CMS 3D CMS Logo

DDHGCalSiliconRotatedModule.cc
Go to the documentation of this file.
1 // File: DDHGCalSiliconRotatedModule.cc
3 // Description: Geometry factory class for HGCal (EE and HESil) using
4 // information from the file
6 
27 
28 #include <cmath>
29 #include <memory>
30 #include <sstream>
31 #include <string>
32 #include <unordered_set>
33 #include <vector>
34 
35 //#define EDM_ML_DEBUG
36 using namespace angle_units::operators;
37 
38 class DDHGCalSiliconRotatedModule : public DDAlgorithm {
39 public:
41 
42  void initialize(const DDNumericArguments& nArgs,
43  const DDVectorArguments& vArgs,
44  const DDMapArguments& mArgs,
45  const DDStringArguments& sArgs,
46  const DDStringVectorArguments& vsArgs) override;
47  void execute(DDCompactView& cpv) override;
48 
49 protected:
50  void constructLayers(const DDLogicalPart&, DDCompactView& cpv);
51  void positionSensitive(const DDLogicalPart& glog, int layer, DDCompactView& cpv);
52 
53 private:
56 
57  static constexpr double tol1_ = 0.01;
58  static constexpr double tol2_ = 0.00001;
59 
60  int waferTypes_; // Number of wafer types
61  int facingTypes_; // Types of facings of modules toward IP
62  int orientationTypes_; // Number of wafer orienations
63  int placeOffset_; // Offset for placement
64  int firstLayer_; // Copy # of the first sensitive layer
65  int absorbMode_; // Absorber mode
66  int sensitiveMode_; // Sensitive mode
67  double zMinBlock_; // Starting z-value of the block
68  double waferSize_; // Width of the wafer
69  double waferSepar_; // Sensor separation
70  int sectors_; // Sectors
71  int cassettes_; // Cassettes
72  std::string rotstr_; // Rotation matrix (if needed)
73  std::vector<std::string> waferFull_; // Names of full wafer modules
74  std::vector<std::string> waferPart_; // Names of partial wafer modules
75  std::vector<std::string> materials_; // names of materials
76  std::vector<std::string> names_; // Names of volumes
77  std::vector<double> thick_; // Thickness of the material
78  std::vector<int> copyNumber_; // Initial copy numbers
79  std::vector<int> layers_; // Number of layers in a section
80  std::vector<double> layerThick_; // Thickness of each section
81  std::vector<int> layerType_; // Type of the layer
82  std::vector<int> layerSense_; // Content of a layer (sensitive?)
83  std::vector<double> slopeB_; // Slope at the lower R
84  std::vector<double> zFrontB_; // Starting Z values for the slopes
85  std::vector<double> rMinFront_; // Corresponding rMin's
86  std::vector<double> slopeT_; // Slopes at the larger R
87  std::vector<double> zFrontT_; // Starting Z values for the slopes
88  std::vector<double> rMaxFront_; // Corresponding rMax's
89  std::vector<int> layerOrient_; // Layer orientation (Centering, rotations..)
90  std::vector<int> waferIndex_; // Wafer index for the types
91  std::vector<int> waferProperty_; // Wafer property
92  std::vector<int> waferLayerStart_; // Index of wafers in each layer
93  std::vector<double> cassetteShift_; // Shifts of the cassetes
94  std::string nameSpace_; // Namespace of this and ALL sub-parts
95  std::unordered_set<int> copies_; // List of copy #'s
96  double alpha_, cosAlpha_;
97 };
98 
100 #ifdef EDM_ML_DEBUG
101  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: Creating an instance";
102 #endif
103 }
104 
106  const DDVectorArguments& vArgs,
107  const DDMapArguments&,
108  const DDStringArguments& sArgs,
109  const DDStringVectorArguments& vsArgs) {
110  waferTypes_ = static_cast<int>(nArgs["WaferTypes"]);
111  facingTypes_ = static_cast<int>(nArgs["FacingTypes"]);
112  orientationTypes_ = static_cast<int>(nArgs["OrientationTypes"]);
113  placeOffset_ = static_cast<int>(nArgs["PlaceOffset"]);
114 #ifdef EDM_ML_DEBUG
115  edm::LogVerbatim("HGCalGeom") << "Number of types of wafers: " << waferTypes_ << " facings: " << facingTypes_
116  << " Orientations: " << orientationTypes_ << " PlaceOffset: " << placeOffset_;
117 #endif
118  firstLayer_ = static_cast<int>(nArgs["FirstLayer"]);
119  absorbMode_ = static_cast<int>(nArgs["AbsorberMode"]);
120  sensitiveMode_ = static_cast<int>(nArgs["SensitiveMode"]);
121 #ifdef EDM_ML_DEBUG
122  edm::LogVerbatim("HGCalGeom") << "First Layer " << firstLayer_ << " and "
123  << "Absober:Sensitive mode " << absorbMode_ << ":" << sensitiveMode_;
124 #endif
125  zMinBlock_ = nArgs["zMinBlock"];
126  waferSize_ = nArgs["waferSize"];
127  waferSepar_ = nArgs["SensorSeparation"];
128  sectors_ = static_cast<int>(nArgs["Sectors"]);
129  cassettes_ = static_cast<int>(nArgs["Cassettes"]);
130  alpha_ = (1._pi) / sectors_;
131  cosAlpha_ = cos(alpha_);
132  rotstr_ = sArgs["LayerRotation"];
133 #ifdef EDM_ML_DEBUG
134  edm::LogVerbatim("HGCalGeom") << "zStart " << zMinBlock_ << " wafer width " << waferSize_ << " separations "
135  << waferSepar_ << " sectors " << sectors_ << ":" << convertRadToDeg(alpha_) << ":"
136  << cosAlpha_ << " rotation matrix " << rotstr_ << " with " << cassettes_
137  << " cassettes";
138 #endif
139  waferFull_ = vsArgs["WaferNamesFull"];
140  waferPart_ = vsArgs["WaferNamesPartial"];
141 #ifdef EDM_ML_DEBUG
142  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: " << waferFull_.size() << " full and "
143  << waferPart_.size() << " partial modules\nDDHGCalSiliconRotatedModule:Full Modules:";
144  unsigned int i1max = static_cast<unsigned int>(waferFull_.size());
145  for (unsigned int i1 = 0; i1 < i1max; i1 += 2) {
146  std::ostringstream st1;
147  unsigned int i2 = std::min((i1 + 2), i1max);
148  for (unsigned int i = i1; i < i2; ++i)
149  st1 << " [" << i << "] " << waferFull_[i];
150  edm::LogVerbatim("HGCalGeom") << st1.str();
151  }
152  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: Partial Modules:";
153  i1max = static_cast<unsigned int>(waferPart_.size());
154  for (unsigned int i1 = 0; i1 < i1max; i1 += 2) {
155  std::ostringstream st1;
156  unsigned int i2 = std::min((i1 + 2), i1max);
157  for (unsigned int i = i1; i < i2; ++i)
158  st1 << " [" << i << "] " << waferPart_[i];
159  edm::LogVerbatim("HGCalGeom") << st1.str();
160  }
161 #endif
162  materials_ = vsArgs["MaterialNames"];
163  names_ = vsArgs["VolumeNames"];
164  thick_ = vArgs["Thickness"];
165  copyNumber_.resize(materials_.size(), 1);
166 #ifdef EDM_ML_DEBUG
167  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: " << materials_.size() << " types of volumes";
168  for (unsigned int i = 0; i < names_.size(); ++i)
169  edm::LogVerbatim("HGCalGeom") << "Volume [" << i << "] " << names_[i] << " of thickness " << thick_[i]
170  << " filled with " << materials_[i] << " first copy number " << copyNumber_[i];
171 #endif
172  layers_ = dbl_to_int(vArgs["Layers"]);
173  layerThick_ = vArgs["LayerThick"];
174 #ifdef EDM_ML_DEBUG
175  edm::LogVerbatim("HGCalGeom") << "There are " << layers_.size() << " blocks";
176  for (unsigned int i = 0; i < layers_.size(); ++i)
177  edm::LogVerbatim("HGCalGeom") << "Block [" << i << "] of thickness " << layerThick_[i] << " with " << layers_[i]
178  << " layers";
179 #endif
180  layerType_ = dbl_to_int(vArgs["LayerType"]);
181  layerSense_ = dbl_to_int(vArgs["LayerSense"]);
182  layerOrient_ = dbl_to_int(vArgs["LayerTypes"]);
183  for (unsigned int k = 0; k < layerOrient_.size(); ++k)
184  layerOrient_[k] = HGCalTypes::layerType(layerOrient_[k]);
185 #ifdef EDM_ML_DEBUG
186  for (unsigned int i = 0; i < layerOrient_.size(); ++i)
187  edm::LogVerbatim("HGCalGeom") << "LayerTypes [" << i << "] " << layerOrient_[i];
188 #endif
189  if (firstLayer_ > 0) {
190  for (unsigned int i = 0; i < layerType_.size(); ++i) {
191  if (layerSense_[i] > 0) {
192  int ii = layerType_[i];
193  copyNumber_[ii] = (layerSense_[i] == 1) ? firstLayer_ : (firstLayer_ + 1);
194 #ifdef EDM_ML_DEBUG
195  edm::LogVerbatim("HGCalGeom") << "First copy number for layer type " << i << ":" << ii << " with "
196  << materials_[ii] << " changed to " << copyNumber_[ii];
197 #endif
198  }
199  }
200  } else {
201  firstLayer_ = 1;
202  }
203 #ifdef EDM_ML_DEBUG
204  edm::LogVerbatim("HGCalGeom") << "There are " << layerType_.size() << " layers";
205  for (unsigned int i = 0; i < layerType_.size(); ++i)
206  edm::LogVerbatim("HGCalGeom") << "Layer [" << i << "] with material type " << layerType_[i] << " sensitive class "
207  << layerSense_[i];
208 #endif
209  slopeB_ = vArgs["SlopeBottom"];
210  zFrontB_ = vArgs["ZFrontBottom"];
211  rMinFront_ = vArgs["RMinFront"];
212  slopeT_ = vArgs["SlopeTop"];
213  zFrontT_ = vArgs["ZFrontTop"];
214  rMaxFront_ = vArgs["RMaxFront"];
215 #ifdef EDM_ML_DEBUG
216  for (unsigned int i = 0; i < slopeB_.size(); ++i)
217  edm::LogVerbatim("HGCalGeom") << "Bottom Block [" << i << "] Zmin " << zFrontB_[i] << " Rmin " << rMinFront_[i]
218  << " Slope " << slopeB_[i];
219  for (unsigned int i = 0; i < slopeT_.size(); ++i)
220  edm::LogVerbatim("HGCalGeom") << "Top Block [" << i << "] Zmin " << zFrontT_[i] << " Rmax " << rMaxFront_[i]
221  << " Slope " << slopeT_[i];
222 #endif
223  waferIndex_ = dbl_to_int(vArgs["WaferIndex"]);
224  waferProperty_ = dbl_to_int(vArgs["WaferProperties"]);
225  waferLayerStart_ = dbl_to_int(vArgs["WaferLayerStart"]);
226  cassetteShift_ = vArgs["CassetteShift"];
227 #ifdef EDM_ML_DEBUG
228  edm::LogVerbatim("HGCalGeom") << "waferProperties with " << waferIndex_.size() << " entries in "
229  << waferLayerStart_.size() << " layers";
230  for (unsigned int k = 0; k < waferLayerStart_.size(); ++k)
231  edm::LogVerbatim("HGCalGeom") << "LayerStart[" << k << "] " << waferLayerStart_[k];
232  for (unsigned int k = 0; k < waferIndex_.size(); ++k)
233  edm::LogVerbatim("HGCalGeom") << "Wafer[" << k << "] " << waferIndex_[k] << " ("
234  << HGCalWaferIndex::waferLayer(waferIndex_[k]) << ", "
235  << HGCalWaferIndex::waferU(waferIndex_[k]) << ", "
236  << HGCalWaferIndex::waferV(waferIndex_[k]) << ") : ("
237  << HGCalProperty::waferThick(waferProperty_[k]) << ":"
238  << HGCalProperty::waferPartial(waferProperty_[k]) << ":"
239  << HGCalProperty::waferOrient(waferProperty_[k]) << ")";
240  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: " << cassetteShift_.size()
241  << " elements for cassette shifts";
242  unsigned int j1max = cassetteShift_.size();
243  for (unsigned int j1 = 0; j1 < j1max; j1 += 6) {
244  std::ostringstream st1;
245  unsigned int j2 = std::min((j1 + 6), j1max);
246  for (unsigned int j = j1; j < j2; ++j)
247  st1 << " [" << j << "] " << std::setw(9) << cassetteShift_[j];
248  edm::LogVerbatim("HGCalGeom") << st1.str();
249  }
250 #endif
251  nameSpace_ = DDCurrentNamespace::ns();
252 #ifdef EDM_ML_DEBUG
253  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: NameSpace " << nameSpace_ << ":";
254 #endif
255  cassette_.setParameter(cassettes_, cassetteShift_);
256 }
257 
259 // DDHGCalSiliconRotatedModule methods...
261 
263 #ifdef EDM_ML_DEBUG
264  edm::LogVerbatim("HGCalGeom") << "==>> Constructing DDHGCalSiliconRotatedModule...";
265  copies_.clear();
266 #endif
267  constructLayers(parent(), cpv);
268 #ifdef EDM_ML_DEBUG
269  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: " << copies_.size() << " different wafer copy numbers";
270  int k(0);
271  for (std::unordered_set<int>::const_iterator itr = copies_.begin(); itr != copies_.end(); ++itr, ++k) {
272  edm::LogVerbatim("HGCalGeom") << "Copy [" << k << "] : " << (*itr);
273  }
274  copies_.clear();
275  edm::LogVerbatim("HGCalGeom") << "<<== End of DDHGCalSiliconRotatedModule construction...";
276 #endif
277 }
278 
280  double zi(zMinBlock_);
281  int laymin(0);
282  for (unsigned int i = 0; i < layers_.size(); i++) {
283  double zo = zi + layerThick_[i];
284  double routF = HGCalGeomTools::radius(zi, zFrontT_, rMaxFront_, slopeT_);
285  int laymax = laymin + layers_[i];
286  double zz = zi;
287  double thickTot(0);
288  for (int ly = laymin; ly < laymax; ++ly) {
289  int ii = layerType_[ly];
290  int copy = copyNumber_[ii];
291  double hthick = 0.5 * thick_[ii];
292  double rinB = HGCalGeomTools::radius(zo - tol1_, zFrontB_, rMinFront_, slopeB_);
293  zz += hthick;
294  thickTot += thick_[ii];
295 
296  std::string name = names_[ii] + std::to_string(copy);
297 #ifdef EDM_ML_DEBUG
298  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: Layer " << ly << ":" << ii << " Front " << zi
299  << ", " << routF << " Back " << zo << ", " << rinB << " superlayer thickness "
300  << layerThick_[i];
301 #endif
302  DDName matName(DDSplit(materials_[ii]).first, DDSplit(materials_[ii]).second);
303  DDMaterial matter(matName);
304  DDLogicalPart glog;
305  if (layerSense_[ly] < 1) {
306  std::vector<double> pgonZ, pgonRin, pgonRout;
307  double rmax = routF * cosAlpha_ - tol1_;
308  HGCalGeomTools::radius(zz - hthick,
309  zz + hthick,
310  zFrontB_,
311  rMinFront_,
312  slopeB_,
313  zFrontT_,
314  rMaxFront_,
315  slopeT_,
316  -layerSense_[ly],
317  pgonZ,
318  pgonRin,
319  pgonRout);
320  for (unsigned int isec = 0; isec < pgonZ.size(); ++isec) {
321  pgonZ[isec] -= zz;
322  if (layerSense_[ly] == 0 || absorbMode_ == 0)
323  pgonRout[isec] = rmax;
324  else
325  pgonRout[isec] = pgonRout[isec] * cosAlpha_ - tol1_;
326  }
327  DDSolid solid =
328  DDSolidFactory::polyhedra(DDName(name, nameSpace_), sectors_, -alpha_, 2._pi, pgonZ, pgonRin, pgonRout);
329  glog = DDLogicalPart(solid.ddname(), matter, solid);
330 #ifdef EDM_ML_DEBUG
331  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: " << solid.name() << " polyhedra of " << sectors_
332  << " sectors covering " << convertRadToDeg(-alpha_) << ":"
333  << convertRadToDeg(-alpha_ + 2._pi) << " with " << pgonZ.size()
334  << " sections and filled with " << matName;
335  for (unsigned int k = 0; k < pgonZ.size(); ++k)
336  edm::LogVerbatim("HGCalGeom") << "[" << k << "] z " << pgonZ[k] << " R " << pgonRin[k] << ":" << pgonRout[k];
337 #endif
338  } else {
339  double rins =
340  (sensitiveMode_ < 1) ? rinB : HGCalGeomTools::radius(zz + hthick - tol1_, zFrontB_, rMinFront_, slopeB_);
341  double routs =
342  (sensitiveMode_ < 1) ? routF : HGCalGeomTools::radius(zz - hthick, zFrontT_, rMaxFront_, slopeT_);
343  DDSolid solid = DDSolidFactory::tubs(DDName(name, nameSpace_), hthick, rins, routs, 0.0, 2._pi);
344  glog = DDLogicalPart(solid.ddname(), matter, solid);
345 #ifdef EDM_ML_DEBUG
346  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: " << solid.name() << " Tubs made of " << matName
347  << " of dimensions " << rinB << ":" << rins << ", " << routF << ":" << routs
348  << ", " << hthick << ", 0.0, 360.0 and position " << glog.name() << " number "
349  << copy << ":" << layerOrient_[copy - firstLayer_];
350 #endif
351  positionSensitive(glog, (copy - firstLayer_), cpv);
352  }
353  DDTranslation r1(0, 0, zz);
354  DDRotation rot;
355 #ifdef EDM_ML_DEBUG
356  std::string rotName("Null");
357 #endif
358  if ((layerSense_[ly] > 0) && (layerOrient_[copy - firstLayer_] == HGCalTypes::WaferCenterR)) {
359  rot = DDRotation(DDName(DDSplit(rotstr_).first, DDSplit(rotstr_).second));
360 #ifdef EDM_ML_DEBUG
361  rotName = rotstr_;
362 #endif
363  }
364  cpv.position(glog, module, copy, r1, rot);
365  int inc = ((layerSense_[ly] > 0) && (facingTypes_ > 1)) ? 2 : 1;
366  copyNumber_[ii] = copy + inc;
367 #ifdef EDM_ML_DEBUG
368  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: " << glog.name() << " number " << copy
369  << " positioned in " << module.name() << " at " << r1 << " with " << rotName
370  << " rotation";
371 #endif
372  zz += hthick;
373  } // End of loop over layers in a block
374  zi = zo;
375  laymin = laymax;
376  // Make consistency check of all the partitions of the block
377  if (std::abs(thickTot - layerThick_[i]) >= tol2_) {
378  if (thickTot > layerThick_[i]) {
379  edm::LogError("HGCalGeom") << "Thickness of the partition " << layerThick_[i] << " is smaller than " << thickTot
380  << ": thickness of all its components **** ERROR ****";
381  } else {
382  edm::LogWarning("HGCalGeom") << "Thickness of the partition " << layerThick_[i] << " does not match with "
383  << thickTot << " of the components";
384  }
385  }
386  } // End of loop over blocks
387 }
388 
389 // Position the silicon modules
391  static const double sqrt3 = std::sqrt(3.0);
392  int layercenter = layerOrient_[layer];
393  int layertype = (layerOrient_[layer] == HGCalTypes::WaferCenterB) ? 1 : 0;
394  int firstWafer = waferLayerStart_[layer];
395  int lastWafer = ((layer + 1 < static_cast<int>(waferLayerStart_.size())) ? waferLayerStart_[layer + 1]
396  : static_cast<int>(waferIndex_.size()));
397  double delx = 0.5 * (waferSize_ + waferSepar_);
398  double dely = 2.0 * delx / sqrt3;
399  double dy = 0.75 * dely;
400  const auto& xyoff = geomTools_.shiftXY(layercenter, (waferSize_ + waferSepar_));
401 #ifdef EDM_ML_DEBUG
402  int ium(0), ivm(0), kount(0);
403  std::vector<int> ntype(3, 0);
404  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: " << glog.ddname() << " r " << delx << " R " << dely
405  << " dy " << dy << " Shift " << xyoff.first << ":" << xyoff.second << " WaferSize "
406  << (waferSize_ + waferSepar_) << " index " << firstWafer << ":" << (lastWafer - 1)
407  << " Layer Center " << layercenter << ":" << layertype;
408 #endif
409  for (int k = firstWafer; k < lastWafer; ++k) {
410  int u = HGCalWaferIndex::waferU(waferIndex_[k]);
411  int v = HGCalWaferIndex::waferV(waferIndex_[k]);
412 #ifdef EDM_ML_DEBUG
413  int iu = std::abs(u);
414  int iv = std::abs(v);
415 #endif
416  int nr = 2 * v;
417  int nc = -2 * u + v;
418  int type = HGCalProperty::waferThick(waferProperty_[k]);
419  int part = HGCalProperty::waferPartial(waferProperty_[k]);
420  int orien = HGCalProperty::waferOrient(waferProperty_[k]);
421  int cassette = HGCalProperty::waferCassette(waferProperty_[k]);
422  int place = HGCalCell::cellPlacementIndex(1, layertype, orien);
423  auto cshift = cassette_.getShift(layer + 1, -1, cassette);
424  double xpos = xyoff.first - cshift.first + nc * delx;
425  double ypos = xyoff.second + cshift.second + nr * dy;
426 #ifdef EDM_ML_DEBUG
427  double xorig = xyoff.first + nc * delx;
428  double yorig = xyoff.second + nr * dy;
429  double angle = std::atan2(yorig, xorig);
430  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule::Wafer: layer " << layer + 1 << " cassette "
431  << cassette << " Shift " << cshift.first << ":" << cshift.second << " Original "
432  << xorig << ":" << yorig << ":" << convertRadToDeg(angle) << " Final " << xpos << ":"
433  << ypos << " u|v " << u << ":" << v << " type|part|orient|place " << type << ":"
434  << part << ":" << orien << ":" << place;
435 #endif
436  std::string wafer;
437  int i(999);
438  if (part == HGCalTypes::WaferFull) {
439  i = type * facingTypes_ * orientationTypes_ + place - placeOffset_;
440  wafer = waferFull_[i];
441 #ifdef EDM_ML_DEBUG
442  edm::LogVerbatim("HGCalGeom") << " layertype:type:part:orien:cassette:place:offsets:ind " << layertype << ":"
443  << type << ":" << part << ":" << orien << ":" << cassette << ":" << place << ":"
444  << placeOffset_ << ":" << facingTypes_ << ":" << orientationTypes_ << " wafer " << i
445  << ":" << wafer;
446 #endif
447  } else {
449  i = (part - partoffset) * facingTypes_ * orientationTypes_ +
450  HGCalTypes::WaferTypeOffset[type] * facingTypes_ * orientationTypes_ + place - placeOffset_;
451 #ifdef EDM_ML_DEBUG
452  edm::LogVerbatim("HGCalGeom") << " layertype:type:part:orien:cassette:place:offsets:ind " << layertype << ":"
453  << type << ":" << part << ":" << orien << ":" << cassette << ":" << place << ":"
454  << partoffset << ":" << HGCalTypes::WaferTypeOffset[type] << ":" << i << ":"
455  << waferPart_.size();
456 #endif
457  wafer = waferPart_[i];
458  }
459  int copy = HGCalTypes::packTypeUV(type, u, v);
460 #ifdef EDM_ML_DEBUG
461  edm::LogVerbatim("HGCalGeom") << " DDHGCalSiliconRotatedModule: Layer "
462  << HGCalWaferIndex::waferLayer(waferIndex_[k]) << " Wafer " << wafer << " number "
463  << copy << " type:part:orien:ind " << type << ":" << part << ":" << orien << ":" << i
464  << " layer:u:v:indx " << (layer + firstLayer_) << ":" << u << ":" << v;
465  if (iu > ium)
466  ium = iu;
467  if (iv > ivm)
468  ivm = iv;
469  kount++;
470  if (copies_.count(copy) == 0)
471  copies_.insert(copy);
472 #endif
473  DDTranslation tran(xpos, ypos, 0.0);
475  DDName name = DDName(DDSplit(wafer).first, DDSplit(wafer).second);
476  cpv.position(name, glog.ddname(), copy, tran, rotation);
477 #ifdef EDM_ML_DEBUG
478  ++ntype[type];
479  edm::LogVerbatim("HGCalGeom") << " DDHGCalSiliconRotatedModule: " << name << " number " << copy << " type "
480  << layertype << ":" << type << " positioned in " << glog.ddname() << " at " << tran
481  << " with no rotation";
482 #endif
483  }
484 #ifdef EDM_ML_DEBUG
485  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: Maximum # of u " << ium << " # of v " << ivm << " and "
486  << kount << " wafers (" << ntype[0] << ":" << ntype[1] << ":" << ntype[2] << ") for "
487  << glog.ddname();
488 #endif
489 }
490 
491 DEFINE_EDM_PLUGIN(DDAlgorithmFactory, DDHGCalSiliconRotatedModule, "hgcal:DDHGCalSiliconRotatedModule");
Log< level::Info, true > LogVerbatim
static AlgebraicMatrix initialize()
static int32_t cellPlacementIndex(int32_t iz, int32_t frontBack, int32_t orient)
Definition: HGCalCell.cc:237
static constexpr int32_t WaferPartLDOffset
Definition: HGCalTypes.h:57
static void radius(double zf, double zb, std::vector< double > const &zFront1, std::vector< double > const &rFront1, std::vector< double > const &slope1, std::vector< double > const &zFront2, std::vector< double > const &rFront2, std::vector< double > const &slope2, int flag, std::vector< double > &zz, std::vector< double > &rin, std::vector< double > &rout)
int32_t *__restrict__ iv
void position(const DDLogicalPart &self, const DDLogicalPart &parent, const std::string &copyno, const DDTranslation &trans, const DDRotation &rot, const DDDivision *div=nullptr)
static constexpr int32_t WaferTypeOffset[3]
Definition: HGCalTypes.h:59
DDMaterial is used to define and access material information.
Definition: DDMaterial.h:45
int32_t waferU(const int32_t index)
int32_t waferLayer(const int32_t index)
constexpr NumType convertRadToDeg(NumType radians)
Definition: angle_units.h:21
DDName is used to identify DDD entities uniquely.
Definition: DDName.h:17
void positionSensitive(const DDLogicalPart &glog, int layer, DDCompactView &cpv)
static std::string & ns()
std::vector< std::string > waferFull_
Log< level::Error, false > LogError
Compact representation of the geometrical detector hierarchy.
Definition: DDCompactView.h:81
int32_t waferOrient(const int32_t property)
A DDSolid represents the shape of a part.
Definition: DDSolid.h:39
static std::string to_string(const XMLCh *ch)
Represents a uniquely identifyable rotation matrix.
Definition: DDTransform.h:57
static const std::string & rotName(const T &rot, const cms::DDParsingContext &context)
U second(std::pair< T, U > const &p)
int32_t waferCassette(const int32_t property)
static constexpr int32_t WaferFull
Definition: HGCalTypes.h:35
T sqrt(T t)
Definition: SSEVec.h:19
Cos< T >::type cos(const T &t)
Definition: Cos.h:22
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
void constructLayers(const cms::DDNamespace &ns, const std::vector< std::string > &wafers, const std::vector< std::string > &covers, const std::vector< int > &layerType, const std::vector< int > &layerSense, const std::vector< int > &maxModule, const std::vector< std::string > &names, const std::vector< std::string > &materials, std::vector< int > &copyNumber, const std::vector< double > &layerThick, const double &absorbW, const double &absorbH, const double &waferTot, const double &rMax, const double &rMaxFine, std::unordered_set< int > &copies, int firstLayer, int lastLayer, double zFront, double totalWidth, bool ignoreCenter, dd4hep::Volume &module)
A DDLogicalPart aggregates information concerning material, solid and sensitveness ...
Definition: DDLogicalPart.h:93
static DDSolid tubs(const DDName &name, double zhalf, double rIn, double rOut, double startPhi, double deltaPhi)
Definition: DDSolid.cc:667
int32_t waferThick(const int32_t property)
ii
Definition: cuy.py:589
std::vector< int > dbl_to_int(const std::vector< double > &vecdbl)
Converts a std::vector of doubles to a std::vector of int.
Definition: DDutils.h:7
const N & name() const
Definition: DDBase.h:59
static constexpr int32_t WaferPartHDOffset
Definition: HGCalTypes.h:58
static constexpr int32_t WaferCenterR
Definition: HGCalTypes.h:27
void constructLayers(const DDLogicalPart &, DDCompactView &cpv)
part
Definition: HCALResponse.h:20
const N & ddname() const
Definition: DDBase.h:61
std::vector< std::string > materials_
int32_t waferPartial(const int32_t property)
int32_t waferV(const int32_t index)
static int32_t packTypeUV(int type, int u, int v)
Definition: HGCalTypes.cc:3
void initialize(const DDNumericArguments &nArgs, const DDVectorArguments &vArgs, const DDMapArguments &mArgs, const DDStringArguments &sArgs, const DDStringVectorArguments &vsArgs) override
static constexpr int32_t WaferHDTop
Definition: HGCalTypes.h:51
#define DEFINE_EDM_PLUGIN(factory, type, name)
Log< level::Warning, false > LogWarning
static int32_t layerType(int type)
Definition: HGCalTypes.cc:42
static constexpr int32_t WaferCenterB
Definition: HGCalTypes.h:26
std::pair< std::string, std::string > DDSplit(const std::string &n)
split into (name,namespace), separator = &#39;:&#39;
Definition: DDSplit.cc:3
ROOT::Math::DisplacementVector3D< ROOT::Math::Cartesian3D< double > > DDTranslation
Definition: DDTranslation.h:7
static DDSolid polyhedra(const DDName &name, int sides, double startPhi, double deltaPhi, const std::vector< double > &z, const std::vector< double > &rmin, const std::vector< double > &rmax)
Creates a polyhedra (refere to Geant3 or Geant4 documentation)
Definition: DDSolid.cc:565
std::vector< std::string > waferPart_
void execute(DDCompactView &cpv) override
T angle(T x1, T y1, T z1, T x2, T y2, T z2)
Definition: angle.h:11