavedPair.size() = " << MuScleFitUtils::SavedPair.size() << std::endl;
1811  std::cout << "ReducedSavedPair.size() = " << MuScleFitUtils::ReducedSavedPair.size() << std::endl;
1812  }
1813  // for( unsigned int nev=0; nev<MuScleFitUtils::SavedPair.size(); ++nev ) {
1814  for (unsigned int nev = 0; nev < MuScleFitUtils::ReducedSavedPair.size(); ++nev) {
1815  // recMu1 = &(MuScleFitUtils::SavedPair[nev].first);
1816  // recMu2 = &(MuScleFitUtils::SavedPair[nev].second);
1817  recMu1 = &(MuScleFitUtils::ReducedSavedPair[nev].first);
1818  recMu2 = &(MuScleFitUtils::ReducedSavedPair[nev].second);
1819 
1820  // Compute original mass
1821  // ---------------------
1822  double mass = MuScleFitUtils::invDimuonMass(*recMu1, *recMu2);
1823 
1824  // Compute weight and reference mass (from original mass)
1825  // ------------------------------------------------------
1827  if (weight != 0.) {
1828  // Compute corrected mass (from previous biases) only if we are currently fitting the scale
1829  // ----------------------------------------------------------------------------------------
1831  // std::cout << "Original pt1 = " << corrMu1.Pt() << std::endl;
1832  // std::cout << "Original pt2 = " << corrMu2.Pt() << std::endl;
1833  corrMu1 = MuScleFitUtils::applyScale(*recMu1, xval, -1);
1834  corrMu2 = MuScleFitUtils::applyScale(*recMu2, xval, 1);
1835 
1836  // if( (corrMu1.Pt() != corrMu1.Pt()) || (corrMu2.Pt() != corrMu2.Pt()) ) {
1837  // std::cout << "Rescaled pt1 = " << corrMu1.Pt() << std::endl;
1838  // std::cout << "Rescaled pt2 = " << corrMu2.Pt() << std::endl;
1839  // }
1840  // std::cout << "Rescaled pt1 = " << corrMu1.Pt() << std::endl;
1841  // std::cout << "Rescaled pt2 = " << corrMu2.Pt() << std::endl;
1842  } else {
1843  corrMu1 = *recMu1;
1844  corrMu2 = *recMu2;
1845 
1846  // if( (corrMu1.Pt() != corrMu1.Pt()) || (corrMu2.Pt() != corrMu2.Pt()) ) {
1847  // std::cout << "Not rescaled pt1 = " << corrMu1.Pt() << std::endl;
1848  // std::cout << "Not rescaled pt2 = " << corrMu2.Pt() << std::endl;
1849  // }
1850  }
1851  double corrMass = MuScleFitUtils::invDimuonMass(corrMu1, corrMu2);
1852  double Y = (corrMu1 + corrMu2).Rapidity();
1853  double resEta = (corrMu1 + corrMu2).Eta();
1854  if (MuScleFitUtils::debug > 19) {
1855  std::cout << "[MuScleFitUtils-likelihood]: Original/Corrected resonance mass = " << mass << " / " << corrMass
1856  << std::endl;
1857  }
1858 
1859  // Compute mass resolution
1860  // -----------------------
1861  double massResol = MuScleFitUtils::massResolution(corrMu1, corrMu2, xval);
1862  if (MuScleFitUtils::debug > 19)
1863  std::cout << "[MuScleFitUtils-likelihood]: Resolution is " << massResol << std::endl;
1864 
1865  // Compute probability of this mass value including background modeling
1866  // --------------------------------------------------------------------
1867  if (MuScleFitUtils::debug > 1)
1868  std::cout << "calling massProb inside likelihood function" << std::endl;
1869 
1870  // double prob = MuScleFitUtils::massProb( corrMass, resEta, Y, massResol, xval );
1871  double prob = MuScleFitUtils::massProb(corrMass, resEta, Y, massResol, xval, false, corrMu1.eta(), corrMu2.eta());
1872  if (MuScleFitUtils::debug > 1)
1873  std::cout << "likelihood:massProb = " << prob << std::endl;
1874 
1875  // Compute likelihood
1876  // ------------------
1877  if (prob > 0) {
1878  // flike += log(prob*10000)*weight; // NNBB! x10000 to see if we can recover the problem of boundary
1879  flike += log(prob) * weight;
1880  evtsinlik += 1; // NNBB test: see if likelihood per event is smarter (boundary problem)
1881  } else {
1882  if (MuScleFitUtils::debug > 0) {
1883  std::cout << "WARNING: corrMass = " << corrMass
1884  << " outside window, this will cause a discontinuity in the likelihood. Consider increasing the "
1885  "safety bands which are now set to 90% of the normalization window to avoid this problem"
1886  << std::endl;
1887  std::cout << "Original mass was = " << mass << std::endl;
1888  std::cout << "WARNING: massResol = " << massResol << " outside window" << std::endl;
1889  }
1890  evtsoutlik += 1;
1891  }
1892  if (MuScleFitUtils::debug > 19)
1893  std::cout << "[MuScleFitUtils-likelihood]: Mass probability = " << prob << std::endl;
1894  } // weight!=0
1895 
1896  } // End of loop on tree events
1897 
1898  // // Protection for low statistic. If the likelihood manages to throw out all the signal
1899  // // events and stays with ~ 10 events in the resonance window it could have a better likelihood
1900  // // because of ~ uniformly distributed events (a random combination could be good and spoil the fit).
1901  // // We require that the number of events included in the fit does not change more than 5% in each minuit loop.
1902  // bool lowStatPenalty = false;
1903  // if( MuScleFitUtils::minuitLoop_ > 0 ) {
1904  // double newEventsOutInRatio = double(evtsinlik);
1905  // // double newEventsOutInRatio = double(evtsoutlik)/double(evtsinlik);
1906  // double ratio = newEventsOutInRatio/MuScleFitUtils::oldEventsOutInRatio_;
1907  // MuScleFitUtils::oldEventsOutInRatio_ = newEventsOutInRatio;
1908  // if( ratio < 0.8 || ratio > 1.2 ) {
1909  // std::cout << "Warning: too much change from oldEventsInLikelihood to newEventsInLikelihood, ratio is = " << ratio << std::endl;
1910  // std::cout << "oldEventsInLikelihood = " << MuScleFitUtils::oldEventsOutInRatio_ << ", newEventsInLikelihood = " << newEventsOutInRatio << std::endl;
1911  // lowStatPenalty = true;
1912  // }
1913  // }
1914 
1915  // It is a product of probabilities, we compare the sqrt_N of them. Thus N becomes a denominator of the logarithm.
1916  if (evtsinlik != 0) {
1918  // && !(MuScleFitUtils::duringMinos_) ) {
1919  if (MuScleFitUtils::rminPtr_ == nullptr) {
1920  std::cout << "ERROR: rminPtr_ = " << MuScleFitUtils::rminPtr_ << ", code will crash" << std::endl;
1921  }
1922  double normalizationArg[] = {1 / double(evtsinlik)};
1923  // Reset the normalizationArg only if it changed
1924  if (MuScleFitUtils::oldNormalization_ != normalizationArg[0]) {
1925  int ierror = 0;
1926  // if( MuScleFitUtils::likelihoodInLoop_ != 0 ) {
1927  // // This condition is set only when minimizing. Later calls of hesse and minos will not change the value
1928  // // This is done to avoid minos being confused by changing the UP parameter during its computation.
1929  // MuScleFitUtils::rminPtr_->mnexcm("SET ERR", normalizationArg, 1, ierror);
1930  // }
1931  MuScleFitUtils::rminPtr_->mnexcm("SET ERR", normalizationArg, 1, ierror);
1932  std::cout << "oldNormalization = " << MuScleFitUtils::oldNormalization_ << " new = " << normalizationArg[0]
1933  << std::endl;
1934  MuScleFitUtils::oldNormalization_ = normalizationArg[0];
1936  }
1937  fval = -2. * flike / double(evtsinlik);
1938  // fval = -2.*flike;
1939  // if( lowStatPenalty ) {
1940  // fval *= 100;
1941  // }
1942  } else {
1943  fval = -2. * flike;
1944  }
1945  } else {
1946  std::cout << "Problem: Events in likelihood = " << evtsinlik << std::endl;
1947  fval = 999999999.;
1948  }
1949  // fval = -2.*flike;
1950  if (MuScleFitUtils::debug > 19)
1951  std::cout << "[MuScleFitUtils-likelihood]: End tree loop with likelihood value = " << fval << std::endl;
1952 
1953  // #ifdef DEBUG
1954 
1955  // if( MuScleFitUtils::minuitLoop_ < 10000 ) {
1956  if (MuScleFitUtils::likelihoodInLoop_ != nullptr) {
1959  }
1960  // }
1961  // else std::cout << "minuitLoop over 10000. Not filling histogram" << std::endl;
1962 
1963  std::cout << "MINUIT loop number " << MuScleFitUtils::minuitLoop_ << ", likelihood = " << fval << std::endl;
1964 
1965  if (MuScleFitUtils::debug > 0) {
1966  // if( MuScleFitUtils::duringMinos_ ) {
1967  // int parnumber = (int)(MuScleFitUtils::parResol.size()+MuScleFitUtils::parScale.size()+
1968  // MuScleFitUtils::parCrossSection.size()+MuScleFitUtils::parBgr.size());
1969  // std::cout << "[MuScleFitUtils-likelihood]: Looping on tree with ";
1970  // for (int ipar=0; ipar<parnumber; ipar++) {
1971  // std::cout << "Parameter #" << ipar << " with value " << xval[ipar] << " ";
1972  // }
1973  // std::cout << std::endl;
1974  // std::cout << "[MuScleFitUtils-likelihood]: likelihood value = " << fval << std::endl;
1975  // }
1976  std::cout << "Events in likelihood = " << evtsinlik << std::endl;
1977  std::cout << "Events out likelihood = " << evtsoutlik << std::endl;
1978  }
1979 
1980  // #endif
1981 }
1982 
1983 // Mass fitting routine
1984 // --------------------
1985 std::vector<TGraphErrors *> MuScleFitUtils::fitMass(TH2F *histo) {
1986  if (MuScleFitUtils::debug > 0)
1987  std::cout << "Fitting " << histo->GetName() << std::endl;
1988 
1989  std::vector<TGraphErrors *> results;
1990 
1991  // Results of the fit
1992  // ------------------
1993  std::vector<double> Ftop;
1994  std::vector<double> Fwidth;
1995  std::vector<double> Fmass;
1996  std::vector<double> Etop;
1997  std::vector<double> Ewidth;
1998  std::vector<double> Emass;
1999  std::vector<double> Fchi2;
2000  // X bin center and width
2001  // ----------------------
2002  std::vector<double> Xcenter;
2003  std::vector<double> Ex;
2004 
2005  // Fit with lorentzian peak
2006  // ------------------------
2007  TF1 *fitFcn = new TF1("fitFcn", lorentzianPeak, 70, 110, 3);
2008  fitFcn->SetParameters(100, 3, 91);
2009  fitFcn->SetParNames("Ftop", "Fwidth", "Fmass");
2010  fitFcn->SetLineWidth(2);
2011 
2012  // Fit slices projected along Y from bins in X
2013  // -------------------------------------------
2014  double cont_min = 20; // Minimum number of entries
2015  Int_t binx = histo->GetXaxis()->GetNbins();
2016  // TFile *f= new TFile("prova.root", "recreate");
2017  // histo->Write();
2018  for (int i = 1; i <= binx; i++) {
2019  TH1 *histoY = histo->ProjectionY("", i, i);
2020  // histoY->Write();
2021  double cont = histoY->GetEntries();
2022  if (cont > cont_min) {
2023  histoY->Fit("fitFcn", "0", "", 70, 110);
2024  double *par = fitFcn->GetParameters();
2025  const double *err = fitFcn->GetParErrors();
2026 
2027  Ftop.push_back(par[0]);
2028  Fwidth.push_back(par[1]);
2029  Fmass.push_back(par[2]);
2030  Etop.push_back(err[0]);
2031  Ewidth.push_back(err[1]);
2032  Emass.push_back(err[2]);
2033 
2034  double chi2 = fitFcn->GetChisquare();
2035  Fchi2.push_back(chi2);
2036 
2037  double xx = histo->GetXaxis()->GetBinCenter(i);
2038  Xcenter.push_back(xx);
2039  double ex = 0; // FIXME: you can use the bin width
2040  Ex.push_back(ex);
2041  }
2042  }
2043  // f->Close();
2044 
2045  // Put the fit results in arrays for TGraphErrors
2046  // ----------------------------------------------
2047  const int nn = Fmass.size();
2048  double *x = new double[nn];
2049  double *ym = new double[nn];
2050  double *e = new double[nn];
2051  double *eym = new double[nn];
2052  double *yw = new double[nn];
2053  double *eyw = new double[nn];
2054  double *yc = new double[nn];
2055 
2056  for (int j = 0; j < nn; j++) {
2057  x[j] = Xcenter[j];
2058  ym[j] = Fmass[j];
2059  eym[j] = Emass[j];
2060  yw[j] = Fwidth[j];
2061  eyw[j] = Ewidth[j];
2062  yc[j] = Fchi2[j];
2063  e[j] = Ex[j];
2064  }
2065 
2066  // Create TGraphErrors
2067  // -------------------
2068  TString name = histo->GetName();
2069  TGraphErrors *grM = new TGraphErrors(nn, x, ym, e, eym);
2070  grM->SetTitle(name + "_M");
2071  grM->SetName(name + "_M");
2072  TGraphErrors *grW = new TGraphErrors(nn, x, yw, e, eyw);
2073  grW->SetTitle(name + "_W");
2074  grW->SetName(name + "_W");
2075  TGraphErrors *grC = new TGraphErrors(nn, x, yc, e, e);
2076  grC->SetTitle(name + "_chi2");
2077  grC->SetName(name + "_chi2");
2078 
2079  // Cleanup
2080  // -------
2081  delete[] x;
2082  delete[] ym;
2083  delete[] eym;
2084  delete[] yw;
2085  delete[] eyw;
2086  delete[] yc;
2087  delete[] e;
2088  delete fitFcn;
2089 
2090  results.push_back(grM);
2091  results.push_back(grW);
2092  results.push_back(grC);
2093  return results;
2094 }
2095 
2096 // Resolution fitting routine
2097 // --------------------------
2098 std::vector<TGraphErrors *> MuScleFitUtils::fitReso(TH2F *histo) {
2099  std::cout << "Fitting " << histo->GetName() << std::endl;
2100  std::vector<TGraphErrors *> results;
2101 
2102  // Results from fit
2103  // ----------------
2104  std::vector<double> maxs;
2105  std::vector<double> means;
2106  std::vector<double> sigmas;
2107  std::vector<double> chi2s;
2108  std::vector<double> Emaxs;
2109  std::vector<double> Emeans;
2110  std::vector<double> Esigmas;
2111 
2112  // X bin center and width
2113  // ----------------------
2114  std::vector<double> Xcenter;
2115  std::vector<double> Ex;
2116 
2117  // Fit with a gaussian
2118  // -------------------
2119  TF1 *fitFcn = new TF1("fitFunc", Gaussian, -0.2, 0.2, 3);
2120  fitFcn->SetParameters(100, 0, 0.02);
2121  fitFcn->SetParNames("max", "mean", "sigma");
2122  fitFcn->SetLineWidth(2);
2123 
2124  // Fit slices projected along Y from bins in X
2125  // -------------------------------------------
2126  double cont_min = 20; // Minimum number of entries
2127  Int_t binx = histo->GetXaxis()->GetNbins();
2128  for (int i = 1; i <= binx; i++) {
2129  TH1 *histoY = histo->ProjectionY("", i, i);
2130  double cont = histoY->GetEntries();
2131  if (cont > cont_min) {
2132  histoY->Fit("fitFunc", "0", "", -0.2, 0.2);
2133  double *par = fitFcn->GetParameters();
2134  const double *err = fitFcn->GetParErrors();
2135 
2136  maxs.push_back(par[0]);
2137  means.push_back(par[1]);
2138  sigmas.push_back(par[2]);
2139  Emaxs.push_back(err[0]);
2140  Emeans.push_back(err[1]);
2141  Esigmas.push_back(err[2]);
2142 
2143  double chi2 = fitFcn->GetChisquare();
2144  chi2s.push_back(chi2);
2145 
2146  double xx = histo->GetXaxis()->GetBinCenter(i);
2147  Xcenter.push_back(xx);
2148  double ex = 0; // FIXME: you can use the bin width
2149  Ex.push_back(ex);
2150  }
2151  }
2152 
2153  // Put the fit results in arrays for TGraphErrors
2154  // ----------------------------------------------
2155  const int nn = means.size();
2156  double *x = new double[nn];
2157  double *ym = new double[nn];
2158  double *e = new double[nn];
2159  double *eym = new double[nn];
2160  double *yw = new double[nn];
2161  double *eyw = new double[nn];
2162  double *yc = new double[nn];
2163 
2164  for (int j = 0; j < nn; j++) {
2165  x[j] = Xcenter[j];
2166  ym[j] = means[j];
2167  eym[j] = Emeans[j];
2168  // yw[j] = maxs[j];
2169  // eyw[j] = Emaxs[j];
2170  yw[j] = sigmas[j];
2171  eyw[j] = Esigmas[j];
2172  yc[j] = chi2s[j];
2173  e[j] = Ex[j];
2174  }
2175 
2176  // Create TGraphErrors
2177  // -------------------
2178  TString name = histo->GetName();
2179  TGraphErrors *grM = new TGraphErrors(nn, x, ym, e, eym);
2180  grM->SetTitle(name + "_mean");
2181  grM->SetName(name + "_mean");
2182  TGraphErrors *grW = new TGraphErrors(nn, x, yw, e, eyw);
2183  grW->SetTitle(name + "_sigma");
2184  grW->SetName(name + "_sigma");
2185  TGraphErrors *grC = new TGraphErrors(nn, x, yc, e, e);
2186  grC->SetTitle(name + "_chi2");
2187  grC->SetName(name + "_chi2");
2188 
2189  // Cleanup
2190  // -------
2191  delete[] x;
2192  delete[] ym;
2193  delete[] eym;
2194  delete[] yw;
2195  delete[] eyw;
2196  delete[] yc;
2197  delete[] e;
2198  delete fitFcn;
2199 
2200  results.push_back(grM);
2201  results.push_back(grW);
2202  results.push_back(grC);
2203  return results;
2204 }
2205 
2206 // Mass probability for likelihood computation - no-background version (not used anymore)
2207 // --------------------------------------------------------------------------------------
2208 double MuScleFitUtils::massProb(const double &mass, const double &rapidity, const int ires, const double &massResol) {
2209  // This routine computes the likelihood that a given measured mass "measMass" is
2210  // the result of resonance #ires if the resolution expected for the two muons is massResol
2211  // ---------------------------------------------------------------------------------------
2212 
2213  double P = 0.;
2214 
2215  // Return Lorentz value for zero resolution cases (like MC)
2216  // --------------------------------------------------------
2217  if (massResol == 0.) {
2218  if (debug > 9)
2219  std::cout << "Mass, gamma , mref, width, P: " << mass << " " << ResGamma[ires] << " " << ResMass[ires] << " "
2220  << massResol << " : used Lorentz P-value" << std::endl;
2221  return (0.5 * ResGamma[ires] / TMath::Pi()) /
2222  ((mass - ResMass[ires]) * (mass - ResMass[ires]) + .25 * ResGamma[ires] * ResGamma[ires]);
2223  }
2224 
2225  // NB defined as below, P is not a "probability" but a likelihood that we observe
2226  // a dimuon mass "mass", given mRef, gamma, and massResol. It is what we need for the
2227  // fit which finds the best resolution parameters, though. A definition which is
2228  // more properly a probability is given below (in massProb2()), where the result
2229  // cannot be used to fit resolution parameters because the fit would always prefer
2230  // to set the res parameters to the minimum possible value (best resolution),
2231  // to have a probability close to one of observing any mass.
2232  // -------------------------------------------------------------------------------
2233  // NNBB the following two lines have been replaced with the six following them,
2234  // which provide an improvement of a factor 9 in speed of execution at a
2235  // negligible price in precision.
2236  // ----------------------------------------------------------------------------
2237  // GL->SetParameters(gamma,mRef,mass,massResol);
2238  // P = GL->Integral(mass-5*massResol, mass+5*massResol);
2239 
2240  Int_t np = 100;
2241  double *x = new double[np];
2242  double *w = new double[np];
2243  GL->SetParameters(ResGamma[ires], ResMass[ires], mass, massResol);
2244  GL->CalcGaussLegendreSamplingPoints(np, x, w, 0.1e-15);
2245  P = GL->IntegralFast(np, x, w, ResMass[ires] - 10 * ResGamma[ires], ResMass[ires] + 10 * ResGamma[ires]);
2246  delete[] x;
2247  delete[] w;
2248 
2249  // If we are too far away we set P to epsilon and forget about this event
2250  // ----------------------------------------------------------------------
2251  if (P < 1.0e-12) {
2252  P = 1.0e-12;
2253  if (debug > 9)
2254  std::cout << "Mass, gamma , mref, width, P: " << mass << " " << ResGamma[ires] << " " << ResMass[ires] << " "
2255  << massResol << ": used epsilon" << std::endl;
2256  return P;
2257  }
2258 
2259  if (debug > 9)
2260  std::cout << "Mass, gamma , mref, width, P: " << mass << " " << ResGamma[ires] << " " << ResMass[ires] << " "
2261  << massResol << " " << P << std::endl;
2262  return P;
2263 }
2264 
2265 std::pair<lorentzVector, lorentzVector> MuScleFitUtils::findSimMuFromRes(
2267  //Loop on simulated tracks
2268  std::pair<lorentzVector, lorentzVector> simMuFromRes;
2269  for (edm::SimTrackContainer::const_iterator simTrack = simTracks->begin(); simTrack != simTracks->end(); ++simTrack) {
2270  //Chose muons
2271  if (std::abs((*simTrack).type()) == 13) {
2272  //If tracks from IP than find mother
2273  if ((*simTrack).genpartIndex() > 0) {
2274  HepMC::GenParticle *gp = evtMC->GetEvent()->barcode_to_particle((*simTrack).genpartIndex());
2275  if (gp != nullptr) {
2276  for (HepMC::GenVertex::particle_iterator mother = gp->production_vertex()->particles_begin(HepMC::ancestors);
2277  mother != gp->production_vertex()->particles_end(HepMC::ancestors);
2278  ++mother) {
2279  bool fromRes = false;
2280  unsigned int motherPdgId = (*mother)->pdg_id();
2281  for (int ires = 0; ires < 6; ++ires) {
2282  if (motherPdgId == motherPdgIdArray[ires] && resfind[ires])
2283  fromRes = true;
2284  }
2285  if (fromRes) {
2286  if (gp->pdg_id() == 13)
2287  simMuFromRes.first = lorentzVector(simTrack->momentum().px(),
2288  simTrack->momentum().py(),
2289  simTrack->momentum().pz(),
2290  simTrack->momentum().e());
2291  else
2292  simMuFromRes.second = lorentzVector(simTrack->momentum().px(),
2293  simTrack->momentum().py(),
2294  simTrack->momentum().pz(),
2295  simTrack->momentum().e());
2296  }
2297  }
2298  }
2299  // else LogDebug("MuScleFitUtils") << "WARNING: no matching genParticle found for simTrack" << std::endl;
2300  }
2301  }
2302  }
2303  return simMuFromRes;
2304 }
2305 
2306 std::pair<lorentzVector, lorentzVector> MuScleFitUtils::findGenMuFromRes(const edm::HepMCProduct *evtMC) {
2307  const HepMC::GenEvent *Evt = evtMC->GetEvent();
2308  std::pair<lorentzVector, lorentzVector> muFromRes;
2309  //Loop on generated particles
2310  for (HepMC::GenEvent::particle_const_iterator part = Evt->particles_begin(); part != Evt->particles_end(); part++) {
2311  if (std::abs((*part)->pdg_id()) == 13 && (*part)->status() == 1) {
2312  bool fromRes = false;
2313  for (HepMC::GenVertex::particle_iterator mother = (*part)->production_vertex()->particles_begin(HepMC::ancestors);
2314  mother != (*part)->production_vertex()->particles_end(HepMC::ancestors);
2315  ++mother) {
2316  unsigned int motherPdgId = (*mother)->pdg_id();
2317 
2318  // For sherpa the resonance is not saved. The muons from the resonance can be identified
2319  // by having as mother a muon of status 3.
2320  if (sherpa_) {
2321  if (motherPdgId == 13 && (*mother)->status() == 3)
2322  fromRes = true;
2323  } else {
2324  for (int ires = 0; ires < 6; ++ires) {
2325  if (motherPdgId == motherPdgIdArray[ires] && resfind[ires])
2326  fromRes = true;
2327  }
2328  }
2329  }
2330  if (fromRes) {
2331  if ((*part)->pdg_id() == 13)
2332  // muFromRes.first = (*part)->momentum();
2333  muFromRes.first = (lorentzVector(
2334  (*part)->momentum().px(), (*part)->momentum().py(), (*part)->momentum().pz(), (*part)->momentum().e()));
2335  else
2336  muFromRes.second = (lorentzVector(
2337  (*part)->momentum().px(), (*part)->momentum().py(), (*part)->momentum().pz(), (*part)->momentum().e()));
2338  }
2339  }
2340  }
2341  return muFromRes;
2342 }
2343 
2344 std::pair<lorentzVector, lorentzVector> MuScleFitUtils::findGenMuFromRes(
2346  std::pair<lorentzVector, lorentzVector> muFromRes;
2347 
2348  //Loop on generated particles
2349  if (debug > 0)
2350  std::cout << "Starting loop on " << genParticles->size() << " genParticles" << std::endl;
2351  for (reco::GenParticleCollection::const_iterator part = genParticles->begin(); part != genParticles->end(); ++part) {
2352  if (std::abs(part->pdgId()) == 13 && part->status() == 1) {
2353  bool fromRes = false;
2354  unsigned int motherPdgId = part->mother()->pdgId();
2355  if (debug > 0) {
2356  std::cout << "Found a muon with mother: " << motherPdgId << std::endl;
2357  }
2358  for (int ires = 0; ires < 6; ++ires) {
2359  if (motherPdgId == motherPdgIdArray[ires] && resfind[ires])
2360  fromRes = true;
2361  }
2362  if (fromRes) {
2363  if (part->pdgId() == 13) {
2364  muFromRes.first = part->p4();
2365  if (debug > 0)
2366  std::cout << "Found a genMuon + : " << muFromRes.first << std::endl;
2367  // muFromRes.first = (lorentzVector(part->p4().px(),part->p4().py(),
2368  // part->p4().pz(),part->p4().e()));
2369  } else {
2370  muFromRes.second = part->p4();
2371  if (debug > 0)
2372  std::cout << "Found a genMuon - : " << muFromRes.second << std::endl;
2373  // muFromRes.second = (lorentzVector(part->p4().px(),part->p4().py(),
2374  // part->p4().pz(),part->p4().e()));
2375  }
2376  }
2377  }
2378  }
2379  return muFromRes;
2380 }
static std::vector< std::pair< lorentzVector, lorentzVector > > simPair
const double Pi
static std::vector< int > doScaleFit
TF2 * GL2
std::vector< GenParticle > GenParticleCollection
collection of GenParticles
static std::vector< int > doResolFit
static std::pair< lorentzVector, lorentzVector > findGenMuFromRes(const reco::GenParticleCollection *genParticles)
static double GLValue[6][1001][1001]
static std::vector< double > parBias
static std::vector< int > parCrossSectionOrder
static smearFunctionBase * smearFunction
static std::vector< int > parScaleOrder
double sigmaCotgTh(const U &track, const int i=0) const
The second, optional, parameter is the iteration number.
static std::vector< int > doCrossSectionFit
static void minimizeLikelihood()
static double maxMuonEtaSecondRange_
Double_t Gaussian(Double_t *x, Double_t *par)
int regionsParNum()
Returns the total number of parameters used for the regions.
static std::vector< int > parBgrOrder
static std::vector< int > parfix
static double deltaPhiMaxCut_
static unsigned int loopCounter
static std::vector< double > parResolMax
static std::pair< lorentzVector, lorentzVector > findSimMuFromRes(const edm::Handle< edm::HepMCProduct > &evtMC, const edm::Handle< edm::SimTrackContainer > &simTracks)
static std::vector< std::pair< MuScleFitMuon, MuScleFitMuon > > SavedPairMuScleFitMuons
static int nbins
void likelihood(int &npar, double *grad, double &fval, double *xval, int flag)
static std::vector< std::pair< MuScleFitMuon, MuScleFitMuon > > genMuscleFitPair
const float chg[109]
Definition: CoreSimTrack.cc:5
T w() const
static bool startWithSimplex_
static std::vector< int > doBackgroundFit
static std::vector< double > parResol
static bool debugMassResol_
void setParameters(double *Start, double *Step, double *Mini, double *Maxi, int *ind, TString *parname, const std::vector< double > &parCrossSection, const std::vector< int > &parCrossSectionOrder, const std::vector< int > &resfind)
Initializes the arrays needed by Minuit.
Sin< T >::type sin(const T &t)
Definition: Sin.h:22
static double ResMinMass[6]
static TH1D * backgroundProb_
virtual void smear(double &pt, double &eta, double &phi, const double *y, const std::vector< double > &parSmear)=0
static BackgroundHandler * backgroundHandler
static double x[7][10000]
std::pair< double, double > backgroundFunction(const bool doBackgroundFit, const double *parval, const int resTotNum, const int ires, const bool *resConsidered, const double *ResMass, const double ResHalfWidth[], const int MuonType, const double &mass, const double &eta1, const double &eta2)
static int debug
static std::vector< TGraphErrors * > fitMass(TH2F *histo)
static double ResMass[6]
static double massWindowHalfWidth[3][6]
TF1 * GL
TkSoAView< TrackerTraits > HitToTuple< TrackerTraits > const *__restrict__ int32_t int32_t int iev
static bool speedup
static bool scaleFitNotDone_
double sigmaPt(const U &track, const int i=0) const
The second, optional, parameter is the iteration number.
static unsigned int normalizationChanged_
Definition: weight.py:1
static bool ResFound
static scaleFunctionBase< std::vector< double > > * biasFunction
double isum
static bool checkMassWindow(const double &mass, const double &leftBorder, const double &rightBorder)
Method to check if the mass value is within the mass window of the i-th resonance.
static std::vector< int > parBgrFix
static std::vector< double > parResolMin
static bool minimumShapePlots_
static int MuonTypeForCheckMassWindow
static double minMuonEtaFirstRange_
static double massProb(const double &mass, const double &rapidity, const int ires, const double &massResol)
muons
the two sets of parameters below are mutually exclusive, depending if RECO or ALCARECO is used the us...
Definition: DiMuonV_cfg.py:212
static struct MuScleFitUtils::massResolComponentsStruct massResolComponents
static int BiasType
static std::vector< int > parScaleFix
static bool computeMinosErrors_
reco::Particle::LorentzVector lorentzVector
Definition: GenMuonPair.h:9
static scaleFunctionBase< std::vector< double > > * scaleFunctionForVec
static std::pair< SimTrack, SimTrack > findBestSimuRes(const std::vector< SimTrack > &simMuons)
static std::vector< std::vector< double > > parvalue
virtual double sigmaPt(const double &pt, const double &eta, const T &parval)=0
static double maxMuonPt_
static std::pair< MuScleFitMuon, MuScleFitMuon > findBestRecoRes(const std::vector< MuScleFitMuon > &muons)
static int ScaleFitType
static std::vector< std::pair< lorentzVector, lorentzVector > > genPair
static std::vector< std::pair< lorentzVector, lorentzVector > > ReducedSavedPair
static const int totalResNum
static const double muMass
static double massResolution(const lorentzVector &mu1, const lorentzVector &mu2)
int np
Definition: AMPTWrapper.h:43
static const unsigned int motherPdgIdArray[6]
static int minuitLoop_
static std::vector< double > parScaleMin
static lorentzVector applyBias(const lorentzVector &muon, const int charge)
void rescale(std::vector< double > &parBgr, const double *ResMass, const double *massWindowHalfWidth, const std::vector< std::pair< reco::Particle::LorentzVector, reco::Particle::LorentzVector > > &muonPairs, const double &weight=1.)
T sqrt(T t)
Definition: SSEVec.h:19
static double GLZNorm[40][1001]
static std::vector< double > parBgr
static int SmearType
virtual void setParameters(double *Start, double *Step, double *Mini, double *Maxi, int *ind, TString *parname, const T &parScale, const std::vector< int > &parScaleOrder, const int muonType)=0
This method is used to differentiate parameters among the different functions.
static lorentzVector fromPtEtaPhiToPxPyPz(const double *ptEtaPhiE)
Cos< T >::type cos(const T &t)
Definition: Cos.h:22
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
virtual double covPt1Pt2(const double &pt1, const double &eta1, const double &pt2, const double &eta2, const T &parval)
Definition: Functions.h:834
bool releaseParameters(TMinuit &rmin, const std::vector< int > &resfind, const std::vector< int > &parfix, const int *ind, const int iorder, const unsigned int shift)
Use the information in resfind, parorder and parfix to release the N-1 variables. ...
double g[11][100]
static double ResMaxSigma[6]
double f[11][100]
static double computeWeight(const double &mass, const int iev, const bool doUseBkgrWindow=false)
static std::vector< double > parScaleStep
static std::vector< std::pair< lorentzVector, lorentzVector > > SavedPair
static double invDimuonMass(const lorentzVector &mu1, const lorentzVector &mu2)
static lorentzVector applyScale(const lorentzVector &muon, const std::vector< double > &parval, const int charge)
static TH1D * signalProb_
static std::vector< int > parResolFix
static double GLZValue[40][1001][1001]
static TMinuit * rminPtr_
static std::vector< double > parSmear
const HepMC::GenEvent * GetEvent() const
Definition: HepMCProduct.h:37
virtual double scale(const double &pt, const double &eta, const double &phi, const int chg, const T &parScale) const =0
static std::vector< int > parResolOrder
double resMass(const bool doBackgroundFit, const int ires)
static bool sherpa_
static int BgrFitType
virtual int parNum() const
Definition: Functions.h:76
static TH1D * likelihoodInLoop_
Log< level::Info, false > LogInfo
static std::vector< double > parScaleMax
static std::vector< double > parScale
static double oldNormalization_
virtual int parNum() const
Definition: Functions.h:865
virtual double sigmaCotgTh(const double &pt, const double &eta, const T &parval)=0
std::vector< double > relativeCrossSections(const double *variables, const std::vector< int > &resfind)
Perform a variable transformation from N-1 to relative cross sections.
void setParameters(double *Start, double *Step, double *Mini, double *Maxi, int *ind, TString *parname, const std::vector< double > &parBgr, const std::vector< int > &parBgrOrder, const int muonType)
Sets initial parameters for all the functions.
virtual void resetParameters(std::vector< double > *scaleVec) const
This method is used to reset the scale parameters to neutral values (useful for iterations > 0) ...
Definition: Functions.h:46
static bool duringMinos_
part
Definition: HCALResponse.h:20
static double ResGamma[6]
static double deltaPhiMinCut_
Double_t lorentzianPeak(Double_t *x, Double_t *par)
std::pair< OmniClusterRef, TrackingParticleRef > P
static bool rapidityBinsForZ_
double mzsum
static int ResolFitType
static int goodmuon
static bool separateRanges_
static double minMuonEtaSecondRange_
static int iev_
static std::vector< double > parCrossSection
static const double mMu2
static double GLNorm[6][1001]
static std::vector< TGraphErrors * > fitReso(TH2F *histo)
double sigmaPhi(const U &track, const int i=0) const
The second, optional, parameter is the iteration number.
static lorentzVector applySmearing(const lorentzVector &muon)
std::pair< double, double > windowBorders(const bool doBackgroundFit, const int ires)
Returns the appropriate window borders depending on whether the background is being fitted and on the...
static bool normalizeLikelihoodByEventNumber_
bool unlockParameter(const std::vector< int > &resfind, const unsigned int ipar)
returns true if the parameter is to be unlocked
def canvas(sub, attr)
Definition: svgfig.py:482
results
Definition: mysort.py:8
static unsigned int const shift
float x
virtual void setParameters(double *Start, double *Step, double *Mini, double *Maxi, int *ind, TString *parname, const T &parResol, const std::vector< int > &parResolOrder, const int muonType)
This method is used to differentiate parameters among the different functions.
Definition: Functions.h:841
static int MuonType
static double probability(const double &mass, const double &massResol, const double GLvalue[][1001][1001], const double GLnorm[][1001], const int iRes, const int iY)
Computes the probability given the mass, mass resolution and the arrays with the probabilities and th...
static double minMuonPt_
virtual double sigmaPhi(const double &pt, const double &eta, const T &parval)=0
static scaleFunctionBase< double * > * scaleFunction
static bool useProbsFile_
static std::vector< int > resfind
static double ResHalfWidth[6]
tmp
align.sh
Definition: createJobs.py:716
static int counter_resprob
static resolutionFunctionBase< std::vector< double > > * resolutionFunctionForVec
static std::vector< int > parorder
static int FitStrategy
static double maxMuonEtaFirstRange_
Power< A, B >::type pow(const A &a, const B &b)
Definition: Power.h:29
cont
load Luminosity info ##
Definition: generateEDF.py:620
static CrossSectionHandler * crossSectionHandler
static std::vector< double > parResolStep
static std::vector< int > parCrossSectionFix
static resolutionFunctionBase< double * > * resolutionFunction
#define LogDebug(id)