CMS 3D CMS Logo

List of all members | Public Member Functions | Protected Member Functions | Protected Attributes | Private Member Functions | Static Private Member Functions | Private Attributes
G4muDarkBremsstrahlungModel Class Reference

#include <G4muDarkBremsstrahlungModel.h>

Inheritance diagram for G4muDarkBremsstrahlungModel:

Public Member Functions

G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *, G4double tkin, G4double Z, G4double, G4double cut, G4double maxE=DBL_MAX) override
 
G4DataVector * ComputePartialSumSigma (const G4Material *material, G4double tkin, G4double cut)
 
 G4muDarkBremsstrahlungModel (const G4String &scalefile, const G4double biasFactor, const G4ParticleDefinition *p=nullptr, const G4String &nam="eDBrem")
 
 G4muDarkBremsstrahlungModel (const G4muDarkBremsstrahlungModel &)=delete
 
frame GetMadgraphData (double E0)
 
void Initialise (const G4ParticleDefinition *, const G4DataVector &) override
 
void LoadMG ()
 
void MakePlaceholders ()
 
G4muDarkBremsstrahlungModeloperator= (const G4muDarkBremsstrahlungModel &right)=delete
 
void SampleSecondaries (std::vector< G4DynamicParticle *> *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
 
void SetMethod (std::string)
 
 ~G4muDarkBremsstrahlungModel () override
 

Protected Member Functions

const G4Element * SelectRandomAtom (const G4MaterialCutsCouple *couple)
 

Protected Attributes

const G4double cxBias
 
G4ParticleChangeForLoss * fParticleChange
 
G4bool isMuon
 
G4double MA
 
const G4String & mgfile
 
G4double muonMass
 
const G4ParticleDefinition * particle
 
G4ParticleDefinition * theAPrime
 

Private Member Functions

void SetParticle (const G4ParticleDefinition *p)
 

Static Private Member Functions

static G4double chi (double t, void *pp)
 
static G4double DsigmaDx (double x, void *pp)
 

Private Attributes

std::vector< std::pair< double, int > > energies
 
G4double highKinEnergy
 
G4bool isInitialised
 
G4double lowKinEnergy
 
std::string method
 
G4bool mg_loaded
 
std::map< double, std::vector< frame > > mgdata
 
std::vector< G4DataVector * > partialSumSigma
 
G4double probsup
 

Detailed Description

Definition at line 36 of file G4muDarkBremsstrahlungModel.h.

Constructor & Destructor Documentation

◆ G4muDarkBremsstrahlungModel() [1/2]

G4muDarkBremsstrahlungModel::G4muDarkBremsstrahlungModel ( const G4String &  scalefile,
const G4double  biasFactor,
const G4ParticleDefinition *  p = nullptr,
const G4String &  nam = "eDBrem" 
)

Definition at line 21 of file G4muDarkBremsstrahlungModel.cc.

References G4APrime::APrime(), fParticleChange, highKinEnergy, lowKinEnergy, MA, muonMass, AlCaHLTBitMon_ParallelJobs::p, SetParticle(), and theAPrime.

25  : G4VEmModel(nam),
26  mgfile(scalefile),
27  cxBias(biasFactor),
28  particle(nullptr),
29  isMuon(true),
30  probsup(1.0),
31  isInitialised(false),
32  method("forward_only"),
33  mg_loaded(false) {
34  if (p) {
35  SetParticle(p);
36  } //Verify that the particle is a muon.
38  MA = G4APrime::APrime()->GetPDGMass() / CLHEP::GeV; //Get the A' mass.
39  muonMass = G4MuonMinus::MuonMinusDefinition()->GetPDGMass() / CLHEP::GeV; //Get the muon mass
40  highKinEnergy = HighEnergyLimit();
41  lowKinEnergy = LowEnergyLimit();
42  fParticleChange = nullptr;
43 }
G4ParticleChangeForLoss * fParticleChange
static G4APrime * APrime(double apmass=1000)
Definition: G4APrime.cc:43
void SetParticle(const G4ParticleDefinition *p)
const G4ParticleDefinition * particle

◆ ~G4muDarkBremsstrahlungModel()

G4muDarkBremsstrahlungModel::~G4muDarkBremsstrahlungModel ( )
override

Definition at line 45 of file G4muDarkBremsstrahlungModel.cc.

References mps_fire::i, dqmiodumpmetadata::n, and partialSumSigma.

45  {
46  size_t n = partialSumSigma.size();
47  if (n > 0) {
48  for (size_t i = 0; i < n; i++) {
49  delete partialSumSigma[i];
50  }
51  }
52 }
std::vector< G4DataVector * > partialSumSigma

◆ G4muDarkBremsstrahlungModel() [2/2]

G4muDarkBremsstrahlungModel::G4muDarkBremsstrahlungModel ( const G4muDarkBremsstrahlungModel )
delete

Member Function Documentation

◆ chi()

G4double G4muDarkBremsstrahlungModel::chi ( double  t,
void *  pp 
)
staticprivate

Definition at line 195 of file G4muDarkBremsstrahlungModel.cc.

References a, ztail::d, submitPVValidationJobs::params, funct::pow(), createTree::pp, and submitPVValidationJobs::t.

Referenced by ComputeCrossSectionPerAtom().

195  {
197  /* Reminder II:
198  * params->AA;
199  * params->ZZ;
200  * params->MMA;
201  * params->MMu;
202  * params->EE0;
203  */
204  G4double Mel = 5.1E-04;
205  G4double MUp = 2.79;
206  G4double Mpr = 0.938;
207  G4double d = 0.164 / pow((params->AA), 2. / 3.);
208  G4double ap = 773.0 / Mel / pow((params->ZZ), 2. / 3.);
209  G4double a = 111.0 / Mel / pow((params->ZZ), 1. / 3.);
210  G4double G2el = (params->ZZ) * (params->ZZ) * a * a * a * a * t * t / (1.0 + a * a * t) / (1.0 + a * a * t) /
211  (1.0 + t / d) / (1.0 + t / d);
212  G4double G2in = (params->ZZ) * ap * ap * ap * ap * t * t / (1.0 + ap * ap * t) / (1.0 + ap * ap * t) /
213  (1.0 + t / 0.71) / (1.0 + t / 0.71) / (1.0 + t / 0.71) / (1.0 + t / 0.71) / (1.0 + t / 0.71) /
214  (1.0 + t / 0.71) / (1.0 + t / 0.71) / (1.0 + t / 0.71) *
215  (1.0 + t * (MUp * MUp - 1.0) / 4.0 / Mpr / Mpr) * (1.0 + t * (MUp * MUp - 1.0) / 4.0 / Mpr / Mpr);
216  G4double G2 = G2el + G2in;
217  G4double ttmin = (params->MMA) * (params->MMA) * (params->MMA) * (params->MMA) / 4.0 / (params->EE0) / (params->EE0);
218  // G4double ttmin = lowerLimit(x,theta,p);
219  G4double Under = G2 * (t - ttmin) / t / t;
220 
221  return Under;
222 }
d
Definition: ztail.py:151
double a
Definition: hdecay.h:119
Power< A, B >::type pow(const A &a, const B &b)
Definition: Power.h:29

◆ ComputeCrossSectionPerAtom()

G4double G4muDarkBremsstrahlungModel::ComputeCrossSectionPerAtom ( const G4ParticleDefinition *  ,
G4double  tkin,
G4double  Z,
G4double  A,
G4double  cut,
G4double  maxE = DBL_MAX 
)
override

Definition at line 224 of file G4muDarkBremsstrahlungModel.cc.

References A, alpha, chi(), cross(), DMR_cfg::cut, cxBias, DsigmaDx(), MillePedeFileConverter_cfg::e, submitPVResolutionJobs::err, relativeConstraints::error, F(), cmssw_cycle_finder::G, MA, muonMass, mps_fire::result, tmax, muonTiming_cfi::tmin, w(), TrackerOfflineValidation_Dqm_cff::xmax, TrackerOfflineValidation_Dqm_cff::xmin, and BeamSpotPI::Z.

Referenced by ComputePartialSumSigma().

227 {
228  G4double cross = 0.0;
229  if (E0 < keV || E0 < cut) {
230  return cross;
231  }
232 
233  E0 = E0 / CLHEP::GeV; //Change energy to GeV.
234  if (E0 < 2. * MA)
235  return 0.;
236 
237  //begin: chi-formfactor calculation
238  gsl_integration_workspace* w = gsl_integration_workspace_alloc(1000);
239 
240  G4double result, error;
241  G4double tmin = MA * MA * MA * MA / (4. * E0 * E0);
242  G4double tmax = MA * MA;
243 
244  gsl_function F;
245  ParamsForChi alpha = {1.0, 1.0, 1.0, 1.0, 1.0};
247  F.params = &alpha;
248  alpha.AA = A;
249  alpha.ZZ = Z;
250  alpha.MMA = MA;
251  alpha.MMu = muonMass;
252  alpha.EE0 = E0;
253 
254  //Integrate over chi.
255  gsl_integration_qags(&F, tmin, tmax, 0, 1e-7, 1000, w, &result, &error);
256 
257  G4double ChiRes = result;
258  gsl_integration_workspace_free(w);
259 
260  //Integrate over x. Can use log approximation instead, which falls off at high A' mass.
261  gsl_integration_workspace* dxspace = gsl_integration_workspace_alloc(1000);
262  gsl_function G;
263  G.function = &DsigmaDx;
264  G.params = &alpha;
265  G4double xmin = 0;
266  G4double xmax = muonMass > MA ? 1. - muonMass / E0 : 1. - MA / E0;
267  G4double res, err;
268 
269  gsl_integration_qags(&G, xmin, xmax, 0, 1e-7, 1000, dxspace, &res, &err);
270 
271  G4double DsDx = res;
272  gsl_integration_workspace_free(dxspace);
273 
274  G4double GeVtoPb = 3.894E08;
275  G4double alphaEW = 1.0 / 137.0;
276  G4double epsilBench = 1;
277 
278  cross = GeVtoPb * 4. * alphaEW * alphaEW * alphaEW * epsilBench * epsilBench * ChiRes * DsDx * CLHEP::picobarn;
279  if (cross < 0.) {
280  cross = 0.;
281  }
282 
283  cross = cross * cxBias;
284  return cross;
285 }
float alpha
Definition: AMPTWrapper.h:105
Basic3DVector cross(const Basic3DVector &v) const
Vector product, or "cross" product, with a vector of same type.
T w() const
Definition: Electron.h:6
static G4double chi(double t, void *pp)
static const double tmax[3]
static G4double DsigmaDx(double x, void *pp)
Definition: APVGainStruct.h:7
static uInt32 F(BLOWFISH_CTX *ctx, uInt32 x)
Definition: blowfish.cc:163

◆ ComputePartialSumSigma()

G4DataVector * G4muDarkBremsstrahlungModel::ComputePartialSumSigma ( const G4Material *  material,
G4double  tkin,
G4double  cut 
)

Definition at line 287 of file G4muDarkBremsstrahlungModel.cc.

References ComputeCrossSectionPerAtom(), cross(), DMR_cfg::cut, mps_fire::i, and particle.

Referenced by Initialise().

294 {
295  G4int nElements = material->GetNumberOfElements();
296  const G4ElementVector* theElementVector = material->GetElementVector();
297  const G4double* theAtomNumDensityVector = material->GetAtomicNumDensityVector();
298  G4DataVector* dv = new G4DataVector();
299  G4double cross = 0.0;
300 
301  for (G4int i = 0; i < nElements; i++) {
302  cross += theAtomNumDensityVector[i] *
304  particle, kineticEnergy, (*theElementVector)[i]->GetZ(), (*theElementVector)[i]->GetN(), cut);
305  dv->push_back(cross);
306  }
307  return dv;
308 }
Basic3DVector cross(const Basic3DVector &v) const
Vector product, or "cross" product, with a vector of same type.
G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double tkin, G4double Z, G4double, G4double cut, G4double maxE=DBL_MAX) override
const G4ParticleDefinition * particle

◆ DsigmaDx()

G4double G4muDarkBremsstrahlungModel::DsigmaDx ( double  x,
void *  pp 
)
staticprivate

Definition at line 184 of file G4muDarkBremsstrahlungModel.cc.

References HLT_2023v12_cff::beta, makePileupJSON::denom, EgammaValidation_cff::num, submitPVValidationJobs::params, createTree::pp, mathSSE::sqrt(), and x.

Referenced by ComputeCrossSectionPerAtom().

184  {
186 
187  G4double beta = sqrt(1 - (params->MMA) * (params->MMA) / (params->EE0) / (params->EE0));
188  G4double num = 1. - x + x * x / 3.;
189  G4double denom = (params->MMA) * (params->MMA) * (1. - x) / x + (params->MMu) * (params->MMu) * x;
190  G4double DsDx = beta * num / denom;
191 
192  return DsDx;
193 }
T sqrt(T t)
Definition: SSEVec.h:19

◆ GetMadgraphData()

frame G4muDarkBremsstrahlungModel::GetMadgraphData ( double  E0)

Definition at line 149 of file G4muDarkBremsstrahlungModel.cc.

References energies, dqmdumpme::first, mps_fire::i, mgdata, edm::second(), and findQualityFiles::size.

Referenced by SampleSecondaries().

151 {
152  frame cmdata;
153  uint64_t i = 0;
154  bool pass = false;
155  //G4double Mel = 5.1E-04;
156  //Cycle through imported beam energies until the closest one above is found, or the max is reached.
157  while (!pass) {
158  i++;
159  if ((E0 <= energies[i].first) || (i >= energies.size())) {
160  pass = true;
161  }
162  }
163 
164  if (i == energies.size()) {
165  i--;
166  } //Decrement if the loop hit the maximum, to prevent a segfault.
167  //energies is a vector of pairs. energies[i].first holds the imported beam energy,
168  //energies[i].second holds the place as we loop through different energy sampling files.
169  //Need to loop around if we hit the end, when the size of mgdata is smaller than our index
170  //on energies[i].second.
171  if (energies[i].second >= double(mgdata[energies[i].first].size())) {
172  energies[i].second = 0;
173  }
174 
175  //Get the lorentz vectors from the index given by the placeholder.
176  cmdata = mgdata[energies[i].first].at(energies[i].second);
177 
178  //Increment the placeholder.
179  energies[i].second = energies[i].second + 1;
180 
181  return cmdata;
182 }
size
Write out results.
std::map< double, std::vector< frame > > mgdata
std::vector< std::pair< double, int > > energies
U second(std::pair< T, U > const &p)
unsigned long long uint64_t
Definition: Time.h:13

◆ Initialise()

void G4muDarkBremsstrahlungModel::Initialise ( const G4ParticleDefinition *  p,
const G4DataVector &  cuts 
)
override

Definition at line 64 of file G4muDarkBremsstrahlungModel.cc.

References a, ComputePartialSumSigma(), fParticleChange, highKinEnergy, mps_fire::i, cuy::ii, isInitialised, lowKinEnergy, SiStripPI::min, groupFilesInBlocks::nn, AlCaHLTBitMon_ParallelJobs::p, partialSumSigma, and SetParticle().

64  {
65  if (p) {
66  SetParticle(p);
67  }
68 
69  highKinEnergy = HighEnergyLimit();
70  lowKinEnergy = LowEnergyLimit();
71  const G4ProductionCutsTable* theCoupleTable = G4ProductionCutsTable::GetProductionCutsTable();
72 
73  if (theCoupleTable) {
74  G4int numOfCouples = theCoupleTable->GetTableSize();
75  G4int nn = partialSumSigma.size();
76  G4int nc = cuts.size();
77  if (nn > 0) {
78  for (G4int ii = 0; ii < nn; ii++) {
79  G4DataVector* a = partialSumSigma[ii];
80  if (a)
81  delete a;
82  }
83  partialSumSigma.clear();
84  }
85  if (numOfCouples > 0) {
86  for (G4int i = 0; i < numOfCouples; i++) {
87  G4double cute = DBL_MAX;
88  if (i < nc)
89  cute = cuts[i];
90  const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i);
91  const G4Material* material = couple->GetMaterial();
92  G4DataVector* dv = ComputePartialSumSigma(material, 0.5 * highKinEnergy, std::min(cute, 0.25 * highKinEnergy));
93  partialSumSigma.push_back(dv);
94  }
95  }
96  }
97 
98  if (isInitialised)
99  return;
100  fParticleChange = GetParticleChangeForLoss();
101  isInitialised = true;
102 }
G4ParticleChangeForLoss * fParticleChange
ii
Definition: cuy.py:589
std::vector< G4DataVector * > partialSumSigma
double a
Definition: hdecay.h:119
void SetParticle(const G4ParticleDefinition *p)
G4DataVector * ComputePartialSumSigma(const G4Material *material, G4double tkin, G4double cut)

◆ LoadMG()

void G4muDarkBremsstrahlungModel::LoadMG ( )

Definition at line 104 of file G4muDarkBremsstrahlungModel.cc.

References frame::cm, frame::E, f, frame::fEl, mps_fire::i, createfilelist::int, mgdata, and mgfile.

Referenced by SampleSecondaries().

106 {
107  TFile* f = TFile::Open(mgfile.c_str());
108  TTree* tree = (TTree*)f->Get("Events");
109  TLorentzVector* mvec = new TLorentzVector();
110  TLorentzVector* avec = new TLorentzVector();
111  TLorentzVector* nvec = new TLorentzVector();
112  tree->SetBranchAddress("IncidentParticle", &mvec);
113  tree->SetBranchAddress("APrime", &avec);
114  tree->SetBranchAddress("Nucleus", &nvec);
115  int entries = tree->GetEntries();
116  int start = int(G4UniformRand() * entries);
117  for (int i = start; i < int(start + entries / 10.); i++) {
118  if (i < entries) {
119  tree->GetEntry(i);
120  } else {
121  tree->GetEntry(i - entries);
122  }
123  frame evnt;
124  evnt.fEl = (TLorentzVector*)mvec->Clone();
125  evnt.cm = (TLorentzVector*)avec->Clone();
126  *evnt.cm = *evnt.cm + *evnt.fEl;
127  TLorentzVector* ebeam = (TLorentzVector*)nvec->Clone();
128  *ebeam = *ebeam + *evnt.cm;
129  evnt.E = round(ebeam->Z() * 10.) / 10.;
130  if (mgdata.count(evnt.E) == 0) {
131  mgdata[evnt.E];
132  }
133  mgdata[evnt.E].push_back(evnt);
134  }
135  f->Close();
136 }
std::map< double, std::vector< frame > > mgdata
Definition: start.py:1
double f[11][100]
TLorentzVector * cm
TLorentzVector * fEl
Definition: tree.py:1

◆ MakePlaceholders()

void G4muDarkBremsstrahlungModel::MakePlaceholders ( )

Definition at line 138 of file G4muDarkBremsstrahlungModel.cc.

References energies, dqmdumpme::first, mps_fire::i, createfilelist::int, mgdata, and findQualityFiles::size.

Referenced by SampleSecondaries().

138  {
139  //Need to do this to set up random sampling of mg distributions
140  for (const auto& iter : mgdata) {
141  energies.push_back(std::make_pair(iter.first, iter.second.size()));
142  }
143 
144  for (uint64_t i = 0; i < energies.size(); i++) {
145  energies[i].second = int(G4UniformRand() * mgdata[energies[i].first].size());
146  }
147 }
size
Write out results.
std::map< double, std::vector< frame > > mgdata
std::vector< std::pair< double, int > > energies
unsigned long long uint64_t
Definition: Time.h:13

◆ operator=()

G4muDarkBremsstrahlungModel& G4muDarkBremsstrahlungModel::operator= ( const G4muDarkBremsstrahlungModel right)
delete

◆ SampleSecondaries()

void G4muDarkBremsstrahlungModel::SampleSecondaries ( std::vector< G4DynamicParticle *> *  vdp,
const G4MaterialCutsCouple *  couple,
const G4DynamicParticle *  dp,
G4double  tmin,
G4double  maxEnergy 
)
override

Definition at line 310 of file G4muDarkBremsstrahlungModel.cc.

References funct::cos(), data, Calorimetry_cff::dp, fParticleChange, GetMadgraphData(), mps_fire::i, LoadMG(), MA, MakePlaceholders(), particleFlowClusterECALTimeSelected_cfi::maxEnergy, method, mg_loaded, SiStripPI::min, amptDefaultParameters_cff::mu, muonMass, particle, unpackData-CaloStage2::pname, funct::sin(), mathSSE::sqrt(), theAPrime, tmax, and muonTiming_cfi::tmin.

316 {
317  //Deactivate the process after one dark brem. Needs to be reactivated in the end of event action. If this is in the stepping action instead, more than one brem can occur within each step.
318  G4bool state = false;
319  G4String pname = "muDBrem";
320  G4ProcessTable* ptable = G4ProcessTable::GetProcessTable();
321  ptable->SetProcessActivation(pname, state);
322  if (mg_loaded == false) {
323  LoadMG();
324  MakePlaceholders(); //Setup the placeholder offsets for getting data.
325  mg_loaded = true;
326  }
327  G4double E0 = dp->GetTotalEnergy();
328  G4double tmax = min(maxEnergy, E0);
329  if (tmin >= tmax) {
330  return;
331  } // limits of the energy sampling
332 
333  E0 = E0 / CLHEP::GeV; //Convert the energy to GeV, the units used in the sampling files.
334 
335  frame data = GetMadgraphData(E0);
336  double EAcc, Pt, P, PhiAcc;
337  if (method == "forward_only") {
338  EAcc = (data.fEl->E() - muonMass) / (data.E - muonMass - MA) * (E0 - muonMass - MA);
339  EAcc = muonMass + EAcc;
340  Pt = data.fEl->Pt();
341  P = sqrt(EAcc * EAcc - muonMass * muonMass);
342  PhiAcc = data.fEl->Phi();
343  int i = 0;
344  while (Pt * Pt + muonMass * muonMass > EAcc * EAcc) //Skip events until the Pt is less than the energy.
345  {
346  i++;
347  data = GetMadgraphData(E0);
348  EAcc = (data.fEl->E() - muonMass) / (data.E - muonMass - MA) * (E0 - muonMass - MA);
349  EAcc = muonMass + EAcc;
350  Pt = data.fEl->Pt();
351  P = sqrt(EAcc * EAcc - muonMass * muonMass);
352  PhiAcc = data.fEl->Phi();
353 
354  if (i > 10000) {
355  break;
356  }
357  }
358  } else if (method == "cm_scaling") {
359  TLorentzVector* el = new TLorentzVector(data.fEl->X(), data.fEl->Y(), data.fEl->Z(), data.fEl->E());
360  double ediff = data.E - E0;
361  TLorentzVector* newcm = new TLorentzVector(data.cm->X(), data.cm->Y(), data.cm->Z() - ediff, data.cm->E() - ediff);
362  el->Boost(-1. * data.cm->BoostVector());
363  el->Boost(newcm->BoostVector());
364  double newE = (data.fEl->E() - muonMass) / (data.E - muonMass - MA) * (E0 - muonMass - MA);
365  el->SetE(newE);
366  EAcc = el->E();
367  Pt = el->Pt();
368  P = el->P();
369  PhiAcc = el->Phi();
370  } else {
371  EAcc = E0;
372  P = dp->GetTotalMomentum();
373  Pt = sqrt(dp->Get4Momentum().px() * dp->Get4Momentum().px() + dp->Get4Momentum().py() * dp->Get4Momentum().py());
374  PhiAcc = dp->Get4Momentum().phi();
375  }
376 
377  EAcc = EAcc * CLHEP::GeV; //Change the energy back to MeV, the internal GEANT unit.
378 
379  G4double muon_mass_mev = muonMass * CLHEP::GeV;
380  G4double momentum = sqrt(EAcc * EAcc - muon_mass_mev * muon_mass_mev); //Muon momentum in MeV.
381  G4ThreeVector newDirection;
382  double ThetaAcc = std::asin(Pt / P);
383  newDirection.set(std::sin(ThetaAcc) * std::cos(PhiAcc), std::sin(ThetaAcc) * std::sin(PhiAcc), std::cos(ThetaAcc));
384  newDirection.rotateUz(dp->GetMomentumDirection());
385  newDirection.setMag(momentum);
386  // create g4dynamicparticle object for the dark photon.
387  G4ThreeVector direction = (dp->GetMomentum() - newDirection);
388  G4DynamicParticle* dphoton = new G4DynamicParticle(theAPrime, direction);
389  vdp->push_back(dphoton);
390 
391  // energy of primary
392  G4double finalKE = EAcc - muon_mass_mev;
393 
394  // stop tracking and create new secondary instead of primary
395  bool makeSecondary = true;
396  if (makeSecondary) {
397  fParticleChange->ProposeTrackStatus(fStopAndKill);
398  fParticleChange->SetProposedKineticEnergy(0.0);
399  G4DynamicParticle* mu =
400  new G4DynamicParticle(const_cast<G4ParticleDefinition*>(particle), newDirection.unit(), finalKE);
401  vdp->push_back(mu);
402  // continue tracking
403  } else {
404  fParticleChange->SetProposedMomentumDirection(newDirection.unit());
405  fParticleChange->SetProposedKineticEnergy(finalKE);
406  }
407 }
Sin< T >::type sin(const T &t)
Definition: Sin.h:22
G4ParticleChangeForLoss * fParticleChange
T sqrt(T t)
Definition: SSEVec.h:19
Cos< T >::type cos(const T &t)
Definition: Cos.h:22
static const double tmax[3]
std::pair< OmniClusterRef, TrackingParticleRef > P
char data[epos_bytes_allocation]
Definition: EPOS_Wrapper.h:79
const G4ParticleDefinition * particle

◆ SelectRandomAtom()

const G4Element * G4muDarkBremsstrahlungModel::SelectRandomAtom ( const G4MaterialCutsCouple *  couple)
protected

Definition at line 411 of file G4muDarkBremsstrahlungModel.cc.

References mps_fire::i, and partialSumSigma.

411  {
412  // select randomly 1 element within the material
413 
414  const G4Material* material = couple->GetMaterial();
415  G4int nElements = material->GetNumberOfElements();
416  const G4ElementVector* theElementVector = material->GetElementVector();
417 
418  const G4Element* elm = nullptr;
419 
420  if (1 < nElements) {
421  --nElements;
422  G4DataVector* dv = partialSumSigma[couple->GetIndex()];
423  G4double rval = G4UniformRand() * ((*dv)[nElements]);
424 
425  elm = (*theElementVector)[nElements];
426  for (G4int i = 0; i < nElements; ++i) {
427  if (rval <= (*dv)[i]) {
428  elm = (*theElementVector)[i];
429  break;
430  }
431  }
432  } else {
433  elm = (*theElementVector)[0];
434  }
435 
436  SetCurrentElement(elm);
437  return elm;
438 }
std::vector< G4DataVector * > partialSumSigma

◆ SetMethod()

void G4muDarkBremsstrahlungModel::SetMethod ( std::string  method_in)

Definition at line 440 of file G4muDarkBremsstrahlungModel.cc.

References method.

440  {
441  method = method_in;
442  return;
443 }

◆ SetParticle()

void G4muDarkBremsstrahlungModel::SetParticle ( const G4ParticleDefinition *  p)
private

Definition at line 54 of file G4muDarkBremsstrahlungModel.cc.

References isMuon, AlCaHLTBitMon_ParallelJobs::p, and particle.

Referenced by G4muDarkBremsstrahlungModel(), and Initialise().

54  {
55  particle = p;
56 
57  if ((p == G4MuonPlus::MuonPlus()) || (p == G4MuonMinus::MuonMinus())) {
58  isMuon = true;
59  } else {
60  isMuon = false;
61  }
62 }
const G4ParticleDefinition * particle

Member Data Documentation

◆ cxBias

const G4double G4muDarkBremsstrahlungModel::cxBias
protected

Definition at line 80 of file G4muDarkBremsstrahlungModel.h.

Referenced by ComputeCrossSectionPerAtom().

◆ energies

std::vector<std::pair<double, int> > G4muDarkBremsstrahlungModel::energies
private

Definition at line 96 of file G4muDarkBremsstrahlungModel.h.

Referenced by GetMadgraphData(), and MakePlaceholders().

◆ fParticleChange

G4ParticleChangeForLoss* G4muDarkBremsstrahlungModel::fParticleChange
protected

◆ highKinEnergy

G4double G4muDarkBremsstrahlungModel::highKinEnergy
private

Definition at line 89 of file G4muDarkBremsstrahlungModel.h.

Referenced by G4muDarkBremsstrahlungModel(), and Initialise().

◆ isInitialised

G4bool G4muDarkBremsstrahlungModel::isInitialised
private

Definition at line 92 of file G4muDarkBremsstrahlungModel.h.

Referenced by Initialise().

◆ isMuon

G4bool G4muDarkBremsstrahlungModel::isMuon
protected

Definition at line 86 of file G4muDarkBremsstrahlungModel.h.

Referenced by SetParticle().

◆ lowKinEnergy

G4double G4muDarkBremsstrahlungModel::lowKinEnergy
private

Definition at line 90 of file G4muDarkBremsstrahlungModel.h.

Referenced by G4muDarkBremsstrahlungModel(), and Initialise().

◆ MA

G4double G4muDarkBremsstrahlungModel::MA
protected

◆ method

std::string G4muDarkBremsstrahlungModel::method
private

Definition at line 93 of file G4muDarkBremsstrahlungModel.h.

Referenced by SampleSecondaries(), and SetMethod().

◆ mg_loaded

G4bool G4muDarkBremsstrahlungModel::mg_loaded
private

Definition at line 94 of file G4muDarkBremsstrahlungModel.h.

Referenced by SampleSecondaries().

◆ mgdata

std::map<double, std::vector<frame> > G4muDarkBremsstrahlungModel::mgdata
private

Definition at line 95 of file G4muDarkBremsstrahlungModel.h.

Referenced by GetMadgraphData(), LoadMG(), and MakePlaceholders().

◆ mgfile

const G4String& G4muDarkBremsstrahlungModel::mgfile
protected

Definition at line 79 of file G4muDarkBremsstrahlungModel.h.

Referenced by LoadMG().

◆ muonMass

G4double G4muDarkBremsstrahlungModel::muonMass
protected

◆ partialSumSigma

std::vector<G4DataVector*> G4muDarkBremsstrahlungModel::partialSumSigma
private

◆ particle

const G4ParticleDefinition* G4muDarkBremsstrahlungModel::particle
protected

◆ probsup

G4double G4muDarkBremsstrahlungModel::probsup
private

Definition at line 91 of file G4muDarkBremsstrahlungModel.h.

◆ theAPrime

G4ParticleDefinition* G4muDarkBremsstrahlungModel::theAPrime
protected

Definition at line 82 of file G4muDarkBremsstrahlungModel.h.

Referenced by G4muDarkBremsstrahlungModel(), and SampleSecondaries().