CMS 3D CMS Logo

List of all members | Public Member Functions | Public Attributes
JetReCalibrator.JetReCalibrator Class Reference

Public Member Functions

def __init__
 
def correct (self, jet, rho, delta=0, addCorr=False, addShifts=False, metShift=[0, type1METCorr=[0)
 
def correctAll (self, jets, rho, delta=0, addCorr=False, addShifts=False, metShift=[0., type1METCorr=[0.)
 
def getCorrection (self, jet, rho, delta=0, corrector=None)
 
def rawP4forType1MET_ (self, jet)
 

Public Attributes

 calculateType1METCorr
 
 doResidualJECs
 
 globalTag
 
 jecPath
 
 JetCorrector
 
 jetFlavour
 
 JetUncertainty
 
 L1JetPar
 
 L2JetPar
 
 L3JetPar
 
 ResJetPar
 
 separateJetCorrectors
 
 type1METParams
 
 upToLevel
 
 vPar
 
 vParL1
 
 vParL2
 
 vParL3
 
 vParL3Res
 

Detailed Description

Definition at line 8 of file JetReCalibrator.py.

Constructor & Destructor Documentation

◆ __init__()

def JetReCalibrator.JetReCalibrator.__init__ (   self,
  globalTag,
  jetFlavour,
  doResidualJECs,
  jecPath,
  upToLevel = 3,
  calculateSeparateCorrections = False,
  calculateType1METCorrection = False,
  type1METParams = {'jetPtThreshold':15.,
  skipEMfractionThreshold 
)

Definition at line 11 of file JetReCalibrator.py.

11  calculateType1METCorrection=False, type1METParams={'jetPtThreshold':15., 'skipEMfractionThreshold':0.9, 'skipMuons':True} ):
12  """Create a corrector object that reads the payloads from the text dumps of a global tag under
13  CMGTools/RootTools/data/jec (see the getJec.py there to make the dumps).
14  It will apply the L1,L2,L3 and possibly the residual corrections to the jets.
15  If configured to do so, it will also compute the type1 MET corrections."""
16  self.globalTag = globalTag
17  self.jetFlavour = jetFlavour
18  self.doResidualJECs = doResidualJECs
19  self.jecPath = jecPath
20  self.upToLevel = upToLevel
21  self.calculateType1METCorr = calculateType1METCorrection
22  self.type1METParams = type1METParams
23  # Make base corrections
24  path = os.path.expandvars(jecPath) #"%s/src/CMGTools/RootTools/data/jec" % os.environ['CMSSW_BASE'];
25  self.L1JetPar = ROOT.JetCorrectorParameters("%s/%s_L1FastJet_%s.txt" % (path,globalTag,jetFlavour),"");
26  self.L2JetPar = ROOT.JetCorrectorParameters("%s/%s_L2Relative_%s.txt" % (path,globalTag,jetFlavour),"");
27  self.L3JetPar = ROOT.JetCorrectorParameters("%s/%s_L3Absolute_%s.txt" % (path,globalTag,jetFlavour),"");
28  self.vPar = ROOT.vector(ROOT.JetCorrectorParameters)()
29  self.vPar.push_back(self.L1JetPar);
30  if upToLevel >= 2: self.vPar.push_back(self.L2JetPar);
31  if upToLevel >= 3: self.vPar.push_back(self.L3JetPar);
32  # Add residuals if needed
33  if doResidualJECs :
34  self.ResJetPar = ROOT.JetCorrectorParameters("%s/%s_L2L3Residual_%s.txt" % (path,globalTag,jetFlavour))
35  self.vPar.push_back(self.ResJetPar);
36  #Step3 (Construct a FactorizedJetCorrector object)
37  self.JetCorrector = ROOT.FactorizedJetCorrector(self.vPar)
38  if os.path.exists("%s/%s_Uncertainty_%s.txt" % (path,globalTag,jetFlavour)):
39  self.JetUncertainty = ROOT.JetCorrectionUncertainty("%s/%s_Uncertainty_%s.txt" % (path,globalTag,jetFlavour));
40  elif os.path.exists("%s/Uncertainty_FAKE.txt" % path):
41  self.JetUncertainty = ROOT.JetCorrectionUncertainty("%s/Uncertainty_FAKE.txt" % path);
42  else:
43  print('Missing JEC uncertainty file "%s/%s_Uncertainty_%s.txt", so jet energy uncertainties will not be available' % (path,globalTag,jetFlavour))
44  self.JetUncertainty = None
45  self.separateJetCorrectors = {}
46  if calculateSeparateCorrections or calculateType1METCorrection:
47  self.vParL1 = ROOT.vector(ROOT.JetCorrectorParameters)()
48  self.vParL1.push_back(self.L1JetPar)
49  self.separateJetCorrectors["L1"] = ROOT.FactorizedJetCorrector(self.vParL1)
50  if upToLevel >= 2 and calculateSeparateCorrections:
51  self.vParL2 = ROOT.vector(ROOT.JetCorrectorParameters)()
52  for i in [self.L1JetPar,self.L2JetPar]: self.vParL2.push_back(i)
53  self.separateJetCorrectors["L1L2"] = ROOT.FactorizedJetCorrector(self.vParL2)
54  if upToLevel >= 3 and calculateSeparateCorrections:
55  self.vParL3 = ROOT.vector(ROOT.JetCorrectorParameters)()
56  for i in [self.L1JetPar,self.L2JetPar,self.L3JetPar]: self.vParL3.push_back(i)
57  self.separateJetCorrectors["L1L2L3"] = ROOT.FactorizedJetCorrector(self.vParL3)
58  if doResidualJECs and calculateSeparateCorrections:
59  self.vParL3Res = ROOT.vector(ROOT.JetCorrectorParameters)()
60  for i in [self.L1JetPar,self.L2JetPar,self.L3JetPar,self.ResJetPar]: self.vParL3Res.push_back(i)
61  self.separateJetCorrectors["L1L2L3Res"] = ROOT.FactorizedJetCorrector(self.vParL3Res)
62 
void print(TMatrixD &m, const char *label=nullptr, bool mathematicaFormat=false)
Definition: Utilities.cc:47
deadvectors [0] push_back({0.0175431, 0.538005, 6.80997, 13.29})

Member Function Documentation

◆ correct()

def JetReCalibrator.JetReCalibrator.correct (   self,
  jet,
  rho,
  delta = 0,
  addCorr = False,
  addShifts = False,
  metShift = [0,
  type1METCorr = [0 
)
Corrects a jet energy (optionally shifting it also by delta times the JEC uncertainty)

   If addCorr, set jet.corr to the correction.
   If addShifts, set also the +1 and -1 jet shifts 

   The metShift vector will accumulate the x and y changes to the MET from the JEC, i.e. the 
   negative difference between the new and old jet momentum, for jets eligible for type1 MET 
   corrections, and after subtracting muons. The pt cut is applied to the new corrected pt.
   This shift can be applied on top of the *OLD TYPE1 MET*, but only if there was no change 
   in the L1 corrections nor in the definition of the type1 MET (e.g. jet pt cuts).

   The type1METCorr vector, will accumulate the x, y, sumEt type1 MET corrections, to be
   applied to the *RAW MET* (if the feature was turned on in the constructor of the class).

Definition at line 98 of file JetReCalibrator.py.

References JetReCalibrator.JetReCalibrator.calculateType1METCorr, CastorPulseContainmentCorrection.getCorrection(), HcalPulseContainmentCorrection.getCorrection(), AddCorrectionsToGenericMET.getCorrection(), FactorizedJetCorrector.getCorrection(), JetReCalibrator.JetReCalibrator.getCorrection(), JetCorrExtractorT< T >.getCorrection(), FactorizedJetCorrectorCalculator.getCorrection(), relativeConstraints.keys, JetReCalibrator.JetReCalibrator.rawP4forType1MET_(), JetReCalibrator.JetReCalibrator.separateJetCorrectors, JetReCalibrator.JetReCalibrator.type1METParams, and objects.JetAnalyzer.JetAnalyzer.type1METParams.

Referenced by KalmanMuonCorrector.KalmanMuonCorrector.correct_all(), and JetReCalibrator.JetReCalibrator.correctAll().

98  def correct(self,jet,rho,delta=0,addCorr=False,addShifts=False, metShift=[0,0],type1METCorr=[0,0,0]):
99  """Corrects a jet energy (optionally shifting it also by delta times the JEC uncertainty)
100 
101  If addCorr, set jet.corr to the correction.
102  If addShifts, set also the +1 and -1 jet shifts
103 
104  The metShift vector will accumulate the x and y changes to the MET from the JEC, i.e. the
105  negative difference between the new and old jet momentum, for jets eligible for type1 MET
106  corrections, and after subtracting muons. The pt cut is applied to the new corrected pt.
107  This shift can be applied on top of the *OLD TYPE1 MET*, but only if there was no change
108  in the L1 corrections nor in the definition of the type1 MET (e.g. jet pt cuts).
109 
110  The type1METCorr vector, will accumulate the x, y, sumEt type1 MET corrections, to be
111  applied to the *RAW MET* (if the feature was turned on in the constructor of the class).
112  """
113  raw = jet.rawFactor()
114  corr = self.getCorrection(jet,rho,delta)
115  if addCorr:
116  jet.corr = corr
117  for sepcorr in self.separateJetCorrectors.keys():
118  setattr(jet,"CorrFactor_"+sepcorr,self.getCorrection(jet,rho,delta=0,corrector=self.separateJetCorrectors[sepcorr]))
119  if addShifts:
120  for cdelta,shift in [(1.0, "JECUp"), (-1.0, "JECDown")]:
121  cshift = self.getCorrection(jet,rho,delta+cdelta)
122  setattr(jet, "corr"+shift, cshift)
123  if corr <= 0:
124  return False
125  newpt = jet.pt()*raw*corr
126  if newpt > self.type1METParams['jetPtThreshold']:
127  rawP4forT1 = self.rawP4forType1MET_(jet)
128  if rawP4forT1 and rawP4forT1.Pt()*corr > self.type1METParams['jetPtThreshold']:
129  metShift[0] -= rawP4forT1.Px() * (corr - 1.0/raw)
130  metShift[1] -= rawP4forT1.Py() * (corr - 1.0/raw)
131  if self.calculateType1METCorr:
132  l1corr = self.getCorrection(jet,rho,delta=0,corrector=self.separateJetCorrectors["L1"])
133  #print "\tfor jet with raw pt %.5g, eta %.5g, dpx = %.5g, dpy = %.5g" % (
134  # jet.pt()*raw, jet.eta(),
135  # rawP4forT1.Px()*(corr - l1corr),
136  # rawP4forT1.Py()*(corr - l1corr))
137  type1METCorr[0] -= rawP4forT1.Px() * (corr - l1corr)
138  type1METCorr[1] -= rawP4forT1.Py() * (corr - l1corr)
139  type1METCorr[2] += rawP4forT1.Et() * (corr - l1corr)
140  jet.setCorrP4(jet.p4() * (corr * raw))
141  return True
142 

◆ correctAll()

def JetReCalibrator.JetReCalibrator.correctAll (   self,
  jets,
  rho,
  delta = 0,
  addCorr = False,
  addShifts = False,
  metShift = [0.,
  type1METCorr = [0. 
)
Applies 'correct' to all the jets, discard the ones that have bad corrections (corrected pt <= 0)

Definition at line 143 of file JetReCalibrator.py.

References ElectronCalibrator.Run2ElectronCalibrator.correct(), FFTJetCorrector< Jet, Adjustable >.correct(), FFTJetCorrectorSequence< Jet, InitialConverter, FinalConverter >.correct(), MomentumScaleCorrector.correct(), JetReCalibrator.JetReCalibrator.correct(), l1tpf_calo::SingleCaloClusterer.correct(), l1tpf_calo::SimpleCaloLinkerBase.correct(), and print().

143  def correctAll(self,jets,rho,delta=0, addCorr=False, addShifts=False, metShift=[0.,0.], type1METCorr=[0.,0.,0.]):
144  """Applies 'correct' to all the jets, discard the ones that have bad corrections (corrected pt <= 0)"""
145  badJets = []
146  if metShift != [0.,0. ]: raise RuntimeError("input metShift tuple is not initialized to zeros")
147  if type1METCorr != [0.,0.,0.]: raise RuntimeError("input type1METCorr tuple is not initialized to zeros")
148  for j in jets:
149  ok = self.correct(j,rho,delta,addCorr=addCorr,addShifts=addShifts,metShift=metShift,type1METCorr=type1METCorr)
150  if not ok: badJets.append(j)
151  if len(badJets) > 0:
152  print("Warning: %d out of %d jets flagged bad by JEC." % (len(badJets), len(jets)))
153  for bj in badJets:
154  jets.remove(bj)
155 
void print(TMatrixD &m, const char *label=nullptr, bool mathematicaFormat=false)
Definition: Utilities.cc:47

◆ getCorrection()

def JetReCalibrator.JetReCalibrator.getCorrection (   self,
  jet,
  rho,
  delta = 0,
  corrector = None 
)

Definition at line 63 of file JetReCalibrator.py.

References JetReCalibrator.JetReCalibrator.JetCorrector, JetReCalibrator.JetReCalibrator.JetUncertainty, SiStripPI.max, and print().

Referenced by JetReCalibrator.JetReCalibrator.correct().

63  def getCorrection(self,jet,rho,delta=0,corrector=None):
64  if not corrector: corrector = self.JetCorrector
65  if corrector != self.JetCorrector and delta!=0: raise RuntimeError('Configuration not supported')
66  corrector.setJetEta(jet.eta())
67  corrector.setJetPt(jet.pt()*jet.rawFactor())
68  corrector.setJetA(jet.jetArea())
69  corrector.setRho(rho)
70  corr = corrector.getCorrection()
71  if delta != 0:
72  if not self.JetUncertainty: raise RuntimeError("Jet energy scale uncertainty shifts requested, but not available")
73  self.JetUncertainty.setJetEta(jet.eta())
74  self.JetUncertainty.setJetPt(corr * jet.pt() * jet.rawFactor())
75  try:
76  jet.jetEnergyCorrUncertainty = self.JetUncertainty.getUncertainty(True)
77  except RuntimeError as r:
78  print("Caught %s when getting uncertainty for jet of pt %.1f, eta %.2f\n" % (r,corr * jet.pt() * jet.rawFactor(),jet.eta()))
79  jet.jetEnergyCorrUncertainty = 0.5
80  #print " jet with corr pt %6.2f has an uncertainty %.2f " % (jet.pt()*jet.rawFactor()*corr, jet.jetEnergyCorrUncertainty)
81  corr *= max(0, 1+delta*jet.jetEnergyCorrUncertainty)
82  return corr
83 
void print(TMatrixD &m, const char *label=nullptr, bool mathematicaFormat=false)
Definition: Utilities.cc:47

◆ rawP4forType1MET_()

def JetReCalibrator.JetReCalibrator.rawP4forType1MET_ (   self,
  jet 
)
Return the raw 4-vector, after subtracting the muons (if requested),
   or None if the jet fails the EMF cut.

Definition at line 84 of file JetReCalibrator.py.

References FastTimerService_cff.range, JetReCalibrator.JetReCalibrator.type1METParams, and objects.JetAnalyzer.JetAnalyzer.type1METParams.

Referenced by JetReCalibrator.JetReCalibrator.correct().

84  def rawP4forType1MET_(self, jet):
85  """Return the raw 4-vector, after subtracting the muons (if requested),
86  or None if the jet fails the EMF cut."""
87  p4 = jet.p4() * jet.rawFactor()
88  emf = ( jet.physObj.neutralEmEnergy() + jet.physObj.chargedEmEnergy() )/p4.E()
89  if emf > self.type1METParams['skipEMfractionThreshold']:
90  return None
91  if self.type1METParams['skipMuons']:
92  for idau in range(jet.numberOfDaughters()):
93  pfcand = jet.daughter(idau)
94  if pfcand.isGlobalMuon() or pfcand.isStandAloneMuon():
95  p4 -= pfcand.p4()
96  return p4
97 

Member Data Documentation

◆ calculateType1METCorr

JetReCalibrator.JetReCalibrator.calculateType1METCorr

Definition at line 21 of file JetReCalibrator.py.

Referenced by JetReCalibrator.JetReCalibrator.correct().

◆ doResidualJECs

JetReCalibrator.JetReCalibrator.doResidualJECs

Definition at line 18 of file JetReCalibrator.py.

◆ globalTag

JetReCalibrator.JetReCalibrator.globalTag

Definition at line 16 of file JetReCalibrator.py.

◆ jecPath

JetReCalibrator.JetReCalibrator.jecPath

Definition at line 19 of file JetReCalibrator.py.

◆ JetCorrector

JetReCalibrator.JetReCalibrator.JetCorrector

Definition at line 37 of file JetReCalibrator.py.

Referenced by JetReCalibrator.JetReCalibrator.getCorrection().

◆ jetFlavour

JetReCalibrator.JetReCalibrator.jetFlavour

Definition at line 17 of file JetReCalibrator.py.

◆ JetUncertainty

JetReCalibrator.JetReCalibrator.JetUncertainty

Definition at line 39 of file JetReCalibrator.py.

Referenced by JetReCalibrator.JetReCalibrator.getCorrection().

◆ L1JetPar

JetReCalibrator.JetReCalibrator.L1JetPar

Definition at line 25 of file JetReCalibrator.py.

◆ L2JetPar

JetReCalibrator.JetReCalibrator.L2JetPar

Definition at line 26 of file JetReCalibrator.py.

◆ L3JetPar

JetReCalibrator.JetReCalibrator.L3JetPar

Definition at line 27 of file JetReCalibrator.py.

◆ ResJetPar

JetReCalibrator.JetReCalibrator.ResJetPar

Definition at line 34 of file JetReCalibrator.py.

◆ separateJetCorrectors

JetReCalibrator.JetReCalibrator.separateJetCorrectors

Definition at line 45 of file JetReCalibrator.py.

Referenced by JetReCalibrator.JetReCalibrator.correct().

◆ type1METParams

JetReCalibrator.JetReCalibrator.type1METParams

◆ upToLevel

JetReCalibrator.JetReCalibrator.upToLevel

Definition at line 20 of file JetReCalibrator.py.

◆ vPar

JetReCalibrator.JetReCalibrator.vPar

Definition at line 28 of file JetReCalibrator.py.

◆ vParL1

JetReCalibrator.JetReCalibrator.vParL1

Definition at line 47 of file JetReCalibrator.py.

◆ vParL2

JetReCalibrator.JetReCalibrator.vParL2

Definition at line 51 of file JetReCalibrator.py.

◆ vParL3

JetReCalibrator.JetReCalibrator.vParL3

Definition at line 55 of file JetReCalibrator.py.

◆ vParL3Res

JetReCalibrator.JetReCalibrator.vParL3Res

Definition at line 59 of file JetReCalibrator.py.