CMS 3D CMS Logo

List of all members | Public Types | Public Member Functions | Public Attributes | Private Attributes
Basic3DVector< T > Class Template Reference

#include <extBasic3DVector.h>

Public Types

typedef Geom::Cylindrical2Cartesian< TCylindrical
 
typedef Geom::Cylindrical2Cartesian< TCylindrical
 
typedef Geom::Cylindrical2Cartesian< TCylindrical
 
typedef Basic3DVector< TMathVector
 
typedef Vec4< TMathVector
 
typedef mathSSE::Vec4< TMathVector
 
typedef Spherical Polar
 
typedef Spherical Polar
 
typedef Spherical Polar
 
typedef T ScalarType
 
typedef T ScalarType
 
typedef T ScalarType
 
typedef Geom::Spherical2Cartesian< TSpherical
 
typedef Geom::Spherical2Cartesian< TSpherical
 
typedef Geom::Spherical2Cartesian< TSpherical
 
typedef mathSSE::Vec4< TVectorType
 
typedef Vec4< TVectorType
 

Public Member Functions

T barePhi () const
 
T barePhi () const
 
T barePhi () const
 
T bareTheta () const
 
T bareTheta () const
 
T bareTheta () const
 
 Basic3DVector ()
 
 Basic3DVector ()
 
 Basic3DVector ()
 
 Basic3DVector (const Basic3DVector &p)
 Copy constructor from same type. Should not be needed but for gcc bug 12685. More...
 
 Basic3DVector (const Basic3DVector &p)
 Copy constructor from same type. Should not be needed but for gcc bug 12685. More...
 
 Basic3DVector (const Basic3DVector &p)
 Copy constructor from same type. Should not be needed but for gcc bug 12685. More...
 
template<class U >
 Basic3DVector (const Basic3DVector< U > &p)
 Copy constructor and implicit conversion from Basic3DVector of different precision. More...
 
template<class U >
 Basic3DVector (const Basic3DVector< U > &p)
 Copy constructor and implicit conversion from Basic3DVector of different precision. More...
 
template<class U >
 Basic3DVector (const Basic3DVector< U > &p)
 Copy constructor and implicit conversion from Basic3DVector of different precision. More...
 
 Basic3DVector (const Basic2DVector< T > &p)
 constructor from 2D vector (X and Y from 2D vector, z set to zero) More...
 
 Basic3DVector (const Basic2DVector< T > &p)
 constructor from 2D vector (X and Y from 2D vector, z set to zero) More...
 
 Basic3DVector (const Basic2DVector< T > &p)
 constructor from 2D vector (X and Y from 2D vector, z set to zero) More...
 
template<class OtherPoint >
 Basic3DVector (const OtherPoint &p)
 
template<class OtherPoint >
 Basic3DVector (const OtherPoint &p)
 
template<class OtherPoint >
 Basic3DVector (const OtherPoint &p)
 
 Basic3DVector (MathVector const &iv)
 
template<class U >
 Basic3DVector (mathSSE::Vec4< U > const &iv)
 
template<class U >
 Basic3DVector (Vec4< U > const &iv)
 
 Basic3DVector (const T &x, const T &y, const T &z, const T &w=0)
 construct from cartesian coordinates More...
 
 Basic3DVector (const T &x, const T &y, const T &z, const T &w=0)
 construct from cartesian coordinates More...
 
template<typename U >
 Basic3DVector (const Geom::Theta< U > &theta, const Geom::Phi< U > &phi, const T &r)
 
template<typename U >
 Basic3DVector (const Geom::Theta< U > &theta, const Geom::Phi< U > &phi, const T &r)
 
 Basic3DVector (const T &x, const T &y, const T &z, const T &w=0)
 construct from cartesian coordinates More...
 
template<typename U >
 Basic3DVector (const Geom::Theta< U > &theta, const Geom::Phi< U > &phi, const T &r)
 
Basic3DVector cross (const Basic3DVector &lh) const
 Vector product, or "cross" product, with a vector of same type. More...
 
Basic3DVector cross (const Basic3DVector &lh) const
 Vector product, or "cross" product, with a vector of same type. More...
 
template<class U >
Basic3DVector< typename PreciseFloatType< T, U >::Type > cross (const Basic3DVector< U > &lh) const
 
template<class U >
Basic3DVector< typename PreciseFloatType< T, U >::Type > cross (const Basic3DVector< U > &lh) const
 
Basic3DVector cross (const Basic3DVector &v) const
 Vector product, or "cross" product, with a vector of same type. More...
 
template<class U >
Basic3DVector< typename PreciseFloatType< T, U >::Type > cross (const Basic3DVector< U > &v) const
 
T dot (const Basic3DVector &rh) const
 Scalar product, or "dot" product, with a vector of same type. More...
 
T dot (const Basic3DVector &rh) const
 Scalar product, or "dot" product, with a vector of same type. More...
 
template<class U >
PreciseFloatType< T, U >::Type dot (const Basic3DVector< U > &lh) const
 
template<class U >
PreciseFloatType< T, U >::Type dot (const Basic3DVector< U > &lh) const
 
T dot (const Basic3DVector &v) const
 Scalar product, or "dot" product, with a vector of same type. More...
 
template<class U >
PreciseFloatType< T, U >::Type dot (const Basic3DVector< U > &v) const
 
T eta () const
 
T eta () const
 
T eta () const
 
T mag () const
 The vector magnitude. Equivalent to sqrt(vec.mag2()) More...
 
T mag () const
 The vector magnitude. Equivalent to sqrt(vec.mag2()) More...
 
T mag () const
 The vector magnitude. Equivalent to sqrt(vec.mag2()) More...
 
T mag2 () const
 The vector magnitude squared. Equivalent to vec.dot(vec) More...
 
T mag2 () const
 The vector magnitude squared. Equivalent to vec.dot(vec) More...
 
T mag2 () const
 The vector magnitude squared. Equivalent to vec.dot(vec) More...
 
MathVector const & mathVector () const
 
MathVectormathVector ()
 
MathVector const & mathVector () const
 
MathVectormathVector ()
 
Basic3DVectoroperator*= (T t)
 Scaling by a scalar value (multiplication) More...
 
Basic3DVectoroperator*= (T t)
 Scaling by a scalar value (multiplication) More...
 
Basic3DVectoroperator*= (T t)
 Scaling by a scalar value (multiplication) More...
 
template<class U >
Basic3DVectoroperator+= (const Basic3DVector< U > &p)
 
template<class U >
Basic3DVectoroperator+= (const Basic3DVector< U > &p)
 
template<class U >
Basic3DVectoroperator+= (const Basic3DVector< U > &p)
 
Basic3DVector operator- () const
 Unary minus, returns a vector with components (-x(),-y(),-z()) More...
 
Basic3DVector operator- () const
 Unary minus, returns a vector with components (-x(),-y(),-z()) More...
 
Basic3DVector operator- () const
 Unary minus, returns a vector with components (-x(),-y(),-z()) More...
 
template<class U >
Basic3DVectoroperator-= (const Basic3DVector< U > &p)
 
template<class U >
Basic3DVectoroperator-= (const Basic3DVector< U > &p)
 
template<class U >
Basic3DVectoroperator-= (const Basic3DVector< U > &p)
 
Basic3DVectoroperator/= (T t)
 Scaling by a scalar value (division) More...
 
Basic3DVectoroperator/= (T t)
 Scaling by a scalar value (division) More...
 
Basic3DVectoroperator/= (T t)
 Scaling by a scalar value (division) More...
 
bool operator== (const Basic3DVector &rh) const
 
bool operator== (const Basic3DVector &rh) const
 
bool operator== (const Basic3DVector &rh) const
 
T operator[] (int i) const
 
Toperator[] (int i)
 
T operator[] (int i) const
 
Toperator[] (int i)
 
T operator[] (int i) const
 
Toperator[] (int i)
 
T perp () const
 Magnitude of transverse component. More...
 
T perp () const
 Magnitude of transverse component. More...
 
T perp () const
 Magnitude of transverse component. More...
 
T perp2 () const
 Squared magnitude of transverse component. More...
 
T perp2 () const
 Squared magnitude of transverse component. More...
 
T perp2 () const
 Squared magnitude of transverse component. More...
 
Geom::Phi< Tphi () const
 
Geom::Phi< Tphi () const
 
Geom::Phi< Tphi () const
 
Geom::Theta< Ttheta () const
 
Geom::Theta< Ttheta () const
 
Geom::Theta< Ttheta () const
 
T transverse () const
 Another name for perp() More...
 
T transverse () const
 Another name for perp() More...
 
T transverse () const
 Another name for perp() More...
 
Basic3DVector unit () const
 
Basic3DVector unit () const
 
Basic3DVector unit () const
 
T w () const
 
T w () const
 
T w () const
 
T x () const
 Cartesian x coordinate. More...
 
T x () const
 Cartesian x coordinate. More...
 
T x () const
 Cartesian x coordinate. More...
 
Basic2DVector< Txy () const
 
Basic2DVector< Txy () const
 
Basic2DVector< Txy () const
 
T y () const
 Cartesian y coordinate. More...
 
T y () const
 Cartesian y coordinate. More...
 
T y () const
 Cartesian y coordinate. More...
 
T z () const
 Cartesian z coordinate. More...
 
T z () const
 Cartesian z coordinate. More...
 
T z () const
 Cartesian z coordinate. More...
 

Public Attributes

mathSSE::Vec4< Tv
 
Vec4< Tv
 

Private Attributes

T theW
 
T theX
 
T theY
 
T theZ
 

Detailed Description

template<typename T>
class Basic3DVector< T >

Definition at line 30 of file extBasic3DVector.h.

Member Typedef Documentation

◆ Cylindrical [1/3]

template<typename T>
typedef Geom::Cylindrical2Cartesian<T> Basic3DVector< T >::Cylindrical

Definition at line 35 of file extBasic3DVector.h.

◆ Cylindrical [2/3]

template<typename T>
typedef Geom::Cylindrical2Cartesian<T> Basic3DVector< T >::Cylindrical

Definition at line 35 of file oldBasic3DVector.h.

◆ Cylindrical [3/3]

template<typename T>
typedef Geom::Cylindrical2Cartesian<T> Basic3DVector< T >::Cylindrical

Definition at line 35 of file sseBasic3DVector.h.

◆ MathVector [1/3]

template<typename T>
typedef Basic3DVector<T> Basic3DVector< T >::MathVector

Definition at line 31 of file oldBasic3DVector.h.

◆ MathVector [2/3]

template<typename T>
typedef Vec4<T> Basic3DVector< T >::MathVector

Definition at line 34 of file extBasic3DVector.h.

◆ MathVector [3/3]

template<typename T>
typedef mathSSE::Vec4<T> Basic3DVector< T >::MathVector

Definition at line 34 of file sseBasic3DVector.h.

◆ Polar [1/3]

template<typename T>
typedef Spherical Basic3DVector< T >::Polar

Definition at line 37 of file sseBasic3DVector.h.

◆ Polar [2/3]

template<typename T>
typedef Spherical Basic3DVector< T >::Polar

Definition at line 37 of file oldBasic3DVector.h.

◆ Polar [3/3]

template<typename T>
typedef Spherical Basic3DVector< T >::Polar

Definition at line 37 of file extBasic3DVector.h.

◆ ScalarType [1/3]

template<typename T>
typedef T Basic3DVector< T >::ScalarType

Definition at line 32 of file sseBasic3DVector.h.

◆ ScalarType [2/3]

template<typename T>
typedef T Basic3DVector< T >::ScalarType

Definition at line 32 of file extBasic3DVector.h.

◆ ScalarType [3/3]

template<typename T>
typedef T Basic3DVector< T >::ScalarType

Definition at line 34 of file oldBasic3DVector.h.

◆ Spherical [1/3]

template<typename T>
typedef Geom::Spherical2Cartesian<T> Basic3DVector< T >::Spherical

Definition at line 36 of file sseBasic3DVector.h.

◆ Spherical [2/3]

template<typename T>
typedef Geom::Spherical2Cartesian<T> Basic3DVector< T >::Spherical

Definition at line 36 of file extBasic3DVector.h.

◆ Spherical [3/3]

template<typename T>
typedef Geom::Spherical2Cartesian<T> Basic3DVector< T >::Spherical

Definition at line 36 of file oldBasic3DVector.h.

◆ VectorType [1/2]

template<typename T>
typedef mathSSE::Vec4<T> Basic3DVector< T >::VectorType

Definition at line 33 of file sseBasic3DVector.h.

◆ VectorType [2/2]

template<typename T>
typedef Vec4<T> Basic3DVector< T >::VectorType

Definition at line 33 of file extBasic3DVector.h.

Constructor & Destructor Documentation

◆ Basic3DVector() [1/24]

template<typename T>
Basic3DVector< T >::Basic3DVector ( )
inline

default constructor uses default constructor of T to initialize the components. For built-in floating-point types this means initialization to zero??? (force init to 0)

Definition at line 43 of file extBasic3DVector.h.

Referenced by Basic3DVector(), Basic3DVector< align::Scalar >::cross(), Basic3DVector< long double >::operator-(), and Basic3DVector< align::Scalar >::operator-().

43 : v{0, 0, 0, 0} {}

◆ Basic3DVector() [2/24]

template<typename T>
Basic3DVector< T >::Basic3DVector ( const Basic3DVector< T > &  p)
inline

Copy constructor from same type. Should not be needed but for gcc bug 12685.

Definition at line 46 of file extBasic3DVector.h.

◆ Basic3DVector() [3/24]

template<typename T>
template<class U >
Basic3DVector< T >::Basic3DVector ( const Basic3DVector< U > &  p)
inline

Copy constructor and implicit conversion from Basic3DVector of different precision.

Definition at line 50 of file extBasic3DVector.h.

50 : v{T(p.v[0]), T(p.v[1]), T(p.v[2]), T(p.v[3])} {}
long double T

◆ Basic3DVector() [4/24]

template<typename T>
Basic3DVector< T >::Basic3DVector ( const Basic2DVector< T > &  p)
inline

constructor from 2D vector (X and Y from 2D vector, z set to zero)

Definition at line 53 of file extBasic3DVector.h.

◆ Basic3DVector() [5/24]

template<typename T>
template<class OtherPoint >
Basic3DVector< T >::Basic3DVector ( const OtherPoint &  p)
inlineexplicit

Explicit constructor from other (possibly unrelated) vector classes The only constraint on the argument type is that it has methods x(), y() and z(), and that these methods return a type convertible to T. Examples of use are
construction from a Basic3DVector with different precision
construction from a Hep3Vector
construction from a coordinate system converter

Definition at line 64 of file extBasic3DVector.h.

64 : v{T(p.x()), T(p.y()), T(p.z())} {}
long double T

◆ Basic3DVector() [6/24]

template<typename T>
Basic3DVector< T >::Basic3DVector ( MathVector const &  iv)
inline

Definition at line 67 of file extBasic3DVector.h.

67 : v(iv) {}
int32_t *__restrict__ iv

◆ Basic3DVector() [7/24]

template<typename T>
template<class U >
Basic3DVector< T >::Basic3DVector ( Vec4< U > const &  iv)
inline

Definition at line 70 of file extBasic3DVector.h.

70 : v{T(iv[0]), T(iv[1]), T(iv[2]), T(iv[3])} {}
int32_t *__restrict__ iv
long double T

◆ Basic3DVector() [8/24]

template<typename T>
Basic3DVector< T >::Basic3DVector ( const T x,
const T y,
const T z,
const T w = 0 
)
inline

construct from cartesian coordinates

Definition at line 73 of file extBasic3DVector.h.

73 : v{x, y, z, w} {}
T x() const
Cartesian x coordinate.
T y() const
Cartesian y coordinate.
T z() const
Cartesian z coordinate.

◆ Basic3DVector() [9/24]

template<typename T>
template<typename U >
Basic3DVector< T >::Basic3DVector ( const Geom::Theta< U > &  theta,
const Geom::Phi< U > &  phi,
const T r 
)
inline

Deprecated construct from polar coordinates, use
Basic3DVector<T>( Basic3DVector<T>::Polar( theta, phi, r)) instead.

Definition at line 80 of file extBasic3DVector.h.

80  {
81  Polar p(theta.value(), phi.value(), r);
82  v[0] = p.x();
83  v[1] = p.y();
84  v[2] = p.z();
85  }
Geom::Theta< T > theta() const
Geom::Phi< T > phi() const

◆ Basic3DVector() [10/24]

template<typename T>
Basic3DVector< T >::Basic3DVector ( )
inline

default constructor uses default constructor of T to initialize the components. For built-in floating-point types this means initialization to zero??? (force init to 0)

Definition at line 43 of file oldBasic3DVector.h.

◆ Basic3DVector() [11/24]

template<typename T>
Basic3DVector< T >::Basic3DVector ( const Basic3DVector< T > &  p)
inline

Copy constructor from same type. Should not be needed but for gcc bug 12685.

Definition at line 46 of file oldBasic3DVector.h.

◆ Basic3DVector() [12/24]

template<typename T>
template<class U >
Basic3DVector< T >::Basic3DVector ( const Basic3DVector< U > &  p)
inline

Copy constructor and implicit conversion from Basic3DVector of different precision.

Definition at line 51 of file oldBasic3DVector.h.

◆ Basic3DVector() [13/24]

template<typename T>
Basic3DVector< T >::Basic3DVector ( const Basic2DVector< T > &  p)
inline

constructor from 2D vector (X and Y from 2D vector, z set to zero)

Definition at line 55 of file oldBasic3DVector.h.

◆ Basic3DVector() [14/24]

template<typename T>
template<class OtherPoint >
Basic3DVector< T >::Basic3DVector ( const OtherPoint &  p)
inlineexplicit

Explicit constructor from other (possibly unrelated) vector classes The only constraint on the argument type is that it has methods x(), y() and z(), and that these methods return a type convertible to T. Examples of use are
construction from a Basic3DVector with different precision
construction from a Hep3Vector
construction from a coordinate system converter

Definition at line 67 of file oldBasic3DVector.h.

◆ Basic3DVector() [15/24]

template<typename T>
Basic3DVector< T >::Basic3DVector ( const T x,
const T y,
const T z,
const T w = 0 
)
inline

construct from cartesian coordinates

Definition at line 84 of file oldBasic3DVector.h.

84  :
85  theX(x), theY(y), theZ(z), theW(w) {}
T x() const
Cartesian x coordinate.
T y() const
Cartesian y coordinate.
T z() const
Cartesian z coordinate.

◆ Basic3DVector() [16/24]

template<typename T>
template<typename U >
Basic3DVector< T >::Basic3DVector ( const Geom::Theta< U > &  theta,
const Geom::Phi< U > &  phi,
const T r 
)
inline

Deprecated construct from polar coordinates, use
Basic3DVector<T>( Basic3DVector<T>::Polar( theta, phi, r)) instead.

Definition at line 101 of file oldBasic3DVector.h.

102  {
103  Polar p( theta.value(), phi.value(), r);
104  theX = p.x(); theY = p.y(); theZ = p.z();
105  }
Geom::Theta< T > theta() const
Geom::Phi< T > phi() const

◆ Basic3DVector() [17/24]

template<typename T>
Basic3DVector< T >::Basic3DVector ( )
inline

default constructor uses default constructor of T to initialize the components. For built-in floating-point types this means initialization to zero??? (force init to 0)

Definition at line 43 of file sseBasic3DVector.h.

43 {}

◆ Basic3DVector() [18/24]

template<typename T>
Basic3DVector< T >::Basic3DVector ( const Basic3DVector< T > &  p)
inline

Copy constructor from same type. Should not be needed but for gcc bug 12685.

Definition at line 46 of file sseBasic3DVector.h.

◆ Basic3DVector() [19/24]

template<typename T>
template<class U >
Basic3DVector< T >::Basic3DVector ( const Basic3DVector< U > &  p)
inline

Copy constructor and implicit conversion from Basic3DVector of different precision.

Definition at line 50 of file sseBasic3DVector.h.

◆ Basic3DVector() [20/24]

template<typename T>
Basic3DVector< T >::Basic3DVector ( const Basic2DVector< T > &  p)
inline

constructor from 2D vector (X and Y from 2D vector, z set to zero)

Definition at line 53 of file sseBasic3DVector.h.

◆ Basic3DVector() [21/24]

template<typename T>
template<class OtherPoint >
Basic3DVector< T >::Basic3DVector ( const OtherPoint &  p)
inlineexplicit

Explicit constructor from other (possibly unrelated) vector classes The only constraint on the argument type is that it has methods x(), y() and z(), and that these methods return a type convertible to T. Examples of use are
construction from a Basic3DVector with different precision
construction from a Hep3Vector
construction from a coordinate system converter

Definition at line 64 of file sseBasic3DVector.h.

64 : v(p.x(), p.y(), p.z()) {}

◆ Basic3DVector() [22/24]

template<typename T>
template<class U >
Basic3DVector< T >::Basic3DVector ( mathSSE::Vec4< U > const &  iv)
inline

Definition at line 68 of file sseBasic3DVector.h.

68 : v(iv) {}
int32_t *__restrict__ iv

◆ Basic3DVector() [23/24]

template<typename T>
Basic3DVector< T >::Basic3DVector ( const T x,
const T y,
const T z,
const T w = 0 
)
inline

construct from cartesian coordinates

Definition at line 71 of file sseBasic3DVector.h.

71 : v(x, y, z, w) {}
T x() const
Cartesian x coordinate.
T y() const
Cartesian y coordinate.
T z() const
Cartesian z coordinate.

◆ Basic3DVector() [24/24]

template<typename T>
template<typename U >
Basic3DVector< T >::Basic3DVector ( const Geom::Theta< U > &  theta,
const Geom::Phi< U > &  phi,
const T r 
)
inline

Deprecated construct from polar coordinates, use
Basic3DVector<T>( Basic3DVector<T>::Polar( theta, phi, r)) instead.

Definition at line 78 of file sseBasic3DVector.h.

78  {
79  Polar p(theta.value(), phi.value(), r);
80  v.o.theX = p.x();
81  v.o.theY = p.y();
82  v.o.theZ = p.z();
83  }
Geom::Theta< T > theta() const
Geom::Phi< T > phi() const

Member Function Documentation

◆ barePhi() [1/3]

template<typename T>
T Basic3DVector< T >::barePhi ( ) const
inline

Azimuthal angle. The value is returned in radians, in the range (-pi,pi]. Same precision as the system atan2(x,y) function. The return type is Geom::Phi<T>, see it's documentation.

Definition at line 126 of file sseBasic3DVector.h.

126 { return std::atan2(y(), x()); }
T x() const
Cartesian x coordinate.
T y() const
Cartesian y coordinate.

◆ barePhi() [2/3]

template<typename T>
T Basic3DVector< T >::barePhi ( ) const
inline

Azimuthal angle. The value is returned in radians, in the range (-pi,pi]. Same precision as the system atan2(x,y) function. The return type is Geom::Phi<T>, see it's documentation.

Definition at line 131 of file extBasic3DVector.h.

Referenced by PV3DBase< long double, PointTag, GlobalTag >::barePhi(), Basic3DVector< long double >::phi(), and Basic3DVector< align::Scalar >::phi().

131 { return std::atan2(y(), x()); }
T x() const
Cartesian x coordinate.
T y() const
Cartesian y coordinate.

◆ barePhi() [3/3]

template<typename T>
T Basic3DVector< T >::barePhi ( ) const
inline

Azimuthal angle. The value is returned in radians, in the range (-pi,pi]. Same precision as the system atan2(x,y) function. The return type is Geom::Phi<T>, see it's documentation.

Definition at line 152 of file oldBasic3DVector.h.

152 {return std::atan2(y(),x());}
T x() const
Cartesian x coordinate.
T y() const
Cartesian y coordinate.

◆ bareTheta() [1/3]

template<typename T>
T Basic3DVector< T >::bareTheta ( ) const
inline

Polar angle. The value is returned in radians, in the range [0,pi] Same precision as the system atan2(x,y) function. The return type is Geom::Phi<T>, see it's documentation.

Definition at line 133 of file sseBasic3DVector.h.

133 { return std::atan2(perp(), z()); }
T perp() const
Magnitude of transverse component.
T z() const
Cartesian z coordinate.

◆ bareTheta() [2/3]

template<typename T>
T Basic3DVector< T >::bareTheta ( ) const
inline

Polar angle. The value is returned in radians, in the range [0,pi] Same precision as the system atan2(x,y) function. The return type is Geom::Phi<T>, see it's documentation.

Definition at line 138 of file extBasic3DVector.h.

Referenced by PV3DBase< long double, PointTag, GlobalTag >::bareTheta().

138 { return std::atan2(perp(), z()); }
T perp() const
Magnitude of transverse component.
T z() const
Cartesian z coordinate.

◆ bareTheta() [3/3]

template<typename T>
T Basic3DVector< T >::bareTheta ( ) const
inline

Polar angle. The value is returned in radians, in the range [0,pi] Same precision as the system atan2(x,y) function. The return type is Geom::Phi<T>, see it's documentation.

Definition at line 159 of file oldBasic3DVector.h.

159 {return std::atan2(perp(),z());}
T perp() const
Magnitude of transverse component.
T z() const
Cartesian z coordinate.

◆ cross() [1/6]

template<typename T>
Basic3DVector Basic3DVector< T >::cross ( const Basic3DVector< T > &  lh) const
inline

Vector product, or "cross" product, with a vector of same type.

Definition at line 198 of file sseBasic3DVector.h.

198 { return ::cross(v, lh.v); }
bool int lh
Definition: SIMDVec.h:20
Basic3DVector cross(const Basic3DVector &lh) const
Vector product, or "cross" product, with a vector of same type.

◆ cross() [2/6]

template<typename T>
Basic3DVector Basic3DVector< T >::cross ( const Basic3DVector< T > &  lh) const
inline

Vector product, or "cross" product, with a vector of same type.

Definition at line 203 of file extBasic3DVector.h.

Referenced by Vector3DBase< Scalar, GlobalTag >::cross(), Basic3DVector< align::Scalar >::cross(), and TkRotation< align::Scalar >::TkRotation().

203 { return ::cross3(v, lh.v); }
Vec cross3(Vec x, Vec y)
Definition: ExtVec.h:91
bool int lh
Definition: SIMDVec.h:20

◆ cross() [3/6]

template<typename T>
template<class U >
Basic3DVector<typename PreciseFloatType<T, U>::Type> Basic3DVector< T >::cross ( const Basic3DVector< U > &  lh) const
inline

Vector (or cross) product with a vector of different precision. The product is computed without loss of precision. The type of the returned vector is the more precise of the types of the two vectors.

Definition at line 206 of file sseBasic3DVector.h.

206  {
209  }
bool int lh
Definition: SIMDVec.h:20
Basic3DVector cross(const Basic3DVector &lh) const
Vector product, or "cross" product, with a vector of same type.

◆ cross() [4/6]

template<typename T>
template<class U >
Basic3DVector<typename PreciseFloatType<T, U>::Type> Basic3DVector< T >::cross ( const Basic3DVector< U > &  lh) const
inline

Vector (or cross) product with a vector of different precision. The product is computed without loss of precision. The type of the returned vector is the more precise of the types of the two vectors.

Definition at line 211 of file extBasic3DVector.h.

211  {
214  }
bool int lh
Definition: SIMDVec.h:20
Basic3DVector cross(const Basic3DVector &lh) const
Vector product, or "cross" product, with a vector of same type.

◆ cross() [5/6]

template<typename T>
Basic3DVector Basic3DVector< T >::cross ( const Basic3DVector< T > &  v) const
inline

Vector product, or "cross" product, with a vector of same type.

Definition at line 239 of file oldBasic3DVector.h.

239  {
240  return Basic3DVector( y()*v.z() - v.y()*z(),
241  z()*v.x() - v.z()*x(),
242  x()*v.y() - v.x()*y());
243  }
T x() const
Cartesian x coordinate.
T y() const
Cartesian y coordinate.
T z() const
Cartesian z coordinate.

◆ cross() [6/6]

template<typename T>
template<class U >
Basic3DVector<typename PreciseFloatType<T,U>::Type> Basic3DVector< T >::cross ( const Basic3DVector< U > &  v) const
inline

Vector (or cross) product with a vector of different precision. The product is computed without loss of precision. The type of the returned vector is the more precise of the types of the two vectors.

Definition at line 253 of file oldBasic3DVector.h.

253  {
254  return Basic3DVector<typename PreciseFloatType<T,U>::Type>( y()*v.z() - v.y()*z(),
255  z()*v.x() - v.z()*x(),
256  x()*v.y() - v.x()*y());
257  }
T x() const
Cartesian x coordinate.
T y() const
Cartesian y coordinate.
T z() const
Cartesian z coordinate.

◆ dot() [1/6]

template<typename T>
T Basic3DVector< T >::dot ( const Basic3DVector< T > &  rh) const
inline

Scalar product, or "dot" product, with a vector of same type.

Definition at line 184 of file sseBasic3DVector.h.

184 { return ::dot(v, rh.v); }
T dot(const Basic3DVector &rh) const
Scalar product, or "dot" product, with a vector of same type.

◆ dot() [2/6]

template<typename T>
T Basic3DVector< T >::dot ( const Basic3DVector< T > &  rh) const
inline

◆ dot() [3/6]

template<typename T>
template<class U >
PreciseFloatType<T, U>::Type Basic3DVector< T >::dot ( const Basic3DVector< U > &  lh) const
inline

Scalar (or dot) product with a vector of different precision. The product is computed without loss of precision. The type of the returned scalar is the more precise of the scalar types of the two vectors.

Definition at line 192 of file sseBasic3DVector.h.

192  {
195  }
bool int lh
Definition: SIMDVec.h:20
T dot(const Basic3DVector &rh) const
Scalar product, or "dot" product, with a vector of same type.

◆ dot() [4/6]

template<typename T>
template<class U >
PreciseFloatType<T, U>::Type Basic3DVector< T >::dot ( const Basic3DVector< U > &  lh) const
inline

Scalar (or dot) product with a vector of different precision. The product is computed without loss of precision. The type of the returned scalar is the more precise of the scalar types of the two vectors.

Definition at line 197 of file extBasic3DVector.h.

197  {
200  }
bool int lh
Definition: SIMDVec.h:20
T dot(const Basic3DVector &rh) const
Scalar product, or "dot" product, with a vector of same type.

◆ dot() [5/6]

template<typename T>
T Basic3DVector< T >::dot ( const Basic3DVector< T > &  v) const
inline

Scalar product, or "dot" product, with a vector of same type.

Definition at line 224 of file oldBasic3DVector.h.

224  {
225  return x()*v.x() + y()*v.y() + z()*v.z();
226  }
T x() const
Cartesian x coordinate.
T y() const
Cartesian y coordinate.
T z() const
Cartesian z coordinate.

◆ dot() [6/6]

template<typename T>
template<class U >
PreciseFloatType<T,U>::Type Basic3DVector< T >::dot ( const Basic3DVector< U > &  v) const
inline

Scalar (or dot) product with a vector of different precision. The product is computed without loss of precision. The type of the returned scalar is the more precise of the scalar types of the two vectors.

Definition at line 234 of file oldBasic3DVector.h.

234  {
235  return x()*v.x() + y()*v.y() + z()*v.z();
236  }
T x() const
Cartesian x coordinate.
T y() const
Cartesian y coordinate.
T z() const
Cartesian z coordinate.

◆ eta() [1/3]

template<typename T>
T Basic3DVector< T >::eta ( ) const
inline

Pseudorapidity. Does not check for zero transverse component; in this case the behavior is as for divide-by zero, i.e. system-dependent.

Definition at line 141 of file sseBasic3DVector.h.

Referenced by Particle.Particle::__str__(), datamodel.Object::DeltaR(), Jet.Jet::jetID(), datamodel.Object::p4(), and Jet.Jet::puJetId().

141 { return detailsBasic3DVector::eta(x(), y(), z()); } // correct
T x() const
Cartesian x coordinate.
T eta() const
T y() const
Cartesian y coordinate.
T z() const
Cartesian z coordinate.

◆ eta() [2/3]

template<typename T>
T Basic3DVector< T >::eta ( ) const
inline

Pseudorapidity. Does not check for zero transverse component; in this case the behavior is as for divide-by zero, i.e. system-dependent.

Definition at line 146 of file extBasic3DVector.h.

Referenced by Particle.Particle::__str__(), CosmicMuonTrajectoryBuilder::build(), datamodel.Object::DeltaR(), PV3DBase< long double, PointTag, GlobalTag >::eta(), Jet.Jet::jetID(), datamodel.Object::p4(), GoodSeedProducer::produce(), and Jet.Jet::puJetId().

146 { return detailsBasic3DVector::eta(x(), y(), z()); } // correct
T x() const
Cartesian x coordinate.
T y() const
Cartesian y coordinate.
T z() const
Cartesian z coordinate.
T eta() const

◆ eta() [3/3]

template<typename T>
T Basic3DVector< T >::eta ( ) const
inline

Pseudorapidity. Does not check for zero transverse component; in this case the behavior is as for divide-by zero, i.e. system-dependent.

Definition at line 167 of file oldBasic3DVector.h.

Referenced by Particle.Particle::__str__(), datamodel.Object::DeltaR(), Jet.Jet::jetID(), datamodel.Object::p4(), and Jet.Jet::puJetId().

167 { return detailsBasic3DVector::eta(x(),y(),z());} // correct
T x() const
Cartesian x coordinate.
T eta() const
T y() const
Cartesian y coordinate.
T z() const
Cartesian z coordinate.

◆ mag() [1/3]

template<typename T>
T Basic3DVector< T >::mag ( ) const
inline

The vector magnitude. Equivalent to sqrt(vec.mag2())

Definition at line 111 of file sseBasic3DVector.h.

111 { return std::sqrt(mag2()); }
T sqrt(T t)
Definition: SSEVec.h:19
T mag2() const
The vector magnitude squared. Equivalent to vec.dot(vec)

◆ mag() [2/3]

template<typename T>
T Basic3DVector< T >::mag ( ) const
inline

◆ mag() [3/3]

template<typename T>
T Basic3DVector< T >::mag ( ) const
inline

The vector magnitude. Equivalent to sqrt(vec.mag2())

Definition at line 137 of file oldBasic3DVector.h.

137 { return std::sqrt( mag2());}
T sqrt(T t)
Definition: SSEVec.h:19
T mag2() const
The vector magnitude squared. Equivalent to vec.dot(vec)

◆ mag2() [1/3]

template<typename T>
T Basic3DVector< T >::mag2 ( ) const
inline

The vector magnitude squared. Equivalent to vec.dot(vec)

Definition at line 108 of file sseBasic3DVector.h.

108 { return ::dot(v, v); }
T dot(const Basic3DVector &rh) const
Scalar product, or "dot" product, with a vector of same type.

◆ mag2() [2/3]

template<typename T>
T Basic3DVector< T >::mag2 ( ) const
inline

◆ mag2() [3/3]

template<typename T>
T Basic3DVector< T >::mag2 ( ) const
inline

The vector magnitude squared. Equivalent to vec.dot(vec)

Definition at line 134 of file oldBasic3DVector.h.

134 { return x()*x() + y()*y()+z()*z();}
T x() const
Cartesian x coordinate.
T y() const
Cartesian y coordinate.
T z() const
Cartesian z coordinate.

◆ mathVector() [1/4]

template<typename T>
MathVector const& Basic3DVector< T >::mathVector ( ) const
inline

Definition at line 85 of file sseBasic3DVector.h.

85 { return v; }

◆ mathVector() [2/4]

template<typename T>
MathVector& Basic3DVector< T >::mathVector ( )
inline

Definition at line 86 of file sseBasic3DVector.h.

86 { return v; }

◆ mathVector() [3/4]

template<typename T>
MathVector const& Basic3DVector< T >::mathVector ( ) const
inline

Definition at line 87 of file extBasic3DVector.h.

87 { return v; }

◆ mathVector() [4/4]

template<typename T>
MathVector& Basic3DVector< T >::mathVector ( )
inline

Definition at line 88 of file extBasic3DVector.h.

88 { return v; }

◆ operator*=() [1/3]

template<typename T>
Basic3DVector& Basic3DVector< T >::operator*= ( T  t)
inline

Scaling by a scalar value (multiplication)

Definition at line 171 of file sseBasic3DVector.h.

171  {
172  v = t * v;
173  return *this;
174  }

◆ operator*=() [2/3]

template<typename T>
Basic3DVector& Basic3DVector< T >::operator*= ( T  t)
inline

Scaling by a scalar value (multiplication)

Definition at line 176 of file extBasic3DVector.h.

176  {
177  v = t * v;
178  return *this;
179  }

◆ operator*=() [3/3]

template<typename T>
Basic3DVector& Basic3DVector< T >::operator*= ( T  t)
inline

Scaling by a scalar value (multiplication)

Definition at line 205 of file oldBasic3DVector.h.

205  {
206  theX *= t;
207  theY *= t;
208  theZ *= t;
209  theW *= t;;
210  return *this;
211  }

◆ operator+=() [1/3]

template<typename T>
template<class U >
Basic3DVector& Basic3DVector< T >::operator+= ( const Basic3DVector< U > &  p)
inline

Operator += with a Basic3DVector of possibly different precision.

Definition at line 154 of file sseBasic3DVector.h.

154  {
155  v = v + p.v;
156  return *this;
157  }

◆ operator+=() [2/3]

template<typename T>
template<class U >
Basic3DVector& Basic3DVector< T >::operator+= ( const Basic3DVector< U > &  p)
inline

Operator += with a Basic3DVector of possibly different precision.

Definition at line 159 of file extBasic3DVector.h.

159  {
160  v = v + p.v;
161  return *this;
162  }

◆ operator+=() [3/3]

template<typename T>
template<class U >
Basic3DVector& Basic3DVector< T >::operator+= ( const Basic3DVector< U > &  p)
inline

Operator += with a Basic3DVector of possibly different precision.

Definition at line 182 of file oldBasic3DVector.h.

182  {
183  theX += p.x();
184  theY += p.y();
185  theZ += p.z();
186  theW += p.w();
187  return *this;
188  }

◆ operator-() [1/3]

template<typename T>
Basic3DVector Basic3DVector< T >::operator- ( ) const
inline

Unary minus, returns a vector with components (-x(),-y(),-z())

Definition at line 168 of file sseBasic3DVector.h.

168 { return Basic3DVector(-v); }

◆ operator-() [2/3]

template<typename T>
Basic3DVector Basic3DVector< T >::operator- ( ) const
inline

Unary minus, returns a vector with components (-x(),-y(),-z())

Definition at line 173 of file extBasic3DVector.h.

173 { return Basic3DVector(-v); }

◆ operator-() [3/3]

template<typename T>
Basic3DVector Basic3DVector< T >::operator- ( ) const
inline

Unary minus, returns a vector with components (-x(),-y(),-z())

Definition at line 202 of file oldBasic3DVector.h.

202 { return Basic3DVector(-x(),-y(),-z());}
T x() const
Cartesian x coordinate.
T y() const
Cartesian y coordinate.
T z() const
Cartesian z coordinate.

◆ operator-=() [1/3]

template<typename T>
template<class U >
Basic3DVector& Basic3DVector< T >::operator-= ( const Basic3DVector< U > &  p)
inline

Operator -= with a Basic3DVector of possibly different precision.

Definition at line 162 of file sseBasic3DVector.h.

162  {
163  v = v - p.v;
164  return *this;
165  }

◆ operator-=() [2/3]

template<typename T>
template<class U >
Basic3DVector& Basic3DVector< T >::operator-= ( const Basic3DVector< U > &  p)
inline

Operator -= with a Basic3DVector of possibly different precision.

Definition at line 167 of file extBasic3DVector.h.

167  {
168  v = v - p.v;
169  return *this;
170  }

◆ operator-=() [3/3]

template<typename T>
template<class U >
Basic3DVector& Basic3DVector< T >::operator-= ( const Basic3DVector< U > &  p)
inline

Operator -= with a Basic3DVector of possibly different precision.

Definition at line 193 of file oldBasic3DVector.h.

193  {
194  theX -= p.x();
195  theY -= p.y();
196  theZ -= p.z();
197  theW -= p.w();
198  return *this;
199  }

◆ operator/=() [1/3]

template<typename T>
Basic3DVector& Basic3DVector< T >::operator/= ( T  t)
inline

Scaling by a scalar value (division)

Definition at line 177 of file sseBasic3DVector.h.

177  {
178  //t = T(1)/t;
179  v = v / t;
180  return *this;
181  }

◆ operator/=() [2/3]

template<typename T>
Basic3DVector& Basic3DVector< T >::operator/= ( T  t)
inline

Scaling by a scalar value (division)

Definition at line 182 of file extBasic3DVector.h.

182  {
183  //t = T(1)/t;
184  v = v / t;
185  return *this;
186  }

◆ operator/=() [3/3]

template<typename T>
Basic3DVector& Basic3DVector< T >::operator/= ( T  t)
inline

Scaling by a scalar value (division)

Definition at line 214 of file oldBasic3DVector.h.

214  {
215  t = T(1)/t;
216  theX *= t;
217  theY *= t;
218  theZ *= t;
219  theW *= t;;
220  return *this;
221  }
long double T

◆ operator==() [1/3]

template<typename T>
bool Basic3DVector< T >::operator== ( const Basic3DVector< T > &  rh) const
inline

Definition at line 105 of file sseBasic3DVector.h.

105 { return v == rh.v; }

◆ operator==() [2/3]

template<typename T>
bool Basic3DVector< T >::operator== ( const Basic3DVector< T > &  rh) const
inline

Definition at line 107 of file extBasic3DVector.h.

107  {
108  auto res = v == rh.v;
109  return res[0] & res[1] & res[2] & res[3];
110  }
Definition: Electron.h:6

◆ operator==() [3/3]

template<typename T>
bool Basic3DVector< T >::operator== ( const Basic3DVector< T > &  rh) const
inline

Definition at line 129 of file oldBasic3DVector.h.

129  {
130  return x()==rh.x() && y()==rh.y() && z()==rh.z();
131  }
T x() const
Cartesian x coordinate.
T y() const
Cartesian y coordinate.
T z() const
Cartesian z coordinate.

◆ operator[]() [1/6]

template<typename T>
T Basic3DVector< T >::operator[] ( int  i) const
inline

Definition at line 88 of file sseBasic3DVector.h.

88 { return v[i]; }

◆ operator[]() [2/6]

template<typename T>
T& Basic3DVector< T >::operator[] ( int  i)
inline

Definition at line 89 of file sseBasic3DVector.h.

89 { return v[i]; }

◆ operator[]() [3/6]

template<typename T>
T Basic3DVector< T >::operator[] ( int  i) const
inline

Definition at line 90 of file extBasic3DVector.h.

90 { return v[i]; }

◆ operator[]() [4/6]

template<typename T>
T& Basic3DVector< T >::operator[] ( int  i)
inline

Definition at line 91 of file extBasic3DVector.h.

91 { return v[i]; }

◆ operator[]() [5/6]

template<typename T>
T Basic3DVector< T >::operator[] ( int  i) const
inline

Definition at line 108 of file oldBasic3DVector.h.

108 { return *((&theX)+i) ;}

◆ operator[]() [6/6]

template<typename T>
T& Basic3DVector< T >::operator[] ( int  i)
inline

Definition at line 109 of file oldBasic3DVector.h.

109 { return *((&theX)+i);}

◆ perp() [1/3]

template<typename T>
T Basic3DVector< T >::perp ( ) const
inline

Magnitude of transverse component.

Definition at line 117 of file sseBasic3DVector.h.

117 { return std::sqrt(perp2()); }
T perp2() const
Squared magnitude of transverse component.
T sqrt(T t)
Definition: SSEVec.h:19

◆ perp() [2/3]

template<typename T>
T Basic3DVector< T >::perp ( ) const
inline

◆ perp() [3/3]

template<typename T>
T Basic3DVector< T >::perp ( ) const
inline

Magnitude of transverse component.

Definition at line 143 of file oldBasic3DVector.h.

143 { return std::sqrt( perp2());}
T perp2() const
Squared magnitude of transverse component.
T sqrt(T t)
Definition: SSEVec.h:19

◆ perp2() [1/3]

template<typename T>
T Basic3DVector< T >::perp2 ( ) const
inline

Squared magnitude of transverse component.

Definition at line 114 of file sseBasic3DVector.h.

114 { return ::dotxy(v, v); }

◆ perp2() [2/3]

template<typename T>
T Basic3DVector< T >::perp2 ( ) const
inline

Squared magnitude of transverse component.

Definition at line 119 of file extBasic3DVector.h.

Referenced by Basic3DVector< long double >::perp(), Basic3DVector< align::Scalar >::perp(), PV3DBase< long double, PointTag, GlobalTag >::perp2(), and reco::PFRecHit::pt2().

119 { return ::dot2(v, v); }
auto dot2(V1 x, V2 y) -> typename std::remove_reference< decltype(x[0])>::type
Definition: ExtVec.h:143

◆ perp2() [3/3]

template<typename T>
T Basic3DVector< T >::perp2 ( ) const
inline

Squared magnitude of transverse component.

Definition at line 140 of file oldBasic3DVector.h.

140 { return x()*x() + y()*y();}
T x() const
Cartesian x coordinate.
T y() const
Cartesian y coordinate.

◆ phi() [1/3]

template<typename T>
Geom::Phi<T> Basic3DVector< T >::phi ( ) const
inline

◆ phi() [2/3]

template<typename T>
Geom::Phi<T> Basic3DVector< T >::phi ( ) const
inline

◆ phi() [3/3]

template<typename T>
Geom::Phi<T> Basic3DVector< T >::phi ( ) const
inline

◆ theta() [1/3]

template<typename T>
Geom::Theta<T> Basic3DVector< T >::theta ( ) const
inline

Definition at line 134 of file sseBasic3DVector.h.

Referenced by Tau.Tau::zImpact().

134 { return Geom::Theta<T>(std::atan2(perp(), z())); }
T perp() const
Magnitude of transverse component.
T z() const
Cartesian z coordinate.

◆ theta() [2/3]

template<typename T>
Geom::Theta<T> Basic3DVector< T >::theta ( ) const
inline

◆ theta() [3/3]

template<typename T>
Geom::Theta<T> Basic3DVector< T >::theta ( ) const
inline

Definition at line 160 of file oldBasic3DVector.h.

Referenced by Tau.Tau::zImpact().

160 {return Geom::Theta<T>(std::atan2(perp(),z()));}
T perp() const
Magnitude of transverse component.
T z() const
Cartesian z coordinate.

◆ transverse() [1/3]

template<typename T>
T Basic3DVector< T >::transverse ( ) const
inline

Another name for perp()

Definition at line 120 of file sseBasic3DVector.h.

120 { return perp(); }
T perp() const
Magnitude of transverse component.

◆ transverse() [2/3]

template<typename T>
T Basic3DVector< T >::transverse ( ) const
inline

Another name for perp()

Definition at line 125 of file extBasic3DVector.h.

Referenced by PV3DBase< long double, PointTag, GlobalTag >::transverse().

125 { return perp(); }
T perp() const
Magnitude of transverse component.

◆ transverse() [3/3]

template<typename T>
T Basic3DVector< T >::transverse ( ) const
inline

Another name for perp()

Definition at line 146 of file oldBasic3DVector.h.

146 { return perp();}
T perp() const
Magnitude of transverse component.

◆ unit() [1/3]

template<typename T>
Basic3DVector Basic3DVector< T >::unit ( ) const
inline

Unit vector parallel to this. If mag() is zero, a zero vector is returned.

Definition at line 146 of file sseBasic3DVector.h.

146  {
147  T my_mag = mag2();
148  return (0 != my_mag) ? (*this) * (T(1) / std::sqrt(my_mag)) : *this;
149  }
T sqrt(T t)
Definition: SSEVec.h:19
T mag2() const
The vector magnitude squared. Equivalent to vec.dot(vec)
long double T

◆ unit() [2/3]

template<typename T>
Basic3DVector Basic3DVector< T >::unit ( ) const
inline

Unit vector parallel to this. If mag() is zero, a zero vector is returned.

Definition at line 151 of file extBasic3DVector.h.

Referenced by CaloTowersCreationAlgo::convert(), HelixBarrelPlaneCrossingByCircle::position(), and TkRotation< align::Scalar >::TkRotation().

151  {
152  T my_mag = mag2();
153  return (0 != my_mag) ? (*this) * (T(1) / std::sqrt(my_mag)) : *this;
154  }
T sqrt(T t)
Definition: SSEVec.h:19
T mag2() const
The vector magnitude squared. Equivalent to vec.dot(vec)
long double T

◆ unit() [3/3]

template<typename T>
Basic3DVector Basic3DVector< T >::unit ( ) const
inline

Unit vector parallel to this. If mag() is zero, a zero vector is returned.

Definition at line 172 of file oldBasic3DVector.h.

172  {
173  T my_mag = mag2();
174  if (my_mag==0) return *this;
175  my_mag = T(1)/std::sqrt(my_mag);
176  return *this * my_mag;
177  }
T sqrt(T t)
Definition: SSEVec.h:19
T mag2() const
The vector magnitude squared. Equivalent to vec.dot(vec)
long double T

◆ w() [1/3]

template<typename T>
T Basic3DVector< T >::w ( ) const
inline

Definition at line 100 of file sseBasic3DVector.h.

100 { return v.o.theW; }

◆ w() [2/3]

template<typename T>
T Basic3DVector< T >::w ( ) const
inline

Definition at line 102 of file extBasic3DVector.h.

Referenced by Basic3DVector< align::Scalar >::Basic3DVector().

102 { return v[3]; }

◆ w() [3/3]

template<typename T>
T Basic3DVector< T >::w ( ) const
inline

Definition at line 122 of file oldBasic3DVector.h.

122 { return theW;}

◆ x() [1/3]

template<typename T>
T Basic3DVector< T >::x ( ) const
inline

◆ x() [2/3]

template<typename T>
T Basic3DVector< T >::x ( ) const
inline

Cartesian x coordinate.

Definition at line 94 of file extBasic3DVector.h.

Referenced by svgfig.Curve.Sample::__repr__(), svgfig.Ellipse::__repr__(), Basic3DVector< long double >::barePhi(), Basic3DVector< align::Scalar >::barePhi(), Basic3DVector< align::Scalar >::Basic3DVector(), HelixBarrelPlaneCrossingByCircle::chooseSolution(), TSCPBuilderNoMaterial::createFTSatTransverseImpactPointCharged(), Basic3DVector< align::Scalar >::cross(), HelixBarrelPlaneCrossingByCircle::direction(), HelixExtrapolatorToLine2Order::directionInDouble(), Basic3DVector< long double >::dot(), Basic3DVector< align::Scalar >::dot(), Basic3DVector< long double >::eta(), Basic3DVector< align::Scalar >::eta(), IterativeHelixExtrapolatorToLine::genericPathLength(), HelixArbitraryPlaneCrossing::HelixArbitraryPlaneCrossing(), HelixArbitraryPlaneCrossing2Order::HelixArbitraryPlaneCrossing2Order(), HelixExtrapolatorToLine2Order::HelixExtrapolatorToLine2Order(), HelixForwardPlaneCrossing::HelixForwardPlaneCrossing(), HelixBarrelPlaneCrossingByCircle::init(), IterativeHelixExtrapolatorToLine::IterativeHelixExtrapolatorToLine(), Basic3DVector< long double >::mag2(), Basic3DVector< align::Scalar >::mag2(), ConformalMappingFit::MappedPoint< T >::MappedPoint(), ThirdHitPredictionFromInvLine::MappedPoint< T >::MappedPoint(), reco::PFDisplacedVertexSeed::mergeWith(), operator*(), Basic3DVector< long double >::operator-(), Basic3DVector< align::Scalar >::operator-(), Basic3DVector< long double >::operator==(), Basic3DVector< align::Scalar >::operator==(), HelixBarrelPlaneCrossingByCircle::pathLength(), HelixExtrapolatorToLine2Order::pathLength(), Basic3DVector< long double >::perp2(), Basic3DVector< align::Scalar >::perp2(), geometryXMLparser.Alignable::pos(), HelixBarrelPlaneCrossingByCircle::position(), HelixExtrapolatorToLine2Order::positionInDouble(), TrackKinematicStatePropagator::propagateToTheTransversePCACharged(), ntupleDataFormat._HitObject::r(), ntupleDataFormat._HitObject::r3D(), CartesianStateAdaptor::rkstate(), TkRotation< align::Scalar >::rotateAxes(), reco::trackingParametersAtClosestApproachToBeamSpot(), reco::PFDisplacedVertexSeed::updateSeedPoint(), and PV3DBase< long double, PointTag, GlobalTag >::x().

94 { return v[0]; }

◆ x() [3/3]

template<typename T>
T Basic3DVector< T >::x ( ) const
inline

◆ xy() [1/3]

template<typename T>
Basic2DVector<T> Basic3DVector< T >::xy ( ) const
inline

Definition at line 102 of file sseBasic3DVector.h.

Referenced by geometryXMLparser.Alignable::covariance().

102 { return v.xy(); }

◆ xy() [2/3]

template<typename T>
Basic2DVector<T> Basic3DVector< T >::xy ( ) const
inline

Definition at line 104 of file extBasic3DVector.h.

Referenced by geometryXMLparser.Alignable::covariance(), and LinkByRecHit::testECALAndPSByRecHit().

104 { return ::xy(v); }
Basic2DVector< T > xy() const

◆ xy() [3/3]

template<typename T>
Basic2DVector<T> Basic3DVector< T >::xy ( ) const
inline

◆ y() [1/3]

template<typename T>
T Basic3DVector< T >::y ( ) const
inline

Cartesian y coordinate.

Definition at line 95 of file sseBasic3DVector.h.

Referenced by svgfig.Ellipse::__repr__(), geometryXMLparser.Alignable::pos(), ntupleDataFormat._HitObject::r(), and ntupleDataFormat._HitObject::r3D().

95 { return v.o.theY; }

◆ y() [2/3]

template<typename T>
T Basic3DVector< T >::y ( ) const
inline

Cartesian y coordinate.

Definition at line 97 of file extBasic3DVector.h.

Referenced by svgfig.Ellipse::__repr__(), AlignmentParameterStore::acquireRelativeParameters(), Basic3DVector< long double >::barePhi(), Basic3DVector< align::Scalar >::barePhi(), Basic3DVector< align::Scalar >::Basic3DVector(), HelixBarrelPlaneCrossingByCircle::chooseSolution(), TSCPBuilderNoMaterial::createFTSatTransverseImpactPointCharged(), Basic3DVector< align::Scalar >::cross(), HelixBarrelPlaneCrossingByCircle::direction(), HelixExtrapolatorToLine2Order::directionInDouble(), Basic3DVector< long double >::dot(), Basic3DVector< align::Scalar >::dot(), Basic3DVector< long double >::eta(), Basic3DVector< align::Scalar >::eta(), IterativeHelixExtrapolatorToLine::genericPathLength(), HelixArbitraryPlaneCrossing::HelixArbitraryPlaneCrossing(), HelixArbitraryPlaneCrossing2Order::HelixArbitraryPlaneCrossing2Order(), HelixExtrapolatorToLine2Order::HelixExtrapolatorToLine2Order(), HelixForwardPlaneCrossing::HelixForwardPlaneCrossing(), HelixBarrelPlaneCrossingByCircle::init(), IterativeHelixExtrapolatorToLine::IterativeHelixExtrapolatorToLine(), Basic3DVector< long double >::mag2(), Basic3DVector< align::Scalar >::mag2(), ConformalMappingFit::MappedPoint< T >::MappedPoint(), ThirdHitPredictionFromInvLine::MappedPoint< T >::MappedPoint(), reco::PFDisplacedVertexSeed::mergeWith(), operator*(), Basic3DVector< long double >::operator-(), Basic3DVector< align::Scalar >::operator-(), Basic3DVector< long double >::operator==(), Basic3DVector< align::Scalar >::operator==(), HelixBarrelPlaneCrossingByCircle::pathLength(), HelixExtrapolatorToLine2Order::pathLength(), Basic3DVector< long double >::perp2(), Basic3DVector< align::Scalar >::perp2(), geometryXMLparser.Alignable::pos(), HelixBarrelPlaneCrossingByCircle::position(), HelixExtrapolatorToLine2Order::positionInDouble(), TrackKinematicStatePropagator::propagateToTheTransversePCACharged(), ntupleDataFormat._HitObject::r(), ntupleDataFormat._HitObject::r3D(), CartesianStateAdaptor::rkstate(), TkRotation< align::Scalar >::rotateAxes(), reco::trackingParametersAtClosestApproachToBeamSpot(), reco::PFDisplacedVertexSeed::updateSeedPoint(), and PV3DBase< long double, PointTag, GlobalTag >::y().

97 { return v[1]; }

◆ y() [3/3]

template<typename T>
T Basic3DVector< T >::y ( ) const
inline

◆ z() [1/3]

template<typename T>
T Basic3DVector< T >::z ( ) const
inline

Cartesian z coordinate.

Definition at line 98 of file sseBasic3DVector.h.

Referenced by geometryXMLparser.Alignable::pos(), and ntupleDataFormat._HitObject::r3D().

98 { return v.o.theZ; }

◆ z() [2/3]

template<typename T>
T Basic3DVector< T >::z ( ) const
inline

Cartesian z coordinate.

Definition at line 100 of file extBasic3DVector.h.

Referenced by Basic3DVector< long double >::bareTheta(), Basic3DVector< align::Scalar >::bareTheta(), Basic3DVector< align::Scalar >::Basic3DVector(), TSCPBuilderNoMaterial::createFTSatTransverseImpactPointCharged(), Basic3DVector< align::Scalar >::cross(), HelixBarrelPlaneCrossingByCircle::direction(), HelixExtrapolatorToLine2Order::directionInDouble(), Basic3DVector< long double >::dot(), Basic3DVector< align::Scalar >::dot(), Basic3DVector< long double >::eta(), Basic3DVector< align::Scalar >::eta(), IterativeHelixExtrapolatorToLine::genericPathLength(), HelixArbitraryPlaneCrossing::HelixArbitraryPlaneCrossing(), HelixArbitraryPlaneCrossing2Order::HelixArbitraryPlaneCrossing2Order(), HelixExtrapolatorToLine2Order::HelixExtrapolatorToLine2Order(), HelixForwardPlaneCrossing::HelixForwardPlaneCrossing(), HelixBarrelPlaneCrossingByCircle::init(), IterativeHelixExtrapolatorToLine::IterativeHelixExtrapolatorToLine(), Basic3DVector< long double >::mag2(), Basic3DVector< align::Scalar >::mag2(), reco::PFDisplacedVertexSeed::mergeWith(), operator*(), Basic3DVector< long double >::operator-(), Basic3DVector< align::Scalar >::operator-(), Basic3DVector< long double >::operator==(), Basic3DVector< align::Scalar >::operator==(), HelixForwardPlaneCrossing::pathLength(), geometryXMLparser.Alignable::pos(), HelixBarrelPlaneCrossingByCircle::position(), HelixExtrapolatorToLine2Order::positionInDouble(), RKPropagatorInS::propagateParametersOnCylinder(), TrackKinematicStatePropagator::propagateToTheTransversePCACharged(), ntupleDataFormat._HitObject::r3D(), CartesianStateAdaptor::rkstate(), TkRotation< align::Scalar >::rotateAxes(), Basic3DVector< align::Scalar >::theta(), reco::trackingParametersAtClosestApproachToBeamSpot(), l1t::HGCalClusterT< l1t::HGCalCluster >::updateP4AndPosition(), reco::PFDisplacedVertexSeed::updateSeedPoint(), PV3DBase< long double, PointTag, GlobalTag >::z(), and z().

100 { return v[2]; }

◆ z() [3/3]

template<typename T>
T Basic3DVector< T >::z ( ) const
inline

Cartesian z coordinate.

Definition at line 120 of file oldBasic3DVector.h.

Referenced by geometryXMLparser.Alignable::pos(), and ntupleDataFormat._HitObject::r3D().

120 { return theZ;}

Member Data Documentation

◆ theW

template<typename T>
T Basic3DVector< T >::theW
private

◆ theX

template<typename T>
T Basic3DVector< T >::theX
private

◆ theY

template<typename T>
T Basic3DVector< T >::theY
private

◆ theZ

template<typename T>
T Basic3DVector< T >::theZ
private

◆ v [1/2]

template<typename T>
mathSSE::Vec4<T> Basic3DVector< T >::v

Definition at line 212 of file sseBasic3DVector.h.

◆ v [2/2]

template<typename T>
Vec4<T> Basic3DVector< T >::v