CMS 3D CMS Logo

TSGForOIDNN.cc
Go to the documentation of this file.
1 
34 #include <boost/property_tree/ptree.hpp>
35 #include <boost/property_tree/json_parser.hpp>
36 #include <boost/range/adaptor/reversed.hpp>
37 #include <memory>
38 namespace pt = boost::property_tree;
39 
41 public:
42  explicit TSGForOIDNN(const edm::ParameterSet& iConfig);
43  ~TSGForOIDNN() override;
44  static void fillDescriptions(edm::ConfigurationDescriptions& descriptions);
45  void produce(edm::StreamID sid, edm::Event& iEvent, const edm::EventSetup& iSetup) const override;
46 
47 private:
59  const std::unique_ptr<TrajectoryStateUpdator> updator_;
62 
64  const unsigned int maxSeeds_;
66  const unsigned int maxHitSeeds_;
68  const unsigned int maxHitlessSeeds_;
70  const unsigned int numOfLayersToTry_;
72  const unsigned int numOfHitsToTry_;
78  const double minEtaForTEC_;
80  const double maxEtaForTOB_;
81 
84  const unsigned int maxHitlessSeedsIP_;
85  const unsigned int maxHitlessSeedsMuS_;
86  const unsigned int maxHitDoubletSeeds_;
87 
89  const bool getStrategyFromDNN_;
91  const bool useRegressor_;
92 
95  std::unique_ptr<tensorflow::GraphDef> graphDef_;
96  tensorflow::Session* tf_session_;
97 
102  std::unique_ptr<tensorflow::GraphDef> graphDef_HB_;
103  tensorflow::Session* tf_session_HB_;
104  std::unique_ptr<tensorflow::GraphDef> graphDef_HLIP_;
105  tensorflow::Session* tf_session_HLIP_;
106  std::unique_ptr<tensorflow::GraphDef> graphDef_HLMuS_;
107  tensorflow::Session* tf_session_HLMuS_;
108 
111  pt::ptree metadata_;
112 
115  const TrajectoryStateOnSurface& tsos,
118  double errorSF,
119  unsigned int& hitlessSeedsMade,
120  unsigned int& numSeedsMade,
121  std::vector<TrajectorySeed>& out) const;
122 
125  const TrajectoryStateOnSurface& tsos,
129  unsigned int& hitSeedsMade,
130  unsigned int& numSeedsMade,
131  const unsigned int& maxHitSeeds,
132  unsigned int& layerCount,
133  std::vector<TrajectorySeed>& out) const;
134 
137  const TrajectoryStateOnSurface& tsos,
142  unsigned int& hitDoubletSeedsMade,
143  unsigned int& numSeedsMade,
144  const unsigned int& maxHitDoubletSeeds,
145  unsigned int& layerCount,
146  std::vector<TrajectorySeed>& out) const;
147 
149  void updateFeatureMap(std::unordered_map<std::string, float>& the_map,
150  const reco::Track& l2,
151  const TrajectoryStateOnSurface& tsos_IP,
152  const TrajectoryStateOnSurface& tsos_MuS) const;
153 
156  int nHBd, nHLIP, nHLMuS, sf;
157  };
158 
160  void evaluateClassifier(const std::unordered_map<std::string, float>& feature_map,
161  tensorflow::Session* session,
162  const pt::ptree& metadata,
164  bool& dnnSuccess) const;
165 
167  void evaluateRegressor(const std::unordered_map<std::string, float>& feature_map,
168  tensorflow::Session* session_HB,
169  const pt::ptree& metadata_HB,
170  tensorflow::Session* session_HLIP,
171  const pt::ptree& metadata_HLIP,
172  tensorflow::Session* session_HLMuS,
173  const pt::ptree& metadata_HLMuS,
175  bool& dnnSuccess) const;
176 };
177 
179  : src_(consumes(iConfig.getParameter<edm::InputTag>("src"))),
180  t_estimatorH_(esConsumes(edm::ESInputTag("", iConfig.getParameter<std::string>("estimator")))),
181  t_magfieldH_(esConsumes()),
182  t_propagatorAlongH_(esConsumes(edm::ESInputTag("", iConfig.getParameter<std::string>("propagatorName")))),
183  t_propagatorOppositeH_(esConsumes(edm::ESInputTag("", iConfig.getParameter<std::string>("propagatorName")))),
184  t_tmpTkGeometryH_(esConsumes()),
185  t_geometryH_(esConsumes()),
186  t_navSchool_(esConsumes(edm::ESInputTag("", "SimpleNavigationSchool"))),
187  t_SHPOpposite_(esConsumes(edm::ESInputTag("", "hltESPSteppingHelixPropagatorOpposite"))),
188  updator_(new KFUpdator()),
189  measurementTrackerTag_(consumes(iConfig.getParameter<edm::InputTag>("MeasurementTrackerEvent"))),
190  theCategory_(std::string("Muon|RecoMuon|TSGForOIDNN")),
191  maxSeeds_(iConfig.getParameter<uint32_t>("maxSeeds")),
192  maxHitSeeds_(iConfig.getParameter<uint32_t>("maxHitSeeds")),
193  maxHitlessSeeds_(iConfig.getParameter<uint32_t>("maxHitlessSeeds")),
194  numOfLayersToTry_(iConfig.getParameter<int32_t>("layersToTry")),
195  numOfHitsToTry_(iConfig.getParameter<int32_t>("hitsToTry")),
196  fixedErrorRescalingForHitless_(iConfig.getParameter<double>("fixedErrorRescaleFactorForHitless")),
197  minEtaForTEC_(iConfig.getParameter<double>("minEtaForTEC")),
198  maxEtaForTOB_(iConfig.getParameter<double>("maxEtaForTOB")),
199  maxHitlessSeedsIP_(iConfig.getParameter<uint32_t>("maxHitlessSeedsIP")),
200  maxHitlessSeedsMuS_(iConfig.getParameter<uint32_t>("maxHitlessSeedsMuS")),
201  maxHitDoubletSeeds_(iConfig.getParameter<uint32_t>("maxHitDoubletSeeds")),
202  getStrategyFromDNN_(iConfig.getParameter<bool>("getStrategyFromDNN")),
203  useRegressor_(iConfig.getParameter<bool>("useRegressor")),
204  dnnMetadataPath_(iConfig.getParameter<std::string>("dnnMetadataPath")) {
205  if (getStrategyFromDNN_) {
207  pt::read_json(dnnMetadataPath.fullPath(), metadata_);
209 
210  if (useRegressor_) {
211  // use regressor
212  dnnModelPath_HB_ = metadata_.get<std::string>("HB.dnnmodel_path");
213  edm::FileInPath dnnPath_HB(dnnModelPath_HB_);
214  graphDef_HB_ = std::unique_ptr<tensorflow::GraphDef>(tensorflow::loadGraphDef(dnnPath_HB.fullPath()));
216 
217  dnnModelPath_HLIP_ = metadata_.get<std::string>("HLIP.dnnmodel_path");
218  edm::FileInPath dnnPath_HLIP(dnnModelPath_HLIP_);
219  graphDef_HLIP_ = std::unique_ptr<tensorflow::GraphDef>(tensorflow::loadGraphDef(dnnPath_HLIP.fullPath()));
221 
222  dnnModelPath_HLMuS_ = metadata_.get<std::string>("HLMuS.dnnmodel_path");
223  edm::FileInPath dnnPath_HLMuS(dnnModelPath_HLMuS_);
224  graphDef_HLMuS_ = std::unique_ptr<tensorflow::GraphDef>(tensorflow::loadGraphDef(dnnPath_HLMuS.fullPath()));
226  } else {
227  // use classifier (default)
228  dnnModelPath_ = metadata_.get<std::string>("dnnmodel_path");
230  graphDef_ = std::unique_ptr<tensorflow::GraphDef>(tensorflow::loadGraphDef(dnnPath.fullPath()));
232  }
233  }
234  produces<std::vector<TrajectorySeed> >();
235 }
236 
238  if (getStrategyFromDNN_) {
239  if (useRegressor_) {
243  } else {
245  }
246  }
247 }
248 
249 //
250 // Produce seeds
251 //
252 void TSGForOIDNN::produce(edm::StreamID sid, edm::Event& iEvent, edm::EventSetup const& iEventSetup) const {
253  // Initialize variables
254  unsigned int numSeedsMade = 0;
255  unsigned int layerCount = 0;
256  unsigned int hitlessSeedsMadeIP = 0;
257  unsigned int hitlessSeedsMadeMuS = 0;
258  unsigned int hitSeedsMade = 0;
259  unsigned int hitDoubletSeedsMade = 0;
260 
261  // Container for DNN inputs
262  std::unordered_map<std::string, float> feature_map;
263 
264  // Container for DNN outputs
265  StrategyParameters strPars;
266 
267  // Surface used to make a TSOS at the PCA to the beamline
269 
270  // Get setup objects
271  const MagneticField& magfield = iEventSetup.getData(t_magfieldH_);
273  const Propagator& tmpPropagatorAlong = iEventSetup.getData(t_propagatorAlongH_);
274  const Propagator& tmpPropagatorOpposite = iEventSetup.getData(t_propagatorOppositeH_);
275  const TrackerGeometry& tmpTkGeometry = iEventSetup.getData(t_tmpTkGeometryH_);
276  const GlobalTrackingGeometry& geometry = iEventSetup.getData(t_geometryH_);
277  const NavigationSchool& navSchool = iEventSetup.getData(t_navSchool_);
279 
280  // Read L2 track collection
281  auto const& l2TrackCol = iEvent.get(src_);
282 
283  // The product
284  std::unique_ptr<std::vector<TrajectorySeed> > result(new std::vector<TrajectorySeed>());
285 
286  // Get vector of Detector layers
287  auto const* gsTracker = measurementTracker.geometricSearchTracker();
288  std::vector<BarrelDetLayer const*> const& tob = gsTracker->tobLayers();
289  std::vector<ForwardDetLayer const*> const& tecPositive =
290  tmpTkGeometry.isThere(GeomDetEnumerators::P2OTEC) ? gsTracker->posTidLayers() : gsTracker->posTecLayers();
291  std::vector<ForwardDetLayer const*> const& tecNegative =
292  tmpTkGeometry.isThere(GeomDetEnumerators::P2OTEC) ? gsTracker->negTidLayers() : gsTracker->negTecLayers();
293 
294  // Get suitable propagators
295  std::unique_ptr<Propagator> propagatorAlong = SetPropagationDirection(tmpPropagatorAlong, alongMomentum);
296  std::unique_ptr<Propagator> propagatorOpposite = SetPropagationDirection(tmpPropagatorOpposite, oppositeToMomentum);
297 
298  // Stepping Helix Propagator for propogation from muon system to tracker
299  edm::ESHandle<Propagator> shpOpposite = iEventSetup.getHandle(t_SHPOpposite_);
300 
301  // Loop over the L2's and make seeds for all of them
302  LogTrace(theCategory_) << "TSGForOIDNN::produce: Number of L2's: " << l2TrackCol.size();
303 
304  for (auto const& l2 : l2TrackCol) {
305  // Container of Seeds
306  std::vector<TrajectorySeed> out;
307  LogTrace("TSGForOIDNN") << "TSGForOIDNN::produce: L2 muon pT, eta, phi --> " << l2.pt() << " , " << l2.eta()
308  << " , " << l2.phi();
309 
311 
312  dummyPlane->move(fts.position() - dummyPlane->position());
313  TrajectoryStateOnSurface tsosAtIP = TrajectoryStateOnSurface(fts, *dummyPlane);
314  LogTrace("TSGForOIDNN") << "TSGForOIDNN::produce: Created TSOSatIP: " << tsosAtIP;
315 
316  // Get the TSOS on the innermost layer of the L2
318  LogTrace("TSGForOIDNN") << "TSGForOIDNN::produce: Created TSOSatMuonSystem: " << tsosAtMuonSystem;
319 
320  LogTrace("TSGForOIDNN")
321  << "TSGForOIDNN::produce: Check the error of the L2 parameter and use hit seeds if big errors";
322 
323  StateOnTrackerBound fromInside(propagatorAlong.get());
324  TrajectoryStateOnSurface outerTkStateInside = fromInside(fts);
325 
326  StateOnTrackerBound fromOutside(&*shpOpposite);
327  TrajectoryStateOnSurface outerTkStateOutside = fromOutside(tsosAtMuonSystem);
328 
329  // Check if the two positions (using updated and not-updated TSOS) agree withing certain extent.
330  // If both TSOSs agree, use only the one at vertex, as it uses more information. If they do not agree, search for seeds based on both.
331  double l2muonEta = l2.eta();
332  double absL2muonEta = std::abs(l2muonEta);
333 
334  // make non-const copies of parameters, so they can be overriden for individual L2 muons
335  unsigned int maxHitSeeds = maxHitSeeds_;
337  unsigned int maxHitlessSeedsIP = maxHitlessSeedsIP_;
339 
340  float errorSFHitless = fixedErrorRescalingForHitless_;
341 
342  // update strategy parameters by evaluating DNN
343  if (getStrategyFromDNN_) {
344  bool dnnSuccess = false;
345 
346  // Update feature map with parameters of the current muon
347  updateFeatureMap(feature_map, l2, tsosAtIP, outerTkStateOutside);
348 
349  if (useRegressor_) {
350  // Use regressor
351  evaluateRegressor(feature_map,
353  metadata_.get_child("HB"),
355  metadata_.get_child("HLIP"),
357  metadata_.get_child("HLMuS"),
358  strPars,
359  dnnSuccess);
360  } else {
361  // Use classifier
362  evaluateClassifier(feature_map, tf_session_, metadata_, strPars, dnnSuccess);
363  }
364  if (!dnnSuccess)
365  break;
366 
367  maxHitSeeds = 0;
368  maxHitDoubletSeeds = strPars.nHBd;
369  maxHitlessSeedsIP = strPars.nHLIP;
370  maxHitlessSeedsMuS = strPars.nHLMuS;
371  errorSFHitless = strPars.sf;
372  }
373 
374  numSeedsMade = 0;
375  hitlessSeedsMadeIP = 0;
376  hitlessSeedsMadeMuS = 0;
377  hitSeedsMade = 0;
378  hitDoubletSeedsMade = 0;
379 
380  auto createSeeds = [&](auto const& layers) {
381  for (auto const& layer : boost::adaptors::reverse(layers)) {
382  if (hitlessSeedsMadeIP < maxHitlessSeedsIP && numSeedsMade < maxSeeds_)
384  tsosAtIP,
385  *(propagatorAlong.get()),
386  estimator,
387  errorSFHitless,
388  hitlessSeedsMadeIP,
389  numSeedsMade,
390  out);
391 
392  if (outerTkStateInside.isValid() && outerTkStateOutside.isValid() && hitlessSeedsMadeMuS < maxHitlessSeedsMuS &&
393  numSeedsMade < maxSeeds_)
395  outerTkStateOutside,
396  *(propagatorOpposite.get()),
397  estimator,
398  errorSFHitless,
399  hitlessSeedsMadeMuS,
400  numSeedsMade,
401  out);
402 
403  if (hitSeedsMade < maxHitSeeds && numSeedsMade < maxSeeds_)
405  tsosAtIP,
406  *(propagatorAlong.get()),
407  estimator,
409  hitSeedsMade,
410  numSeedsMade,
411  maxHitSeeds,
412  layerCount,
413  out);
414 
415  if (hitDoubletSeedsMade < maxHitDoubletSeeds && numSeedsMade < maxSeeds_)
417  tsosAtIP,
418  *(propagatorAlong.get()),
419  estimator,
421  navSchool,
422  hitDoubletSeedsMade,
423  numSeedsMade,
425  layerCount,
426  out);
427  };
428  };
429 
430  // BARREL
431  if (absL2muonEta < maxEtaForTOB_) {
432  layerCount = 0;
433  createSeeds(tob);
434  LogTrace("TSGForOIDNN") << "TSGForOIDNN:::produce: NumSeedsMade = " << numSeedsMade
435  << " , layerCount = " << layerCount;
436  }
437 
438  // Reset number of seeds if in overlap region
439  if (absL2muonEta > minEtaForTEC_ && absL2muonEta < maxEtaForTOB_) {
440  numSeedsMade = 0;
441  hitlessSeedsMadeIP = 0;
442  hitlessSeedsMadeMuS = 0;
443  hitSeedsMade = 0;
444  hitDoubletSeedsMade = 0;
445  }
446 
447  // ENDCAP+
448  if (l2muonEta > minEtaForTEC_) {
449  layerCount = 0;
450  createSeeds(tecPositive);
451  LogTrace("TSGForOIDNN") << "TSGForOIDNN:::produce: NumSeedsMade = " << numSeedsMade
452  << " , layerCount = " << layerCount;
453  }
454 
455  // ENDCAP-
456  if (l2muonEta < -minEtaForTEC_) {
457  layerCount = 0;
458  createSeeds(tecNegative);
459  LogTrace("TSGForOIDNN") << "TSGForOIDNN:::produce: NumSeedsMade = " << numSeedsMade
460  << " , layerCount = " << layerCount;
461  }
462 
463  for (std::vector<TrajectorySeed>::iterator it = out.begin(); it != out.end(); ++it) {
464  result->push_back(*it);
465  }
466 
467  } // L2Collection
468 
469  edm::LogInfo(theCategory_) << "TSGForOIDNN::produce: number of seeds made: " << result->size();
470 
471  iEvent.put(std::move(result));
472 }
473 
474 //
475 // Create seeds without hits on a given layer (TOB or TEC)
476 //
478  const TrajectoryStateOnSurface& tsos,
481  double errorSF,
482  unsigned int& hitlessSeedsMade,
483  unsigned int& numSeedsMade,
484  std::vector<TrajectorySeed>& out) const {
485  // create hitless seeds
486  LogTrace("TSGForOIDNN") << "TSGForOIDNN::makeSeedsWithoutHits: Start hitless";
487  std::vector<GeometricSearchDet::DetWithState> dets;
488  layer.compatibleDetsV(tsos, propagatorAlong, estimator, dets);
489  if (!dets.empty()) {
490  auto const& detOnLayer = dets.front().first;
491  auto& tsosOnLayer = dets.front().second;
492  LogTrace("TSGForOIDNN") << "TSGForOIDNN::makeSeedsWithoutHits: tsosOnLayer " << tsosOnLayer;
493  if (!tsosOnLayer.isValid()) {
494  edm::LogInfo(theCategory_) << "ERROR!: Hitless TSOS is not valid!";
495  } else {
496  tsosOnLayer.rescaleError(errorSF);
497  PTrajectoryStateOnDet const& ptsod =
498  trajectoryStateTransform::persistentState(tsosOnLayer, detOnLayer->geographicalId().rawId());
500  out.push_back(TrajectorySeed(ptsod, rHC, oppositeToMomentum));
501  LogTrace("TSGForOIDNN") << "TSGForOIDNN::makeSeedsWithoutHits: TSOS (Hitless) done ";
502  hitlessSeedsMade++;
503  numSeedsMade++;
504  }
505  }
506 }
507 
508 //
509 // Find hits on a given layer (TOB or TEC) and create seeds from updated TSOS with hit
510 //
512  const TrajectoryStateOnSurface& tsos,
516  unsigned int& hitSeedsMade,
517  unsigned int& numSeedsMade,
518  const unsigned int& maxHitSeeds,
519  unsigned int& layerCount,
520  std::vector<TrajectorySeed>& out) const {
521  if (layerCount > numOfLayersToTry_)
522  return;
523 
524  const TrajectoryStateOnSurface& onLayer(tsos);
525 
526  std::vector<GeometricSearchDet::DetWithState> dets;
527  layer.compatibleDetsV(onLayer, propagatorAlong, estimator, dets);
528 
529  // Find Measurements on each DetWithState
530  LogTrace("TSGForOIDNN") << "TSGForOIDNN::makeSeedsFromHits: Find measurements on each detWithState " << dets.size();
531  std::vector<TrajectoryMeasurement> meas;
532  for (auto const& detI : dets) {
533  MeasurementDetWithData det = measurementTracker.idToDet(detI.first->geographicalId());
534  if (det.isNull())
535  continue;
536  if (!detI.second.isValid())
537  continue; // Skip if TSOS is not valid
538 
539  std::vector<TrajectoryMeasurement> mymeas =
540  det.fastMeasurements(detI.second, onLayer, propagatorAlong, estimator); // Second TSOS is not used
541  for (auto const& measurement : mymeas) {
542  if (measurement.recHit()->isValid())
543  meas.push_back(measurement); // Only save those which are valid
544  }
545  }
546 
547  // Update TSOS using TMs after sorting, then create Trajectory Seed and put into vector
548  LogTrace("TSGForOIDNN") << "TSGForOIDNN::makeSeedsFromHits: Update TSOS using TMs after sorting, then create "
549  "Trajectory Seed, number of TM = "
550  << meas.size();
551  std::sort(meas.begin(), meas.end(), TrajMeasLessEstim());
552 
553  unsigned int found = 0;
554  for (auto const& measurement : meas) {
555  if (hitSeedsMade >= maxHitSeeds)
556  return;
557  TrajectoryStateOnSurface updatedTSOS = updator_->update(measurement.forwardPredictedState(), *measurement.recHit());
558  LogTrace("TSGForOIDNN") << "TSGForOIDNN::makeSeedsFromHits: TSOS for TM " << found;
559  if (not updatedTSOS.isValid())
560  continue;
561 
563  seedHits.push_back(*measurement.recHit()->hit());
564  PTrajectoryStateOnDet const& pstate =
565  trajectoryStateTransform::persistentState(updatedTSOS, measurement.recHit()->geographicalId().rawId());
566  LogTrace("TSGForOIDNN") << "TSGForOIDNN::makeSeedsFromHits: Number of seedHits: " << seedHits.size();
567  TrajectorySeed seed(pstate, std::move(seedHits), oppositeToMomentum);
568  out.push_back(seed);
569  found++;
570  numSeedsMade++;
571  hitSeedsMade++;
572  if (found == numOfHitsToTry_)
573  break;
574  }
575 
576  if (found)
577  layerCount++;
578 }
579 
580 //
581 // Find hits compatible with L2 trajectory on two adjacent layers; if found, create a seed using both hits
582 //
584  const TrajectoryStateOnSurface& tsos,
589  unsigned int& hitDoubletSeedsMade,
590  unsigned int& numSeedsMade,
591  const unsigned int& maxHitDoubletSeeds,
592  unsigned int& layerCount,
593  std::vector<TrajectorySeed>& out) const {
594  // This method is similar to makeSeedsFromHits, but the seed is created
595  // only when in addition to a hit on a given layer, there are more compatible hits
596  // on next layers (going from outside inwards), compatible with updated TSOS.
597  // If that's the case, multiple compatible hits are used to create a single seed.
598 
599  // Configured to only check the immideately adjacent layer and add one more hit
600  int max_addtnl_layers = 1; // max number of additional layers to scan
601  int max_meas = 1; // number of measurements to consider on each additional layer
602 
603  // // // First, regular procedure to find a compatible hit - like in makeSeedsFromHits // // //
604 
605  const TrajectoryStateOnSurface& onLayer(tsos);
606 
607  // Find dets compatible with original TSOS
608  std::vector<GeometricSearchDet::DetWithState> dets;
609  layer.compatibleDetsV(onLayer, propagatorAlong, estimator, dets);
610 
611  LogTrace("TSGForOIDNN") << "TSGForOIDNN::makeSeedsFromHitDoublets: Find measurements on each detWithState "
612  << dets.size();
613  std::vector<TrajectoryMeasurement> meas;
614 
615  // Loop over dets
616  for (auto const& detI : dets) {
617  MeasurementDetWithData det = measurementTracker.idToDet(detI.first->geographicalId());
618 
619  if (det.isNull())
620  continue; // skip if det does not exist
621  if (!detI.second.isValid())
622  continue; // skip if TSOS is invalid
623 
624  // Find measurements on this det
625  std::vector<TrajectoryMeasurement> mymeas = det.fastMeasurements(detI.second, onLayer, propagatorAlong, estimator);
626 
627  // Save valid measurements
628  for (auto const& measurement : mymeas) {
629  if (measurement.recHit()->isValid())
630  meas.push_back(measurement);
631  } // end loop over meas
632  } // end loop over dets
633 
634  LogTrace("TSGForOIDNN") << "TSGForOIDNN::makeSeedsFromHitDoublets: Update TSOS using TMs after sorting, then create "
635  "Trajectory Seed, number of TM = "
636  << meas.size();
637 
638  // sort valid measurements found on the first layer
639  std::sort(meas.begin(), meas.end(), TrajMeasLessEstim());
640 
641  unsigned int found = 0;
642  int hit_num = 0;
643 
644  // Loop over all valid measurements compatible with original TSOS
645  //for (std::vector<TrajectoryMeasurement>::const_iterator mea = meas.begin(); mea != meas.end(); ++mea) {
646  for (auto const& measurement : meas) {
647  if (hitDoubletSeedsMade >= maxHitDoubletSeeds)
648  return; // abort if enough seeds created
649 
650  hit_num++;
651 
652  // Update TSOS with measurement on first considered layer
653  TrajectoryStateOnSurface updatedTSOS = updator_->update(measurement.forwardPredictedState(), *measurement.recHit());
654 
655  LogTrace("TSGForOIDNN") << "TSGForOIDNN::makeSeedsFromHitDoublets: TSOS for TM " << found;
656  if (not updatedTSOS.isValid())
657  continue; // Skip if updated TSOS is invalid
658 
660 
661  // Save hit on first layer
662  seedHits.push_back(*measurement.recHit()->hit());
663  const DetLayer* detLayer = dynamic_cast<const DetLayer*>(&layer);
664 
665  // // // Now for this measurement we will loop over additional layers and try to update the TSOS again // // //
666 
667  // find layers compatible with updated TSOS
668  auto const& compLayers = navSchool.nextLayers(*detLayer, *updatedTSOS.freeState(), alongMomentum);
669 
670  int addtnl_layers_scanned = 0;
671  int found_compatible_on_next_layer = 0;
672  int det_id = 0;
673 
674  // Copy updated TSOS - we will update it again with a measurement from the next layer, if we find it
675  TrajectoryStateOnSurface updatedTSOS_next(updatedTSOS);
676 
677  // loop over layers compatible with updated TSOS
678  for (auto compLayer : compLayers) {
679  int nmeas = 0;
680 
681  if (addtnl_layers_scanned >= max_addtnl_layers)
682  break; // break if we already looped over enough layers
683  if (found_compatible_on_next_layer > 0)
684  break; // break if we already found additional hit
685 
686  // find dets compatible with updated TSOS
687  std::vector<GeometricSearchDet::DetWithState> dets_next;
688  TrajectoryStateOnSurface onLayer_next(updatedTSOS);
689 
690  compLayer->compatibleDetsV(onLayer_next, propagatorAlong, estimator, dets_next);
691 
692  //if (!detWithState.size()) continue;
693  std::vector<TrajectoryMeasurement> meas_next;
694 
695  // find measurements on dets_next and save the valid ones
696  for (auto const& detI_next : dets_next) {
697  MeasurementDetWithData det = measurementTracker.idToDet(detI_next.first->geographicalId());
698 
699  if (det.isNull())
700  continue; // skip if det does not exist
701  if (!detI_next.second.isValid())
702  continue; // skip if TSOS is invalid
703 
704  // Find measurements on this det
705  std::vector<TrajectoryMeasurement> mymeas_next =
706  det.fastMeasurements(detI_next.second, onLayer_next, propagatorAlong, estimator);
707 
708  for (auto const& mea_next : mymeas_next) {
709  // save valid measurements
710  if (mea_next.recHit()->isValid())
711  meas_next.push_back(mea_next);
712 
713  } // end loop over mymeas_next
714  } // end loop over dets_next
715 
716  // sort valid measurements found on this layer
717  std::sort(meas_next.begin(), meas_next.end(), TrajMeasLessEstim());
718 
719  // loop over valid measurements compatible with updated TSOS (TSOS updated with a hit on the first layer)
720  for (auto const& mea_next : meas_next) {
721  if (nmeas >= max_meas)
722  break; // skip if we already found enough hits
723 
724  // try to update TSOS again, with an additional hit
725  updatedTSOS_next = updator_->update(mea_next.forwardPredictedState(), *mea_next.recHit());
726 
727  if (not updatedTSOS_next.isValid())
728  continue; // skip if TSOS updated with additional hit is not valid
729 
730  // If there was a compatible hit on this layer, we end up here.
731  // An additional compatible hit is saved.
732  seedHits.push_back(*mea_next.recHit()->hit());
733  det_id = mea_next.recHit()->geographicalId().rawId();
734  nmeas++;
735  found_compatible_on_next_layer++;
736 
737  } // end loop over meas_next
738 
739  addtnl_layers_scanned++;
740 
741  } // end loop over compLayers (additional layers scanned after the original layer)
742 
743  if (found_compatible_on_next_layer == 0)
744  continue;
745  // only consider the hit if there was a compatible hit on one of the additional scanned layers
746 
747  // Create a seed from two saved hits
748  PTrajectoryStateOnDet const& pstate = trajectoryStateTransform::persistentState(updatedTSOS_next, det_id);
749  TrajectorySeed seed(pstate, std::move(seedHits), oppositeToMomentum);
750 
751  LogTrace("TSGForOIDNN") << "TSGForOIDNN::makeSeedsFromHitDoublets: Number of seedHits: " << seedHits.size();
752  out.push_back(seed);
753 
754  found++;
755  numSeedsMade++;
756  hitDoubletSeedsMade++;
757 
758  if (found == numOfHitsToTry_)
759  break; // break if enough measurements scanned
760 
761  } // end loop over measurements compatible with original TSOS
762 
763  if (found)
764  layerCount++;
765 }
766 
767 //
768 // Update the dictionary of variables to use as input features for DNN
769 //
770 void TSGForOIDNN::updateFeatureMap(std::unordered_map<std::string, float>& the_map,
771  const reco::Track& l2,
772  const TrajectoryStateOnSurface& tsos_IP,
773  const TrajectoryStateOnSurface& tsos_MuS) const {
774  the_map["pt"] = l2.pt();
775  the_map["eta"] = l2.eta();
776  the_map["phi"] = l2.phi();
777  the_map["validHits"] = l2.found();
778  if (tsos_IP.isValid()) {
779  the_map["tsos_IP_eta"] = tsos_IP.globalPosition().eta();
780  the_map["tsos_IP_phi"] = tsos_IP.globalPosition().phi();
781  the_map["tsos_IP_pt"] = tsos_IP.globalMomentum().perp();
782  the_map["tsos_IP_pt_eta"] = tsos_IP.globalMomentum().eta();
783  the_map["tsos_IP_pt_phi"] = tsos_IP.globalMomentum().phi();
784  const AlgebraicSymMatrix55& matrix_IP = tsos_IP.curvilinearError().matrix();
785  the_map["err0_IP"] = sqrt(matrix_IP[0][0]);
786  the_map["err1_IP"] = sqrt(matrix_IP[1][1]);
787  the_map["err2_IP"] = sqrt(matrix_IP[2][2]);
788  the_map["err3_IP"] = sqrt(matrix_IP[3][3]);
789  the_map["err4_IP"] = sqrt(matrix_IP[4][4]);
790  the_map["tsos_IP_valid"] = 1.0;
791  } else {
792  the_map["tsos_IP_eta"] = -999;
793  the_map["tsos_IP_phi"] = -999;
794  the_map["tsos_IP_pt"] = -999;
795  the_map["tsos_IP_pt_eta"] = -999;
796  the_map["tsos_IP_pt_phi"] = -999;
797  the_map["err0_IP"] = -999;
798  the_map["err1_IP"] = -999;
799  the_map["err2_IP"] = -999;
800  the_map["err3_IP"] = -999;
801  the_map["err4_IP"] = -999;
802  the_map["tsos_IP_valid"] = 0.0;
803  }
804  if (tsos_MuS.isValid()) {
805  the_map["tsos_MuS_eta"] = tsos_MuS.globalPosition().eta();
806  the_map["tsos_MuS_phi"] = tsos_MuS.globalPosition().phi();
807  the_map["tsos_MuS_pt"] = tsos_MuS.globalMomentum().perp();
808  the_map["tsos_MuS_pt_eta"] = tsos_MuS.globalMomentum().eta();
809  the_map["tsos_MuS_pt_phi"] = tsos_MuS.globalMomentum().phi();
810  const AlgebraicSymMatrix55& matrix_MuS = tsos_MuS.curvilinearError().matrix();
811  the_map["err0_MuS"] = sqrt(matrix_MuS[0][0]);
812  the_map["err1_MuS"] = sqrt(matrix_MuS[1][1]);
813  the_map["err2_MuS"] = sqrt(matrix_MuS[2][2]);
814  the_map["err3_MuS"] = sqrt(matrix_MuS[3][3]);
815  the_map["err4_MuS"] = sqrt(matrix_MuS[4][4]);
816  the_map["tsos_MuS_valid"] = 1.0;
817  } else {
818  the_map["tsos_MuS_eta"] = -999;
819  the_map["tsos_MuS_phi"] = -999;
820  the_map["tsos_MuS_pt"] = -999;
821  the_map["tsos_MuS_pt_eta"] = -999;
822  the_map["tsos_MuS_pt_phi"] = -999;
823  the_map["err0_MuS"] = -999;
824  the_map["err1_MuS"] = -999;
825  the_map["err2_MuS"] = -999;
826  the_map["err3_MuS"] = -999;
827  the_map["err4_MuS"] = -999;
828  the_map["tsos_MuS_valid"] = 0.0;
829  }
830 }
831 
832 //
833 // Obtain seeding strategy parameters by evaluating DNN classifier for a given muon
834 //
835 void TSGForOIDNN::evaluateClassifier(const std::unordered_map<std::string, float>& feature_map,
836  tensorflow::Session* session,
837  const pt::ptree& metadata,
839  bool& dnnSuccess) const {
840  int n_features = metadata.get<int>("n_features", 0);
841 
842  // Prepare tensor for DNN inputs
843  tensorflow::Tensor input(tensorflow::DT_FLOAT, {1, n_features});
845  int i_feature = 0;
846  for (const pt::ptree::value_type& feature : metadata.get_child("feature_names")) {
847  fname = feature.second.data();
848  if (feature_map.find(fname) == feature_map.end()) {
849  // don't evaluate DNN if any input feature is missing
850  dnnSuccess = false;
851  } else {
852  input.matrix<float>()(0, i_feature) = float(feature_map.at(fname));
853  i_feature++;
854  }
855  }
856 
857  // Prepare tensor for DNN outputs
858  std::vector<tensorflow::Tensor> outputs;
859 
860  // Evaluate DNN and put results in output tensor
861  std::string inputLayer = metadata.get<std::string>("input_layer");
862  std::string outputLayer = metadata.get<std::string>("output_layer");
863 
864  tensorflow::run(session, {{inputLayer, input}}, {outputLayer}, &outputs);
865  tensorflow::Tensor out_tensor = outputs[0];
866  tensorflow::TTypes<float, 1>::Matrix dnn_outputs = out_tensor.matrix<float>();
867 
868  // Find output with largest prediction
869  int imax = 0;
870  float out_max = 0;
871  for (long long int i = 0; i < out_tensor.dim_size(1); i++) {
872  float ith_output = dnn_outputs(0, i);
873  if (ith_output > out_max) {
874  imax = i;
875  out_max = ith_output;
876  }
877  }
878 
879  // Decode output
880  const std::string label = "output_labels.label_" + std::to_string(imax);
881  out.nHBd = metadata.get<int>(label + ".nHBd");
882  out.nHLIP = metadata.get<int>(label + ".nHLIP");
883  out.nHLMuS = metadata.get<int>(label + ".nHLMuS");
884  out.sf = metadata.get<int>(label + ".SF");
885 
886  dnnSuccess = true;
887 }
888 
889 //
890 // Obtain seeding strategy parameters by evaluating DNN regressor for a given muon
891 //
892 void TSGForOIDNN::evaluateRegressor(const std::unordered_map<std::string, float>& feature_map,
893  tensorflow::Session* session_HB,
894  const pt::ptree& metadata_HB,
895  tensorflow::Session* session_HLIP,
896  const pt::ptree& metadata_HLIP,
897  tensorflow::Session* session_HLMuS,
898  const pt::ptree& metadata_HLMuS,
900  bool& dnnSuccess) const {
901  int n_features = metadata_HB.get<int>("n_features", 0);
902 
903  // Prepare tensor for DNN inputs
904  tensorflow::Tensor input(tensorflow::DT_FLOAT, {1, n_features});
906  int i_feature = 0;
907  for (const pt::ptree::value_type& feature : metadata_HB.get_child("feature_names")) {
908  fname = feature.second.data();
909  if (feature_map.find(fname) == feature_map.end()) {
910  // don't evaluate DNN if any input feature is missing
911  dnnSuccess = false;
912  } else {
913  input.matrix<float>()(0, i_feature) = float(feature_map.at(fname));
914  i_feature++;
915  }
916  }
917 
918  // Prepare tensor for DNN outputs
919  std::vector<tensorflow::Tensor> outputs_HB;
920  // Evaluate DNN and put results in output tensor
921  std::string inputLayer_HB = metadata_HB.get<std::string>("input_layer");
922  std::string outputLayer_HB = metadata_HB.get<std::string>("output_layer");
923  tensorflow::run(session_HB, {{inputLayer_HB, input}}, {outputLayer_HB}, &outputs_HB);
924  tensorflow::Tensor out_tensor_HB = outputs_HB[0];
925  tensorflow::TTypes<float, 1>::Matrix dnn_outputs_HB = out_tensor_HB.matrix<float>();
926 
927  // Prepare tensor for DNN outputs
928  std::vector<tensorflow::Tensor> outputs_HLIP;
929  // Evaluate DNN and put results in output tensor
930  std::string inputLayer_HLIP = metadata_HLIP.get<std::string>("input_layer");
931  std::string outputLayer_HLIP = metadata_HLIP.get<std::string>("output_layer");
932  tensorflow::run(session_HLIP, {{inputLayer_HLIP, input}}, {outputLayer_HLIP}, &outputs_HLIP);
933  tensorflow::Tensor out_tensor_HLIP = outputs_HLIP[0];
934  tensorflow::TTypes<float, 1>::Matrix dnn_outputs_HLIP = out_tensor_HLIP.matrix<float>();
935 
936  // Prepare tensor for DNN outputs
937  std::vector<tensorflow::Tensor> outputs_HLMuS;
938  // Evaluate DNN and put results in output tensor
939  std::string inputLayer_HLMuS = metadata_HLMuS.get<std::string>("input_layer");
940  std::string outputLayer_HLMuS = metadata_HLMuS.get<std::string>("output_layer");
941  tensorflow::run(session_HLMuS, {{inputLayer_HLMuS, input}}, {outputLayer_HLMuS}, &outputs_HLMuS);
942  tensorflow::Tensor out_tensor_HLMuS = outputs_HLMuS[0];
943  tensorflow::TTypes<float, 1>::Matrix dnn_outputs_HLMuS = out_tensor_HLMuS.matrix<float>();
944 
945  // Decode output
946  out.nHBd = round(dnn_outputs_HB(0, 0));
947  out.nHLIP = round(dnn_outputs_HLIP(0, 0));
948  out.sf = round(dnn_outputs_HLIP(0, 1));
949  out.nHLMuS = round(dnn_outputs_HLMuS(0, 0));
950 
951  // Prevent prediction of negative number of seeds or too many seeds
952  out.nHBd = std::clamp(out.nHBd, 0, 10);
953  out.nHLIP = std::clamp(out.nHLIP, 0, 10);
954  out.nHLMuS = std::clamp(out.nHLMuS, 0, 10);
955 
956  // Prevent prediction of 0 seeds in total
957  if (out.nHBd == 0 && out.nHLIP == 0 && out.nHLMuS == 0) {
958  // default strategy, similar to Run 2
959  out.nHBd = 1;
960  out.nHLIP = 5;
961  }
962 
963  // Prevent extreme predictions for scale factors
964  // (on average SF=2 was found to be optimal)
965  if (out.sf <= 0)
966  out.sf = 2;
967  if (out.sf > 10)
968  out.sf = 10;
969 
970  dnnSuccess = true;
971 }
972 
973 //
974 // Default values of configuration parameters
975 //
978  desc.add<edm::InputTag>("src", edm::InputTag("hltL2Muons", "UpdatedAtVtx"));
979  desc.add<int>("layersToTry", 2);
980  desc.add<double>("fixedErrorRescaleFactorForHitless", 2.0);
981  desc.add<int>("hitsToTry", 1);
982  desc.add<edm::InputTag>("MeasurementTrackerEvent", edm::InputTag("hltSiStripClusters"));
983  desc.add<std::string>("estimator", "hltESPChi2MeasurementEstimator100");
984  desc.add<double>("maxEtaForTOB", 1.8);
985  desc.add<double>("minEtaForTEC", 0.7);
986  desc.addUntracked<bool>("debug", false);
987  desc.add<unsigned int>("maxSeeds", 20);
988  desc.add<unsigned int>("maxHitlessSeeds", 5);
989  desc.add<unsigned int>("maxHitSeeds", 1);
990  desc.add<std::string>("propagatorName", "PropagatorWithMaterialParabolicMf");
991  desc.add<unsigned int>("maxHitlessSeedsIP", 5);
992  desc.add<unsigned int>("maxHitlessSeedsMuS", 0);
993  desc.add<unsigned int>("maxHitDoubletSeeds", 0);
994  desc.add<bool>("getStrategyFromDNN", false);
995  desc.add<bool>("useRegressor", false);
996  desc.add<std::string>("dnnMetadataPath", "");
997  descriptions.add("tsgForOIDNN", desc);
998 }
999 
Session * createSession(SessionOptions &sessionOptions)
Definition: TensorFlow.cc:84
const unsigned int numOfHitsToTry_
How many hits to try per layer.
Definition: TSGForOIDNN.cc:72
std::string dnnModelPath_HLIP_
Definition: TSGForOIDNN.cc:100
const unsigned int maxSeeds_
Maximum number of seeds for each L2.
Definition: TSGForOIDNN.cc:64
ESGetTokenH3DDVariant esConsumes(std::string const &Record, edm::ConsumesCollector &)
Definition: DeDxTools.cc:283
void evaluateRegressor(const std::unordered_map< std::string, float > &feature_map, tensorflow::Session *session_HB, const pt::ptree &metadata_HB, tensorflow::Session *session_HLIP, const pt::ptree &metadata_HLIP, tensorflow::Session *session_HLMuS, const pt::ptree &metadata_HLMuS, StrategyParameters &out, bool &dnnSuccess) const
Evaluate DNN regressor.
Definition: TSGForOIDNN.cc:892
T perp() const
Definition: PV3DBase.h:69
void updateFeatureMap(std::unordered_map< std::string, float > &the_map, const reco::Track &l2, const TrajectoryStateOnSurface &tsos_IP, const TrajectoryStateOnSurface &tsos_MuS) const
Update dictionary of inputs for DNN.
Definition: TSGForOIDNN.cc:770
std::string dnnModelPath_HLMuS_
Definition: TSGForOIDNN.cc:101
tensorflow::Session * tf_session_HLMuS_
Definition: TSGForOIDNN.cc:107
T const & getData(const ESGetToken< T, R > &iToken) const noexcept(false)
Definition: EventSetup.h:119
const edm::ESGetToken< NavigationSchool, NavigationSchoolRecord > t_navSchool_
Definition: TSGForOIDNN.cc:57
const edm::ESGetToken< GlobalTrackingGeometry, GlobalTrackingGeometryRecord > t_geometryH_
Definition: TSGForOIDNN.cc:56
const edm::EDGetTokenT< MeasurementTrackerEvent > measurementTrackerTag_
Definition: TSGForOIDNN.cc:60
std::vector< TrajectoryMeasurement > fastMeasurements(const TrajectoryStateOnSurface &stateOnThisDet, const TrajectoryStateOnSurface &tsos2, const Propagator &prop, const MeasurementEstimator &est) const
GraphDef * loadGraphDef(const std::string &pbFile)
Definition: TensorFlow.cc:67
void makeSeedsFromHitDoublets(const GeometricSearchDet &layer, const TrajectoryStateOnSurface &tsos, const Propagator &propagatorAlong, const Chi2MeasurementEstimatorBase &estimator, const MeasurementTrackerEvent &measurementTracker, const NavigationSchool &navSchool, unsigned int &hitDoubletSeedsMade, unsigned int &numSeedsMade, const unsigned int &maxHitDoubletSeeds, unsigned int &layerCount, std::vector< TrajectorySeed > &out) const
Similar to makeSeedsFromHits, but seed is created only if there are compatible hits on two adjacent l...
Definition: TSGForOIDNN.cc:583
Geom::Phi< T > phi() const
Definition: PV3DBase.h:66
tensorflow::Session * tf_session_HB_
Definition: TSGForOIDNN.cc:103
const unsigned int maxHitlessSeedsMuS_
Definition: TSGForOIDNN.cc:85
T eta() const
Definition: PV3DBase.h:73
const edm::EDGetTokenT< reco::TrackCollection > src_
Labels for input collections.
Definition: TSGForOIDNN.cc:49
const unsigned int maxHitlessSeedsIP_
Definition: TSGForOIDNN.cc:84
PTrajectoryStateOnDet persistentState(const TrajectoryStateOnSurface &ts, unsigned int detid)
std::unique_ptr< tensorflow::GraphDef > graphDef_HLIP_
Definition: TSGForOIDNN.cc:104
const edm::ESGetToken< Chi2MeasurementEstimatorBase, TrackingComponentsRecord > t_estimatorH_
Tokens for ESHandle.
Definition: TSGForOIDNN.cc:51
std::string to_string(const V &value)
Definition: OMSAccess.h:71
const double minEtaForTEC_
Minimum eta value to activate searching in the TEC.
Definition: TSGForOIDNN.cc:78
Container for DNN outupts.
Definition: TSGForOIDNN.cc:155
#define LogTrace(id)
static std::string const input
Definition: EdmProvDump.cc:50
unsigned short found() const
Number of valid hits on track.
Definition: Track.h:142
static PlanePointer build(Args &&... args)
Definition: Plane.h:33
GlobalPoint position() const
constexpr std::array< uint8_t, layerIndexSize< TrackerTraits > > layer
double pt() const
track transverse momentum
Definition: TrackBase.h:637
char const * label
std::unique_ptr< Propagator > SetPropagationDirection(Propagator const &iprop, PropagationDirection dir)
void push_back(D *&d)
Definition: OwnVector.h:326
int iEvent
Definition: GenABIO.cc:224
const double fixedErrorRescalingForHitless_
Rescale L2 parameter uncertainties (fixed error vs pT, eta)
Definition: TSGForOIDNN.cc:74
GlobalPoint globalPosition() const
const std::string dnnMetadataPath_
DNN metadata.
Definition: TSGForOIDNN.cc:110
bool isThere(GeomDetEnumerators::SubDetector subdet) const
const std::string theCategory_
Definition: TSGForOIDNN.cc:61
T sqrt(T t)
Definition: SSEVec.h:19
const edm::ESGetToken< Propagator, TrackingComponentsRecord > t_propagatorOppositeH_
Definition: TSGForOIDNN.cc:54
const std::string estimatorName_
Estimator used to find dets and TrajectoryMeasurements.
Definition: TSGForOIDNN.cc:76
size_type size() const
Definition: OwnVector.h:300
const unsigned int maxHitSeeds_
Maximum number of hitbased seeds for each L2.
Definition: TSGForOIDNN.cc:66
void run(Session *session, const NamedTensorList &inputs, const std::vector< std::string > &outputNames, std::vector< Tensor > *outputs, const thread::ThreadPoolOptions &threadPoolOptions)
Definition: TensorFlow.cc:222
bool closeSession(Session *&session)
Definition: TensorFlow.cc:197
const unsigned int maxHitDoubletSeeds_
Definition: TSGForOIDNN.cc:86
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
std::string dnnModelPath_
Settings for classifier.
Definition: TSGForOIDNN.cc:94
static void fillDescriptions(edm::ConfigurationDescriptions &descriptions)
Definition: TSGForOIDNN.cc:976
double phi() const
azimuthal angle of momentum vector
Definition: TrackBase.h:649
#define DEFINE_FWK_MODULE(type)
Definition: MakerMacros.h:16
TSGForOIDNN(const edm::ParameterSet &iConfig)
Definition: TSGForOIDNN.cc:178
ESHandle< T > getHandle(const ESGetToken< T, R > &iToken) const
Definition: EventSetup.h:130
const bool useRegressor_
Whether to use DNN regressor (if false, will use classifier)
Definition: TSGForOIDNN.cc:91
void makeSeedsWithoutHits(const GeometricSearchDet &layer, const TrajectoryStateOnSurface &tsos, const Propagator &propagatorAlong, const Chi2MeasurementEstimatorBase &estimator, double errorSF, unsigned int &hitlessSeedsMade, unsigned int &numSeedsMade, std::vector< TrajectorySeed > &out) const
Create seeds without hits on a given layer (TOB or TEC)
Definition: TSGForOIDNN.cc:477
Log< level::Info, false > LogInfo
double eta() const
pseudorapidity of momentum vector
Definition: TrackBase.h:652
void setLogging(const std::string &level="3")
Definition: TensorFlow.cc:14
const CurvilinearTrajectoryError & curvilinearError() const
const edm::ESGetToken< Propagator, TrackingComponentsRecord > t_SHPOpposite_
Definition: TSGForOIDNN.cc:58
const double maxEtaForTOB_
Maximum eta value to activate searching in the TOB.
Definition: TSGForOIDNN.cc:80
const AlgebraicSymMatrix55 & matrix() const
ROOT::Math::SMatrix< double, 5, 5, ROOT::Math::MatRepSym< double, 5 > > AlgebraicSymMatrix55
std::string dnnModelPath_HB_
Settings for regressor.
Definition: TSGForOIDNN.cc:99
void add(std::string const &label, ParameterSetDescription const &psetDescription)
GlobalVector globalMomentum() const
std::unique_ptr< tensorflow::GraphDef > graphDef_
Definition: TSGForOIDNN.cc:95
const edm::ESGetToken< MagneticField, IdealMagneticFieldRecord > t_magfieldH_
Definition: TSGForOIDNN.cc:52
string fname
main script
std::unique_ptr< tensorflow::GraphDef > graphDef_HB_
Definition: TSGForOIDNN.cc:102
tensorflow::Session * tf_session_
Definition: TSGForOIDNN.cc:96
HLT enums.
FreeTrajectoryState const * freeState(bool withErrors=true) const
const edm::ESGetToken< Propagator, TrackingComponentsRecord > t_propagatorAlongH_
Definition: TSGForOIDNN.cc:53
const unsigned int numOfLayersToTry_
How many layers to try.
Definition: TSGForOIDNN.cc:70
const bool getStrategyFromDNN_
Get number of seeds to use from DNN output instead of "max..Seeds" parameters.
Definition: TSGForOIDNN.cc:89
std::unique_ptr< tensorflow::GraphDef > graphDef_HLMuS_
Definition: TSGForOIDNN.cc:106
pt::ptree metadata_
Definition: TSGForOIDNN.cc:111
const std::unique_ptr< TrajectoryStateUpdator > updator_
Definition: TSGForOIDNN.cc:59
const edm::ESGetToken< TrackerGeometry, TrackerDigiGeometryRecord > t_tmpTkGeometryH_
Definition: TSGForOIDNN.cc:55
portabletest::Matrix Matrix
FreeTrajectoryState initialFreeState(const reco::Track &tk, const MagneticField *field, bool withErr=true)
~TSGForOIDNN() override
Definition: TSGForOIDNN.cc:237
Create L3MuonTrajectorySeeds from L2 Muons in an outside-in manner.
Definition: TSGForOIDNN.cc:40
void evaluateClassifier(const std::unordered_map< std::string, float > &feature_map, tensorflow::Session *session, const pt::ptree &metadata, StrategyParameters &out, bool &dnnSuccess) const
Evaluate DNN classifier.
Definition: TSGForOIDNN.cc:835
void produce(edm::StreamID sid, edm::Event &iEvent, const edm::EventSetup &iSetup) const override
Definition: TSGForOIDNN.cc:252
def move(src, dest)
Definition: eostools.py:511
void makeSeedsFromHits(const GeometricSearchDet &layer, const TrajectoryStateOnSurface &tsos, const Propagator &propagatorAlong, const Chi2MeasurementEstimatorBase &estimator, const MeasurementTrackerEvent &measurementTracker, unsigned int &hitSeedsMade, unsigned int &numSeedsMade, const unsigned int &maxHitSeeds, unsigned int &layerCount, std::vector< TrajectorySeed > &out) const
Find hits on a given layer (TOB or TEC) and create seeds from updated TSOS with hit.
Definition: TSGForOIDNN.cc:511
const unsigned int maxHitlessSeeds_
Maximum number of hitless seeds for each L2.
Definition: TSGForOIDNN.cc:68
TrajectoryStateOnSurface innerStateOnSurface(const reco::Track &tk, const TrackingGeometry &geom, const MagneticField *field, bool withErr=true)
tensorflow::Session * tf_session_HLIP_
Definition: TSGForOIDNN.cc:105