CMS 3D CMS Logo

NuclearInteractionSimulator.cc
Go to the documentation of this file.
1 //Framework Headers
4 
8 
10 
11 //#include "DQMServices/Core/interface/DaqMonitorBEInterface.h"
12 //#include "FWCore/ServiceRegistry/interface/Service.h"
13 
14 #include <iostream>
15 #include <sys/stat.h>
16 #include <cmath>
17 #include "TFile.h"
18 #include "TTree.h"
19 #include "TROOT.h"
20 
21 // Internal variable and vectors with name started frm "thePion" means
22 // vectors/variable not only for pions but for all type of hadrons
23 // treated inside this code
24 
26  std::vector<int>& hadronTypes,
27  std::vector<std::string>& hadronNames,
28  std::vector<double>& hadronMasses,
29  std::vector<double>& hadronPMin,
30  double pionEnergy,
31  std::vector<double>& lengthRatio,
32  std::vector<std::vector<double> >& ratios,
33  std::map<int, int>& idMap,
35  unsigned int distAlgo,
36  double distCut)
38  thePionEN(hadronEnergies),
39  thePionID(hadronTypes),
40  thePionNA(hadronNames),
41  thePionMA(hadronMasses),
42  thePionPMin(hadronPMin),
43  thePionEnergy(pionEnergy),
44  theLengthRatio(lengthRatio),
45  theRatios(ratios),
46  theIDMap(idMap),
47  theDistAlgo(distAlgo),
48  theDistCut(distCut),
49  currentValuesWereSet(false) {
51 
52  // Prepare the map of files
53  // Loop over the particle names
54  TFile* aVFile = nullptr;
55  std::vector<TTree*> aVTree(thePionEN.size(), static_cast<TTree*>(nullptr));
56  std::vector<TBranch*> aVBranch(thePionEN.size(), static_cast<TBranch*>(nullptr));
57  std::vector<NUEvent*> aVNUEvents(thePionEN.size(), static_cast<NUEvent*>(nullptr));
58  std::vector<unsigned> aVCurrentEntry(thePionEN.size(), static_cast<unsigned>(0));
59  std::vector<unsigned> aVCurrentInteraction(thePionEN.size(), static_cast<unsigned>(0));
60  std::vector<unsigned> aVNumberOfEntries(thePionEN.size(), static_cast<unsigned>(0));
61  std::vector<unsigned> aVNumberOfInteractions(thePionEN.size(), static_cast<unsigned>(0));
62  std::vector<std::string> aVFileName(thePionEN.size(), static_cast<std::string>(""));
63  std::vector<double> aVPionCM(thePionEN.size(), static_cast<double>(0));
64 
65  theTrees.resize(thePionNA.size());
66  theBranches.resize(thePionNA.size());
67  theNUEvents.resize(thePionNA.size());
68  theCurrentEntry.resize(thePionNA.size());
69  theCurrentInteraction.resize(thePionNA.size());
70  theNumberOfEntries.resize(thePionNA.size());
71  theNumberOfInteractions.resize(thePionNA.size());
72  theFileNames.resize(thePionNA.size());
73  thePionCM.resize(thePionNA.size());
74  theFile = aVFile;
75  for (unsigned iname = 0; iname < thePionNA.size(); ++iname) {
76  theTrees[iname] = aVTree;
77  theBranches[iname] = aVBranch;
78  theNUEvents[iname] = aVNUEvents;
79  theCurrentEntry[iname] = aVCurrentEntry;
80  theCurrentInteraction[iname] = aVCurrentInteraction;
81  theNumberOfEntries[iname] = aVNumberOfEntries;
82  theNumberOfInteractions[iname] = aVNumberOfInteractions;
83  theFileNames[iname] = aVFileName;
84  thePionCM[iname] = aVPionCM;
85  }
86 
87  // Read the information from a previous run (to keep reproducibility)
88  currentValuesWereSet = this->read(inputFile);
90  std::cout << "***WARNING*** You are reading nuclear-interaction information from the file " << inputFile
91  << " created in an earlier run." << std::endl;
92 
93  // Open the file for saving the information of the current run
94  myOutputFile.open("NuclearInteractionOutputFile.txt");
95  myOutputBuffer = 0;
96 
97  // Open the root files
98  // for ( unsigned file=0; file<theFileNames.size(); ++file ) {
99  edm::FileInPath myDataFile("FastSimulation/MaterialEffects/data/NuclearInteractions.root");
100 
101  fullPath = myDataFile.fullPath();
102  theFile = TFile::Open(fullPath.c_str());
103 
104  for (unsigned iname = 0; iname < thePionNA.size(); ++iname) {
105  for (unsigned iene = 0; iene < thePionEN.size(); ++iene) {
106  //std::cout << "iname/iene " << iname << " " << iene << std::endl;
107  std::ostringstream filename;
108  double theEne = thePionEN[iene];
109  filename << "NuclearInteractionsVal_" << thePionNA[iname] << "_E" << theEne << ".root";
110  theFileNames[iname][iene] = filename.str();
111  //std::cout << "thePid/theEne " << thePionID[iname] << " " << theEne << std::endl;
112 
113  std::string treeName = "NuclearInteractions_" + thePionNA[iname] + "_E" + std::to_string(int(theEne));
114  //
115  theTrees[iname][iene] = (TTree*)theFile->Get(treeName.c_str());
116  if (!theTrees[iname][iene])
117  throw cms::Exception("FastSimulation/MaterialEffects") << "Tree with name " << treeName << " not found ";
118  //
119  theBranches[iname][iene] = theTrees[iname][iene]->GetBranch("nuEvent");
120  //std::cout << "The branch = " << theBranches[iname][iene] << std::endl;
121  if (!theBranches[iname][iene])
122  throw cms::Exception("FastSimulation/MaterialEffects")
123  << "Branch with name nuEvent not found in " << theFileNames[iname][iene];
124  //
125  theNUEvents[iname][iene] = new NUEvent();
126  //std::cout << "The branch = " << theBranches[iname][iene] << std::endl;
127  theBranches[iname][iene]->SetAddress(&theNUEvents[iname][iene]);
128  //
129  theNumberOfEntries[iname][iene] = theTrees[iname][iene]->GetEntries();
130 
131  if (currentValuesWereSet) {
132  theTrees[iname][iene]->GetEntry(theCurrentEntry[iname][iene]);
133  unsigned NInteractions = theNUEvents[iname][iene]->nInteractions();
134  theNumberOfInteractions[iname][iene] = NInteractions;
135  }
136 
137  //
138  // Compute the corresponding cm energies of the nuclear interactions
139  XYZTLorentzVector Proton(0., 0., 0., 0.986);
140  XYZTLorentzVector Reference(
141  0., 0., std::sqrt(thePionEN[iene] * thePionEN[iene] - thePionMA[iname] * thePionMA[iname]), thePionEN[iene]);
142  thePionCM[iname][iene] = (Reference + Proton).M();
143  }
144  }
145 
146  // Find the index for which EN = 4. (or thereabout)
147  ien4 = 0;
148  while (thePionEN[ien4] < 4.0)
149  ++ien4;
150 
151  gROOT->cd();
152 
153  // dbe = edm::Service<DaqMonitorBEInterface>().operator->();
154  // htot = dbe->book1D("Total", "All particles",150,0.,150.);
155  // helas = dbe->book1D("Elastic", "Elastic interactions",150,0.,150.);
156  // hinel = dbe->book1D("Inelastic", "Inelastic interactions",150,0.,150.);
157  // hscatter = dbe->book1D("Scattering","Elastic Scattering angle",200,0.,2.);
158  // hscatter2 = dbe->book2D("Scattering2","Elastic Scattering angle vs p",100,0.,10.,200,0.,2.);
159  // hAfter = dbe->book1D("eAfter","Energy after collision",200,0.,4.);
160  // hAfter2 = dbe->book2D("eAfter2","Energy after collision",100,-2.5,2.5,100,0.,4);
161  // hAfter3 = dbe->book2D("eAfter3","Energy after collision",100,0.,1000.,100,0.,4);
162 }
163 
165  // Close all local files
166  // Among other things, this allows the TROOT destructor to end up
167  // without crashing, while trying to close these files from outside
168  theFile->Close();
169  delete theFile;
170 
171  for (auto& vEvents : theNUEvents) {
172  for (auto evtPtr : vEvents) {
173  delete evtPtr;
174  }
175  }
176 
177  // Close the output file
178  myOutputFile.close();
179 
180  // dbe->save("test.root");
181 }
182 
184  if (!currentValuesWereSet) {
185  currentValuesWereSet = true;
186  for (unsigned iname = 0; iname < thePionNA.size(); ++iname) {
187  for (unsigned iene = 0; iene < thePionEN.size(); ++iene) {
188  theCurrentEntry[iname][iene] = (unsigned)(theNumberOfEntries[iname][iene] * random->flatShoot());
189 
190  theTrees[iname][iene]->GetEntry(theCurrentEntry[iname][iene]);
191  unsigned NInteractions = theNUEvents[iname][iene]->nInteractions();
192  theNumberOfInteractions[iname][iene] = NInteractions;
193 
194  theCurrentInteraction[iname][iene] = (unsigned)(theNumberOfInteractions[iname][iene] * random->flatShoot());
195  }
196  }
197  }
198 
199  // Read a Nuclear Interaction in a random manner
200 
201  double pHadron = std::sqrt(Particle.particle().Vect().Mag2());
202  // htot->Fill(pHadron);
203 
204  // The hadron has enough momentum to create some relevant final state
205  if (pHadron > thePionEnergy) {
206  // The particle type
207  std::map<int, int>::const_iterator thePit = theIDMap.find(Particle.particle().pid());
208 
209  int thePid = thePit != theIDMap.end() ? thePit->second : Particle.particle().pid();
210 
211  // Is this particle type foreseen?
212  unsigned fPid = abs(thePid);
213  if (fPid != 211 && fPid != 130 && fPid != 321 && fPid != 2112 && fPid != 2212) {
214  return;
215  //std::cout << "Unknown particle type = " << thePid << std::endl;
216  //thePid = 211;
217  }
218 
219  // The inelastic interaction length at p(pion) = 5 GeV/c
220  unsigned thePidIndex = index(thePid);
221  double theInelasticLength = radLengths * theLengthRatio[thePidIndex];
222 
223  // The elastic interaction length
224  // The baroque parameterization is a fit to Fig. 40.13 of the PDG
225  double ee = pHadron > 0.6 ? exp(-std::sqrt((pHadron - 0.6) / 1.122)) : exp(std::sqrt((0.6 - pHadron) / 1.122));
226  double theElasticLength = (0.8753 * ee + 0.15)
227  // double theElasticLength = ( 0.15 + 0.195 / log(pHadron/0.4) )
228  // double theElasticLength = ( 0.15 + 0.305 / log(pHadron/0.35) )
229  * theInelasticLength;
230 
231  // The total interaction length
232  double theTotalInteractionLength = theInelasticLength + theElasticLength;
233 
234  // Probability to interact is dl/L0 (maximum for 4 GeV pion)
235  double aNuclInteraction = -std::log(random->flatShoot());
236  if (aNuclInteraction < theTotalInteractionLength) {
237  // The elastic part
238  double elastic = random->flatShoot();
239  if (elastic < theElasticLength / theTotalInteractionLength) {
240  // helas->Fill(pHadron);
241 
242  // Characteristic scattering angle for the elastic part
243  double theta0 = std::sqrt(3.) / std::pow(theA(), 1. / 3.) * Particle.particle().mass() / pHadron;
244 
245  // Draw an angle with theta/theta0*exp[(-theta/2theta0)**2] shape
246  double theta = theta0 * std::sqrt(-2. * std::log(random->flatShoot()));
247  double phi = 2. * 3.14159265358979323 * random->flatShoot();
248 
249  // Rotate the particle accordingly
250  RawParticle::Rotation rotation1(orthogonal(Particle.particle().Vect()), theta);
251  RawParticle::Rotation rotation2(Particle.particle().Vect(), phi);
252  Particle.particle().rotate(rotation1);
253  Particle.particle().rotate(rotation2);
254 
255  // Distance
256  double distance = std::sin(theta);
257 
258  // Create a daughter if the kink is large engough
259  if (distance > theDistCut) {
260  _theUpdatedState.reserve(1);
261  _theUpdatedState.clear();
262  _theUpdatedState.emplace_back(Particle.particle());
263  }
264 
265  // hscatter->Fill(myTheta);
266  // hscatter2->Fill(pHadron,myTheta);
267 
268  }
269 
270  // The inelastic part
271  else {
272  // Avoid multiple map access
273  const std::vector<double>& aPionCM = thePionCM[thePidIndex];
274  const std::vector<double>& aRatios = theRatios[thePidIndex];
275  // Find the file with the closest c.m energy
276  // The target nucleon
277  XYZTLorentzVector Proton(0., 0., 0., 0.939);
278  // The current particle
279  const XYZTLorentzVector& Hadron = (const XYZTLorentzVector&)Particle;
280  // The smallest momentum for inelastic interactions
281  double pMin = thePionPMin[thePidIndex];
282  // The correspong smallest four vector
283  XYZTLorentzVector Hadron0(0., 0., pMin, std::sqrt(pMin * pMin + Particle.particle().M2()));
284 
285  // The current centre-of-mass energy
286  double ecm = (Proton + Hadron).M();
287  //std::cout << "Proton = " << Proton << std::endl;
288  //std::cout << "Hadron = " << Hadron << std::endl;
289  //std::cout << "ecm = " << ecm << std::endl;
290  // Get the files of interest (closest c.m. energies)
291  unsigned ene1 = 0;
292  unsigned ene2 = 0;
293  // The smallest centre-of-mass energy
294  // double ecm1=1.63;
295  double ecm1 = (Proton + Hadron0).M();
296  //std::cout << "ecm1 = " << ecm1 << std::endl;
297  //std::cout << "ecm[0] = " << aPionCM[0] << std::endl;
298  //std::cout << "ecm[11] = " << aPionCM [ aPionCM.size()-1 ] << std::endl;
299  double ecm2 = aPionCM[0];
300  double ratio1 = 0.;
301  double ratio2 = aRatios[0];
302  if (ecm > aPionCM[0] && ecm < aPionCM[aPionCM.size() - 1]) {
303  for (unsigned ene = 1; ene < aPionCM.size() && ecm > aPionCM[ene - 1]; ++ene) {
304  if (ecm < aPionCM[ene]) {
305  ene2 = ene;
306  ene1 = ene2 - 1;
307  ecm1 = aPionCM[ene1];
308  ecm2 = aPionCM[ene2];
309  ratio1 = aRatios[ene1];
310  ratio2 = aRatios[ene2];
311  }
312  }
313  } else if (ecm > aPionCM[aPionCM.size() - 1]) {
314  ene1 = aPionCM.size() - 1;
315  ene2 = aPionCM.size() - 2;
316  ecm1 = aPionCM[ene1];
317  ecm2 = aPionCM[ene2];
318  ratio1 = aRatios[ene2];
319  ratio2 = aRatios[ene2];
320  }
321 
322  // The inelastic part of the cross section depends cm energy
323  double slope = (std::log10(ecm) - std::log10(ecm1)) / (std::log10(ecm2) - std::log10(ecm1));
324  double inelastic = ratio1 + (ratio2 - ratio1) * slope;
325  double inelastic4 = pHadron < 4. ? aRatios[ien4] : 1.;
326 
327  //std::cout << "Inelastic = " << ratio1 << " " << ratio2 << " " << inelastic << std::endl;
328  // std::cout << "Energy/Inelastic : "
329  // << Hadron.e() << " " << inelastic << std::endl;
330 
331  // Simulate an inelastic interaction
332  if (elastic > 1. - (inelastic * theInelasticLength) / theTotalInteractionLength) {
333  // Avoid mutliple map access
334  std::vector<unsigned>& aCurrentInteraction = theCurrentInteraction[thePidIndex];
335  std::vector<unsigned>& aNumberOfInteractions = theNumberOfInteractions[thePidIndex];
336  std::vector<NUEvent*>& aNUEvents = theNUEvents[thePidIndex];
337  // hinel->Fill(pHadron);
338  // std::cout << "INELASTIC INTERACTION ! "
339  // << pHadron << " " << theInelasticLength << " "
340  // << inelastic * theInelasticLength << std::endl;
341  // Choice of the file to read according the the log10(ecm) distance
342  // and protection against low momentum proton and neutron that never interacts
343  // (i.e., empty files)
344  unsigned ene;
345  if (random->flatShoot() < slope || aNumberOfInteractions[ene1] == 0)
346  ene = ene2;
347  else
348  ene = ene1;
349 
350  //std::cout << "Ecm1/2 = " << ecm1 << " " << ecm2 << std::endl;
351  //std::cout << "Ratio1/2 = " << ratio1 << " " << ratio2 << std::endl;
352  //std::cout << "Ene = " << ene << " slope = " << slope << std::endl;
353 
354  //std::cout << "Pion energy = " << Hadron.E()
355  // << "File chosen " << theFileNames[thePidIndex][ene]
356  // << std::endl;
357 
358  // The boost characteristics
359  XYZTLorentzVector theBoost = Proton + Hadron;
360  theBoost /= theBoost.e();
361 
362  // std::cout << "File chosen : " << thePid << "/" << ene
363  // << " Current interaction = " << aCurrentInteraction[ene]
364  // << " Total interactions = " << aNumberOfInteractions[ene]
365  // << std::endl;
366  // theFiles[thePidIndex][ene]->cd();
367  // gDirectory->ls();
368 
369  // Check we are not either at the end of an interaction bunch
370  // or at the end of a file
371  if (aCurrentInteraction[ene] == aNumberOfInteractions[ene]) {
372  // std::cout << "End of interaction bunch ! ";
373  std::vector<unsigned>& aCurrentEntry = theCurrentEntry[thePidIndex];
374  std::vector<unsigned>& aNumberOfEntries = theNumberOfEntries[thePidIndex];
375  std::vector<TTree*>& aTrees = theTrees[thePidIndex];
376  ++aCurrentEntry[ene];
377  // std::cerr << "Read the next entry "
378  // << aCurrentEntry[ene] << std::endl;
379  aCurrentInteraction[ene] = 0;
380  if (aCurrentEntry[ene] == aNumberOfEntries[ene]) {
381  aCurrentEntry[ene] = 0;
382  // std::cout << "End of file - Rewind! " << std::endl;
383  }
384  unsigned myEntry = aCurrentEntry[ene];
385  // std::cout << "The new entry " << myEntry
386  // << " is read ... in TTree " << aTrees[ene] << " ";
387  aTrees[ene]->GetEntry(myEntry);
388  // std::cout << "The number of interactions in the new entry is ... ";
389  aNumberOfInteractions[ene] = aNUEvents[ene]->nInteractions();
390  // std::cout << aNumberOfInteractions[ene] << std::endl;
391  }
392 
393  // Read the interaction
394  NUEvent::NUInteraction anInteraction = aNUEvents[ene]->theNUInteractions()[aCurrentInteraction[ene]];
395 
396  unsigned firstTrack = anInteraction.first;
397  unsigned lastTrack = anInteraction.last;
398  // std::cout << "First and last tracks are " << firstTrack << " " << lastTrack << std::endl;
399 
400  _theUpdatedState.reserve(lastTrack - firstTrack + 1);
401  _theUpdatedState.clear();
402 
403  double distMin = 1E99;
404 
405  // Some rotation around the boost axis, for more randomness
406  XYZVector theAxis = theBoost.Vect().Unit();
407  double theAngle = random->flatShoot() * 2. * 3.14159265358979323;
408  RawParticle::Rotation axisRotation(theAxis, theAngle);
409  RawParticle::Boost axisBoost(theBoost.x(), theBoost.y(), theBoost.z());
410 
411  // A rotation to bring the particles back to the pion direction
412  XYZVector zAxis(0., 0., 1.);
413  XYZVector orthAxis = (zAxis.Cross(theBoost.Vect())).Unit();
414  double orthAngle = acos(theBoost.Vect().Unit().Z());
415  RawParticle::Rotation orthRotation(orthAxis, orthAngle);
416 
417  // A few checks
418  // double eAfter = 0.;
419 
420  // Loop on the nuclear interaction products
421  for (unsigned iTrack = firstTrack; iTrack <= lastTrack; ++iTrack) {
422  unsigned idaugh = iTrack - firstTrack;
423  NUEvent::NUParticle aParticle = aNUEvents[ene]->theNUParticles()[iTrack];
424  // std::cout << "Track " << iTrack
425  // << " id/px/py/pz/mass "
426  // << aParticle.id << " "
427  // << aParticle.px << " "
428  // << aParticle.py << " "
429  // << aParticle.pz << " "
430  // << aParticle.mass << " " << endl;
431 
432  // Add a RawParticle with the proper energy in the c.m frame of
433  // the nuclear interaction
434  double energy = std::sqrt(aParticle.px * aParticle.px + aParticle.py * aParticle.py +
435  aParticle.pz * aParticle.pz + aParticle.mass * aParticle.mass / (ecm * ecm));
436 
437  RawParticle& aDaughter = _theUpdatedState.emplace_back(makeParticle(
438  Particle.particleDataTable(),
439  aParticle.id,
440  XYZTLorentzVector(aParticle.px * ecm, aParticle.py * ecm, aParticle.pz * ecm, energy * ecm)));
441  // Rotate to the collision axis
442  aDaughter.rotate(orthRotation);
443 
444  // Rotate around the boost axis for more randomness
445  aDaughter.rotate(axisRotation);
446 
447  // Boost it in the lab frame
448  aDaughter.boost(axisBoost);
449 
450  // Store the closest daughter index (for later tracking purposes, so charged particles only)
451  double distance = distanceToPrimary(Particle.particle(), aDaughter);
452  // Find the closest daughter, if closer than a given upper limit.
453  if (distance < distMin && distance < theDistCut) {
454  distMin = distance;
456  }
457 
458  // eAfter += aDaughter.E();
459  }
460 
461  /*
462  double eBefore = Particle.E();
463  double rapid = Particle.momentum().Eta();
464  if ( eBefore > 0. ) {
465  hAfter->Fill(eAfter/eBefore);
466  hAfter2->Fill(rapid,eAfter/eBefore);
467  hAfter3->Fill(eBefore,eAfter/eBefore);
468  }
469  */
470 
471  // ERROR The way this loops through the events breaks
472  // replay. Which events are retrieved depends on
473  // which previous events were processed.
474 
475  // Increment for next time
476  ++aCurrentInteraction[ene];
477 
478  // Simulate a stopping hadron (low momentum)
479  } else if (pHadron < 4. && elastic > 1. - (inelastic4 * theInelasticLength) / theTotalInteractionLength) {
480  // A fake particle with 0 momentum as a daughter!
481  _theUpdatedState.reserve(1);
482  _theUpdatedState.clear();
483  _theUpdatedState.emplace_back(
484  makeParticle(Particle.particleDataTable(), 22, XYZTLorentzVector(0., 0., 0., 0.)));
485  }
486  }
487  }
488  }
489 }
490 
492  double distance = 2E99;
493 
494  // Compute the distance only for charged primaries
495  if (fabs(Particle.charge()) > 1E-12) {
496  // The secondary must have the same charge
497  double chargeDiff = fabs(aDaughter.charge() - Particle.charge());
498  if (fabs(chargeDiff) < 1E-12) {
499  // Here are two distance definitions * to be tuned *
500  switch (theDistAlgo) {
501  case 1:
502  // sin(theta12)
503  distance = (aDaughter.Vect().Unit().Cross(Particle.Vect().Unit())).R();
504  break;
505 
506  case 2:
507  // sin(theta12) * p1/p2
508  distance = (aDaughter.Vect().Cross(Particle.Vect())).R() / aDaughter.Vect().Mag2();
509  break;
510 
511  default:
512  // Should not happen
513  distance = 2E99;
514  break;
515  }
516  }
517  }
518 
519  return distance;
520 }
521 
523  // Size of buffer
524  ++myOutputBuffer;
525 
526  // Periodically close the current file and open a new one
527  if (myOutputBuffer / 1000 * 1000 == myOutputBuffer) {
528  myOutputFile.close();
529  myOutputFile.open("NuclearInteractionOutputFile.txt");
530  // myOutputFile.seekp(0); // No need to rewind in that case
531  }
532  //
533  unsigned size1 = theCurrentEntry.size() * theCurrentEntry.begin()->size();
534  std::vector<unsigned> theCurrentEntries;
535  theCurrentEntries.resize(size1);
536  size1 *= sizeof(unsigned);
537  //
538  unsigned size2 = theCurrentInteraction.size() * theCurrentInteraction.begin()->size();
539  std::vector<unsigned> theCurrentInteractions;
540  theCurrentInteractions.resize(size2);
541  size2 *= sizeof(unsigned);
542 
543  // Save the current entries
544  std::vector<std::vector<unsigned> >::const_iterator aCurrentEntry = theCurrentEntry.begin();
545  std::vector<std::vector<unsigned> >::const_iterator lastCurrentEntry = theCurrentEntry.end();
546  unsigned allEntries = 0;
547  for (; aCurrentEntry != lastCurrentEntry; ++aCurrentEntry) {
548  unsigned size = aCurrentEntry->size();
549  for (unsigned iene = 0; iene < size; ++iene)
550  theCurrentEntries[allEntries++] = (*aCurrentEntry)[iene];
551  }
552 
553  // Save the current interactions
554  std::vector<std::vector<unsigned> >::const_iterator aCurrentInteraction = theCurrentInteraction.begin();
555  std::vector<std::vector<unsigned> >::const_iterator lastCurrentInteraction = theCurrentInteraction.end();
556  unsigned allInteractions = 0;
557  for (; aCurrentInteraction != lastCurrentInteraction; ++aCurrentInteraction) {
558  unsigned size = aCurrentInteraction->size();
559  for (unsigned iene = 0; iene < size; ++iene)
560  theCurrentInteractions[allInteractions++] = (*aCurrentInteraction)[iene];
561  }
562  //
563  myOutputFile.write((const char*)(&theCurrentEntries.front()), size1);
564  myOutputFile.write((const char*)(&theCurrentInteractions.front()), size2);
565  myOutputFile.flush();
566 }
567 
569  std::ifstream myInputFile;
570  struct stat results;
571  //
572  unsigned size1 = theCurrentEntry.size() * theCurrentEntry.begin()->size();
573  std::vector<unsigned> theCurrentEntries;
574  theCurrentEntries.resize(size1);
575  size1 *= sizeof(unsigned);
576  //
577  unsigned size2 = theCurrentInteraction.size() * theCurrentInteraction.begin()->size();
578  std::vector<unsigned> theCurrentInteractions;
579  theCurrentInteractions.resize(size2);
580  size2 *= sizeof(unsigned);
581  //
582  unsigned size = 0;
583 
584  // Open the file (if any)
585  myInputFile.open(inputFile.c_str());
586  if (myInputFile.is_open()) {
587  // Get the size of the file
588  if (stat(inputFile.c_str(), &results) == 0)
589  size = results.st_size;
590  else
591  return false; // Something is wrong with that file !
592 
593  // Position the pointer just before the last record
594  myInputFile.seekg(size - size1 - size2);
595  myInputFile.read((char*)(&theCurrentEntries.front()), size1);
596  myInputFile.read((char*)(&theCurrentInteractions.front()), size2);
597  myInputFile.close();
598 
599  // Read the current entries
600  std::vector<std::vector<unsigned> >::iterator aCurrentEntry = theCurrentEntry.begin();
601  std::vector<std::vector<unsigned> >::iterator lastCurrentEntry = theCurrentEntry.end();
602  unsigned allEntries = 0;
603  for (; aCurrentEntry != lastCurrentEntry; ++aCurrentEntry) {
604  unsigned size = aCurrentEntry->size();
605  for (unsigned iene = 0; iene < size; ++iene)
606  (*aCurrentEntry)[iene] = theCurrentEntries[allEntries++];
607  }
608 
609  // Read the current interactions
610  std::vector<std::vector<unsigned> >::iterator aCurrentInteraction = theCurrentInteraction.begin();
611  std::vector<std::vector<unsigned> >::iterator lastCurrentInteraction = theCurrentInteraction.end();
612  unsigned allInteractions = 0;
613  for (; aCurrentInteraction != lastCurrentInteraction; ++aCurrentInteraction) {
614  unsigned size = aCurrentInteraction->size();
615  for (unsigned iene = 0; iene < size; ++iene)
616  (*aCurrentInteraction)[iene] = theCurrentInteractions[allInteractions++];
617  }
618 
619  return true;
620  }
621 
622  return false;
623 }
624 
626  unsigned myIndex = 0;
627  while (thePid != thePionID[myIndex])
628  ++myIndex;
629  // std::cout << "pid/index = " << thePid << " " << myIndex << std::endl;
630  return myIndex;
631 }
size
Write out results.
void boost(double bx, double by, double bz)
Definition: RawParticle.cc:65
std::string fullPath() const
Definition: FileInPath.cc:161
static const double slope[3]
Sin< T >::type sin(const T &t)
Definition: Sin.h:22
void compute(ParticlePropagator &Particle, RandomEngineAndDistribution const *) override
Generate a nuclear interaction according to the probability that it happens.
constexpr int pow(int x)
Definition: conifer.h:24
std::vector< std::vector< NUEvent * > > theNUEvents
std::vector< std::vector< std::string > > theFileNames
ROOT::Math::Boost Boost
Definition: RawParticle.h:49
double charge() const
get the MEASURED charge
Definition: RawParticle.h:294
static std::string to_string(const XMLCh *ch)
RawParticle makeParticle(HepPDT::ParticleDataTable const *, int id, const math::XYZTLorentzVector &p)
Definition: makeParticle.cc:28
Definition: NUEvent.h:6
T sqrt(T t)
Definition: SSEVec.h:19
std::vector< std::vector< unsigned > > theNumberOfEntries
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
XYZVector orthogonal(const XYZVector &) const
A vector orthogonal to another one (because it&#39;s not in XYZTLorentzVector)
void rotate(double rphi, const XYZVector &raxis)
Definition: RawParticle.cc:41
bool read(std::string inputFile)
Read former nuclear interaction (from previous run)
std::vector< std::vector< unsigned > > theCurrentInteraction
unsigned index(int thePid)
Return a hashed index for a given pid.
std::vector< std::string > thePionNA
std::vector< std::vector< double > > thePionCM
~NuclearInteractionSimulator() override
Default Destructor.
XYZVector Vect() const
the momentum threevector
Definition: RawParticle.h:323
double distanceToPrimary(const RawParticle &Particle, const RawParticle &aDaughter) const
Compute distance between secondary and primary.
NuclearInteractionSimulator(std::vector< double > &hadronEnergies, std::vector< int > &hadronTypes, std::vector< std::string > &hadronNames, std::vector< double > &hadronMasses, std::vector< double > &hadronPMin, double pionEnergy, std::vector< double > &lengthRatio, std::vector< std::vector< double > > &ratios, std::map< int, int > &idMap, std::string inputFile, unsigned int distAlgo, double distCut)
Constructor.
std::vector< std::vector< TBranch * > > theBranches
std::vector< std::vector< unsigned > > theNumberOfInteractions
std::vector< std::vector< unsigned > > theCurrentEntry
std::vector< RawParticle > _theUpdatedState
ROOT::Math::AxisAngle Rotation
Definition: RawParticle.h:44
results
Definition: mysort.py:8
std::vector< std::vector< double > > theRatios
lengthRatio
Default is 0.020 for algo 1;.
void save() override
Save current nuclear interaction (for later use)
double flatShoot(double xmin=0.0, double xmax=1.0) const
math::XYZVector XYZVector
Definition: RawParticle.h:26
Geom::Theta< T > theta() const
math::XYZTLorentzVector XYZTLorentzVector
Definition: RawParticle.h:25
std::vector< std::vector< TTree * > > theTrees