CMS 3D CMS Logo

DDHGCalSiliconModule.cc
Go to the documentation of this file.
1 // File: DDHGCalSiliconModule.cc
3 // Description: Geometry factory class for HGCal (EE and HESil) using
4 // information from the file
6 
25 
26 #include <cmath>
27 #include <memory>
28 #include <sstream>
29 #include <string>
30 #include <unordered_set>
31 #include <vector>
32 
33 //#define EDM_ML_DEBUG
34 using namespace angle_units::operators;
35 
36 class DDHGCalSiliconModule : public DDAlgorithm {
37 public:
39 
40  void initialize(const DDNumericArguments& nArgs,
41  const DDVectorArguments& vArgs,
42  const DDMapArguments& mArgs,
43  const DDStringArguments& sArgs,
44  const DDStringVectorArguments& vsArgs) override;
45  void execute(DDCompactView& cpv) override;
46 
47 protected:
48  void constructLayers(const DDLogicalPart&, DDCompactView& cpv);
49  void positionSensitive(const DDLogicalPart& glog, int layer, DDCompactView& cpv);
50 
51 private:
53 
54  static constexpr double tol1_ = 0.01;
55  static constexpr double tol2_ = 0.00001;
56 
57  int waferTypes_; // Number of wafer types
58  int facingTypes_; // Types of facings of modules toward IP
59  int partialTypes_; // Number of partial wafer types
60  int orientationTypes_; // Number of partial wafer orienations
61  int firstLayer_; // Copy # of the first sensitive layer
62  int absorbMode_; // Absorber mode
63  int sensitiveMode_; // Sensitive mode
64  double zMinBlock_; // Starting z-value of the block
65  double waferSize_; // Width of the wafer
66  double waferSepar_; // Sensor separation
67  int sectors_; // Sectors
68  std::string rotstr_; // Rotation matrix (if needed)
69  std::vector<std::string> waferFull_; // Names of full wafer modules
70  std::vector<std::string> waferPart_; // Names of partial wafer modules
71  std::vector<std::string> materials_; // names of materials
72  std::vector<std::string> names_; // Names of volumes
73  std::vector<double> thick_; // Thickness of the material
74  std::vector<int> copyNumber_; // Initial copy numbers
75  std::vector<int> layers_; // Number of layers in a section
76  std::vector<double> layerThick_; // Thickness of each section
77  std::vector<int> layerType_; // Type of the layer
78  std::vector<int> layerSense_; // Content of a layer (sensitive?)
79  std::vector<double> slopeB_; // Slope at the lower R
80  std::vector<double> zFrontB_; // Starting Z values for the slopes
81  std::vector<double> rMinFront_; // Corresponding rMin's
82  std::vector<double> slopeT_; // Slopes at the larger R
83  std::vector<double> zFrontT_; // Starting Z values for the slopes
84  std::vector<double> rMaxFront_; // Corresponding rMax's
85  std::vector<int> layerOrient_; // Layer orientation (Centering, rotations..)
86  std::vector<int> waferIndex_; // Wafer index for the types
87  std::vector<int> waferProperty_; // Wafer property
88  std::vector<int> waferLayerStart_; // Index of wafers in each layer
89  std::string nameSpace_; // Namespace of this and ALL sub-parts
90  std::unordered_set<int> copies_; // List of copy #'s
91  double alpha_, cosAlpha_;
92 };
93 
95 #ifdef EDM_ML_DEBUG
96  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconModule: Creating an instance";
97 #endif
98 }
99 
101  const DDVectorArguments& vArgs,
102  const DDMapArguments&,
103  const DDStringArguments& sArgs,
104  const DDStringVectorArguments& vsArgs) {
105  waferTypes_ = static_cast<int>(nArgs["WaferTypes"]);
106  facingTypes_ = static_cast<int>(nArgs["FacingTypes"]);
107  partialTypes_ = static_cast<int>(nArgs["PartialTypes"]);
108  orientationTypes_ = static_cast<int>(nArgs["OrientationTypes"]);
109 #ifdef EDM_ML_DEBUG
110  edm::LogVerbatim("HGCalGeom") << "Number of types of wafers: " << waferTypes_ << " facings: " << facingTypes_
111  << " partials: " << partialTypes_ << " Orientations: " << orientationTypes_;
112 #endif
113  firstLayer_ = static_cast<int>(nArgs["FirstLayer"]);
114  absorbMode_ = static_cast<int>(nArgs["AbsorberMode"]);
115  sensitiveMode_ = static_cast<int>(nArgs["SensitiveMode"]);
116 #ifdef EDM_ML_DEBUG
117  edm::LogVerbatim("HGCalGeom") << "First Layer " << firstLayer_ << " and "
118  << "Absober:Sensitive mode " << absorbMode_ << ":" << sensitiveMode_;
119 #endif
120  zMinBlock_ = nArgs["zMinBlock"];
121  waferSize_ = nArgs["waferSize"];
122  waferSepar_ = nArgs["SensorSeparation"];
123  sectors_ = (int)(nArgs["Sectors"]);
124  alpha_ = (1._pi) / sectors_;
125  cosAlpha_ = cos(alpha_);
126  rotstr_ = sArgs["LayerRotation"];
127 #ifdef EDM_ML_DEBUG
128  edm::LogVerbatim("HGCalGeom") << "zStart " << zMinBlock_ << " wafer width " << waferSize_ << " separations "
129  << waferSepar_ << " sectors " << sectors_ << ":" << convertRadToDeg(alpha_) << ":"
130  << cosAlpha_ << " rotation matrix " << rotstr_;
131 #endif
132  waferFull_ = vsArgs["WaferNamesFull"];
133  waferPart_ = vsArgs["WaferNamesPartial"];
134 #ifdef EDM_ML_DEBUG
135  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconModule: " << waferFull_.size() << " full and " << waferPart_.size()
136  << " partial modules\nDDHGCalSiliconModule:Full Modules:";
137  unsigned int i1max = static_cast<unsigned int>(waferFull_.size());
138  for (unsigned int i1 = 0; i1 < i1max; i1 += 2) {
139  std::ostringstream st1;
140  unsigned int i2 = std::min((i1 + 2), i1max);
141  for (unsigned int i = i1; i < i2; ++i)
142  st1 << " [" << i << "] " << waferFull_[i];
143  edm::LogVerbatim("HGCalGeom") << st1.str() << std::endl;
144  }
145  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconModule: Partial Modules:";
146  i1max = static_cast<unsigned int>(waferPart_.size());
147  for (unsigned int i1 = 0; i1 < i1max; i1 += 2) {
148  std::ostringstream st1;
149  unsigned int i2 = std::min((i1 + 2), i1max);
150  for (unsigned int i = i1; i < i2; ++i)
151  st1 << " [" << i << "] " << waferPart_[i];
152  edm::LogVerbatim("HGCalGeom") << st1.str() << std::endl;
153  }
154 #endif
155  materials_ = vsArgs["MaterialNames"];
156  names_ = vsArgs["VolumeNames"];
157  thick_ = vArgs["Thickness"];
158  copyNumber_.resize(materials_.size(), 1);
159 #ifdef EDM_ML_DEBUG
160  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconModule: " << materials_.size() << " types of volumes";
161  for (unsigned int i = 0; i < names_.size(); ++i)
162  edm::LogVerbatim("HGCalGeom") << "Volume [" << i << "] " << names_[i] << " of thickness " << thick_[i]
163  << " filled with " << materials_[i] << " first copy number " << copyNumber_[i];
164 #endif
165  layers_ = dbl_to_int(vArgs["Layers"]);
166  layerThick_ = vArgs["LayerThick"];
167 #ifdef EDM_ML_DEBUG
168  edm::LogVerbatim("HGCalGeom") << "There are " << layers_.size() << " blocks";
169  for (unsigned int i = 0; i < layers_.size(); ++i)
170  edm::LogVerbatim("HGCalGeom") << "Block [" << i << "] of thickness " << layerThick_[i] << " with " << layers_[i]
171  << " layers";
172 #endif
173  layerType_ = dbl_to_int(vArgs["LayerType"]);
174  layerSense_ = dbl_to_int(vArgs["LayerSense"]);
175  layerOrient_ = dbl_to_int(vArgs["LayerTypes"]);
176  for (unsigned int k = 0; k < layerOrient_.size(); ++k)
177  layerOrient_[k] = HGCalTypes::layerType(layerOrient_[k]);
178 #ifdef EDM_ML_DEBUG
179  for (unsigned int i = 0; i < layerOrient_.size(); ++i)
180  edm::LogVerbatim("HGCalGeom") << "LayerTypes [" << i << "] " << layerOrient_[i];
181 #endif
182  if (firstLayer_ > 0) {
183  for (unsigned int i = 0; i < layerType_.size(); ++i) {
184  if (layerSense_[i] > 0) {
185  int ii = layerType_[i];
186  copyNumber_[ii] = (layerSense_[i] == 1) ? firstLayer_ : (firstLayer_ + 1);
187 #ifdef EDM_ML_DEBUG
188  edm::LogVerbatim("HGCalGeom") << "First copy number for layer type " << i << ":" << ii << " with "
189  << materials_[ii] << " changed to " << copyNumber_[ii];
190 #endif
191  }
192  }
193  } else {
194  firstLayer_ = 1;
195  }
196 #ifdef EDM_ML_DEBUG
197  edm::LogVerbatim("HGCalGeom") << "There are " << layerType_.size() << " layers";
198  for (unsigned int i = 0; i < layerType_.size(); ++i)
199  edm::LogVerbatim("HGCalGeom") << "Layer [" << i << "] with material type " << layerType_[i] << " sensitive class "
200  << layerSense_[i];
201 #endif
202  slopeB_ = vArgs["SlopeBottom"];
203  zFrontB_ = vArgs["ZFrontBottom"];
204  rMinFront_ = vArgs["RMinFront"];
205  slopeT_ = vArgs["SlopeTop"];
206  zFrontT_ = vArgs["ZFrontTop"];
207  rMaxFront_ = vArgs["RMaxFront"];
208 #ifdef EDM_ML_DEBUG
209  for (unsigned int i = 0; i < slopeB_.size(); ++i)
210  edm::LogVerbatim("HGCalGeom") << "Bottom Block [" << i << "] Zmin " << zFrontB_[i] << " Rmin " << rMinFront_[i]
211  << " Slope " << slopeB_[i];
212  for (unsigned int i = 0; i < slopeT_.size(); ++i)
213  edm::LogVerbatim("HGCalGeom") << "Top Block [" << i << "] Zmin " << zFrontT_[i] << " Rmax " << rMaxFront_[i]
214  << " Slope " << slopeT_[i];
215 #endif
216  waferIndex_ = dbl_to_int(vArgs["WaferIndex"]);
217  waferProperty_ = dbl_to_int(vArgs["WaferProperties"]);
218  waferLayerStart_ = dbl_to_int(vArgs["WaferLayerStart"]);
219 #ifdef EDM_ML_DEBUG
220  edm::LogVerbatim("HGCalGeom") << "waferProperties with " << waferIndex_.size() << " entries in "
221  << waferLayerStart_.size() << " layers";
222  for (unsigned int k = 0; k < waferLayerStart_.size(); ++k)
223  edm::LogVerbatim("HGCalGeom") << "LayerStart[" << k << "] " << waferLayerStart_[k];
224  for (unsigned int k = 0; k < waferIndex_.size(); ++k)
225  edm::LogVerbatim("HGCalGeom") << "Wafer[" << k << "] " << waferIndex_[k] << " ("
226  << HGCalWaferIndex::waferLayer(waferIndex_[k]) << ", "
227  << HGCalWaferIndex::waferU(waferIndex_[k]) << ", "
228  << HGCalWaferIndex::waferV(waferIndex_[k]) << ") : ("
229  << HGCalProperty::waferThick(waferProperty_[k]) << ":"
230  << HGCalProperty::waferPartial(waferProperty_[k]) << ":"
231  << HGCalProperty::waferOrient(waferProperty_[k]) << ")";
232 #endif
233  nameSpace_ = DDCurrentNamespace::ns();
234 #ifdef EDM_ML_DEBUG
235  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconModule: NameSpace " << nameSpace_ << ":";
236 #endif
237 }
238 
240 // DDHGCalSiliconModule methods...
242 
244 #ifdef EDM_ML_DEBUG
245  edm::LogVerbatim("HGCalGeom") << "==>> Constructing DDHGCalSiliconModule...";
246  copies_.clear();
247 #endif
248  constructLayers(parent(), cpv);
249 #ifdef EDM_ML_DEBUG
250  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconModule: " << copies_.size() << " different wafer copy numbers";
251  int k(0);
252  for (std::unordered_set<int>::const_iterator itr = copies_.begin(); itr != copies_.end(); ++itr, ++k) {
253  edm::LogVerbatim("HGCalGeom") << "Copy [" << k << "] : " << (*itr);
254  }
255  copies_.clear();
256  edm::LogVerbatim("HGCalGeom") << "<<== End of DDHGCalSiliconModule construction...";
257 #endif
258 }
259 
261  double zi(zMinBlock_);
262  int laymin(0);
263  for (unsigned int i = 0; i < layers_.size(); i++) {
264  double zo = zi + layerThick_[i];
265  double routF = HGCalGeomTools::radius(zi, zFrontT_, rMaxFront_, slopeT_);
266  int laymax = laymin + layers_[i];
267  double zz = zi;
268  double thickTot(0);
269  for (int ly = laymin; ly < laymax; ++ly) {
270  int ii = layerType_[ly];
271  int copy = copyNumber_[ii];
272  double hthick = 0.5 * thick_[ii];
273  double rinB = HGCalGeomTools::radius(zo - tol1_, zFrontB_, rMinFront_, slopeB_);
274  zz += hthick;
275  thickTot += thick_[ii];
276 
277  std::string name = names_[ii] + std::to_string(copy);
278 #ifdef EDM_ML_DEBUG
279  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconModule: Layer " << ly << ":" << ii << " Front " << zi << ", "
280  << routF << " Back " << zo << ", " << rinB << " superlayer thickness "
281  << layerThick_[i];
282 #endif
283  DDName matName(DDSplit(materials_[ii]).first, DDSplit(materials_[ii]).second);
284  DDMaterial matter(matName);
285  DDLogicalPart glog;
286  if (layerSense_[ly] < 1) {
287  std::vector<double> pgonZ, pgonRin, pgonRout;
288  double rmax = routF * cosAlpha_ - tol1_;
289  HGCalGeomTools::radius(zz - hthick,
290  zz + hthick,
291  zFrontB_,
292  rMinFront_,
293  slopeB_,
294  zFrontT_,
295  rMaxFront_,
296  slopeT_,
297  -layerSense_[ly],
298  pgonZ,
299  pgonRin,
300  pgonRout);
301  for (unsigned int isec = 0; isec < pgonZ.size(); ++isec) {
302  pgonZ[isec] -= zz;
303  if (layerSense_[ly] == 0 || absorbMode_ == 0)
304  pgonRout[isec] = rmax;
305  else
306  pgonRout[isec] = pgonRout[isec] * cosAlpha_ - tol1_;
307  }
308  DDSolid solid =
309  DDSolidFactory::polyhedra(DDName(name, nameSpace_), sectors_, -alpha_, 2._pi, pgonZ, pgonRin, pgonRout);
310  glog = DDLogicalPart(solid.ddname(), matter, solid);
311 #ifdef EDM_ML_DEBUG
312  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconModule: " << solid.name() << " polyhedra of " << sectors_
313  << " sectors covering " << convertRadToDeg(-alpha_) << ":"
314  << convertRadToDeg(-alpha_ + 2._pi) << " with " << pgonZ.size()
315  << " sections and filled with " << matName;
316  for (unsigned int k = 0; k < pgonZ.size(); ++k)
317  edm::LogVerbatim("HGCalGeom") << "[" << k << "] z " << pgonZ[k] << " R " << pgonRin[k] << ":" << pgonRout[k];
318 #endif
319  } else {
320  double rins =
321  (sensitiveMode_ < 1) ? rinB : HGCalGeomTools::radius(zz + hthick - tol1_, zFrontB_, rMinFront_, slopeB_);
322  double routs =
323  (sensitiveMode_ < 1) ? routF : HGCalGeomTools::radius(zz - hthick, zFrontT_, rMaxFront_, slopeT_);
324  DDSolid solid = DDSolidFactory::tubs(DDName(name, nameSpace_), hthick, rins, routs, 0.0, 2._pi);
325  glog = DDLogicalPart(solid.ddname(), matter, solid);
326 #ifdef EDM_ML_DEBUG
327  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconModule: " << solid.name() << " Tubs made of " << matName
328  << " of dimensions " << rinB << ":" << rins << ", " << routF << ":" << routs
329  << ", " << hthick << ", 0.0, 360.0 and position " << glog.name() << " number "
330  << copy << ":" << layerOrient_[copy - firstLayer_];
331 #endif
332  positionSensitive(glog, (copy - firstLayer_), cpv);
333  }
334  DDTranslation r1(0, 0, zz);
335  DDRotation rot;
336 #ifdef EDM_ML_DEBUG
337  std::string rotName("Null");
338 #endif
339  if ((layerSense_[ly] > 0) && (layerOrient_[copy - firstLayer_] == HGCalTypes::WaferCenterR)) {
340  rot = DDRotation(DDName(DDSplit(rotstr_).first, DDSplit(rotstr_).second));
341 #ifdef EDM_ML_DEBUG
342  rotName = rotstr_;
343 #endif
344  }
345  cpv.position(glog, module, copy, r1, rot);
346  int inc = ((layerSense_[ly] > 0) && (facingTypes_ > 1)) ? 2 : 1;
347  copyNumber_[ii] = copy + inc;
348 #ifdef EDM_ML_DEBUG
349  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconModule: " << glog.name() << " number " << copy
350  << " positioned in " << module.name() << " at " << r1 << " with " << rotName
351  << " rotation";
352 #endif
353  zz += hthick;
354  } // End of loop over layers in a block
355  zi = zo;
356  laymin = laymax;
357  // Make consistency check of all the partitions of the block
358  if (std::abs(thickTot - layerThick_[i]) >= tol2_) {
359  if (thickTot > layerThick_[i]) {
360  edm::LogError("HGCalGeom") << "Thickness of the partition " << layerThick_[i] << " is smaller than " << thickTot
361  << ": thickness of all its components **** ERROR ****";
362  } else {
363  edm::LogWarning("HGCalGeom") << "Thickness of the partition " << layerThick_[i] << " does not match with "
364  << thickTot << " of the components";
365  }
366  }
367  } // End of loop over blocks
368 }
369 
371  static const double sqrt3 = std::sqrt(3.0);
372  int layercenter = layerOrient_[layer];
373  int layertype = (layerOrient_[layer] == HGCalTypes::WaferCenterB) ? 1 : 0;
374  int firstWafer = waferLayerStart_[layer];
375  int lastWafer = ((layer + 1 < static_cast<int>(waferLayerStart_.size())) ? waferLayerStart_[layer + 1]
376  : static_cast<int>(waferIndex_.size()));
377  double r = 0.5 * (waferSize_ + waferSepar_);
378  double R = 2.0 * r / sqrt3;
379  double dy = 0.75 * R;
380  const auto& xyoff = geomTools_.shiftXY(layercenter, (waferSize_ + waferSepar_));
381 #ifdef EDM_ML_DEBUG
382  int ium(0), ivm(0), kount(0);
383  std::vector<int> ntype(3, 0);
384  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconModule: " << glog.ddname() << " r " << r << " R " << R << " dy "
385  << dy << " Shift " << xyoff.first << ":" << xyoff.second << " WaferSize "
386  << (waferSize_ + waferSepar_) << " index " << firstWafer << ":" << (lastWafer - 1);
387 #endif
388  for (int k = firstWafer; k < lastWafer; ++k) {
389  int u = HGCalWaferIndex::waferU(waferIndex_[k]);
390  int v = HGCalWaferIndex::waferV(waferIndex_[k]);
391 #ifdef EDM_ML_DEBUG
392  int iu = std::abs(u);
393  int iv = std::abs(v);
394 #endif
395  int nr = 2 * v;
396  int nc = -2 * u + v;
397  double xpos = xyoff.first + nc * r;
398  double ypos = xyoff.second + nr * dy;
399  int type = HGCalProperty::waferThick(waferProperty_[k]);
400  int part = HGCalProperty::waferPartial(waferProperty_[k]);
401  int orien = HGCalProperty::waferOrient(waferProperty_[k]);
402  std::string wafer;
403  int i(999);
404  if (part == HGCalTypes::WaferFull) {
405  i = layertype * waferTypes_ + type;
406  wafer = waferFull_[i];
407  } else {
408  i = (part - 1) * waferTypes_ * facingTypes_ * orientationTypes_ + layertype * waferTypes_ * orientationTypes_ +
409  type * orientationTypes_ + orien;
410 #ifdef EDM_ML_DEBUG
411  edm::LogVerbatim("HGCalGeom") << " layertype:type:part:orien:ind " << layertype << ":" << type << ":" << part
412  << ":" << orien << ":" << i << ":" << waferPart_.size();
413 #endif
414  wafer = waferPart_[i];
415  }
416  int copy = HGCalTypes::packTypeUV(type, u, v);
417 #ifdef EDM_ML_DEBUG
418  edm::LogVerbatim("HGCalGeom") << " DDHGCalSiliconModule: Layer " << HGCalWaferIndex::waferLayer(waferIndex_[k])
419  << " Wafer " << wafer << " number " << copy << " type:part:orien:ind " << type << ":"
420  << part << ":" << orien << ":" << i << " layer:u:v:indx " << (layer + firstLayer_)
421  << ":" << u << ":" << v;
422  if (iu > ium)
423  ium = iu;
424  if (iv > ivm)
425  ivm = iv;
426  kount++;
427  if (copies_.count(copy) == 0)
428  copies_.insert(copy);
429 #endif
430  DDTranslation tran(xpos, ypos, 0.0);
432  DDName name = DDName(DDSplit(wafer).first, DDSplit(wafer).second);
433  cpv.position(name, glog.ddname(), copy, tran, rotation);
434 #ifdef EDM_ML_DEBUG
435  ++ntype[type];
436  edm::LogVerbatim("HGCalGeom") << " DDHGCalSiliconModule: " << name << " number " << copy << " type " << layertype
437  << ":" << type << " positioned in " << glog.ddname() << " at " << tran
438  << " with no rotation";
439 #endif
440  }
441 #ifdef EDM_ML_DEBUG
442  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconModule: Maximum # of u " << ium << " # of v " << ivm << " and "
443  << kount << " wafers (" << ntype[0] << ":" << ntype[1] << ":" << ntype[2] << ") for "
444  << glog.ddname();
445 #endif
446 }
447 
448 DEFINE_EDM_PLUGIN(DDAlgorithmFactory, DDHGCalSiliconModule, "hgcal:DDHGCalSiliconModule");
std::vector< double > rMaxFront_
Log< level::Info, true > LogVerbatim
static AlgebraicMatrix initialize()
std::vector< double > zFrontT_
static void radius(double zf, double zb, std::vector< double > const &zFront1, std::vector< double > const &rFront1, std::vector< double > const &slope1, std::vector< double > const &zFront2, std::vector< double > const &rFront2, std::vector< double > const &slope2, int flag, std::vector< double > &zz, std::vector< double > &rin, std::vector< double > &rout)
int32_t *__restrict__ iv
std::vector< int > layerSense_
void position(const DDLogicalPart &self, const DDLogicalPart &parent, const std::string &copyno, const DDTranslation &trans, const DDRotation &rot, const DDDivision *div=nullptr)
void positionSensitive(const DDLogicalPart &glog, int layer, DDCompactView &cpv)
DDMaterial is used to define and access material information.
Definition: DDMaterial.h:45
int32_t waferU(const int32_t index)
int32_t waferLayer(const int32_t index)
constexpr NumType convertRadToDeg(NumType radians)
Definition: angle_units.h:21
std::vector< std::string > materials_
std::vector< double > slopeT_
void constructLayers(const DDLogicalPart &, DDCompactView &cpv)
DDName is used to identify DDD entities uniquely.
Definition: DDName.h:17
std::string to_string(const V &value)
Definition: OMSAccess.h:71
std::vector< int > waferIndex_
static std::string & ns()
std::vector< double > thick_
std::vector< int > layers_
Log< level::Error, false > LogError
Compact representation of the geometrical detector hierarchy.
Definition: DDCompactView.h:81
int32_t waferOrient(const int32_t property)
A DDSolid represents the shape of a part.
Definition: DDSolid.h:39
std::vector< int > waferProperty_
constexpr std::array< uint8_t, layerIndexSize > layer
Represents a uniquely identifyable rotation matrix.
Definition: DDTransform.h:57
static const std::string & rotName(const T &rot, const cms::DDParsingContext &context)
U second(std::pair< T, U > const &p)
static constexpr int32_t WaferFull
Definition: HGCalTypes.h:35
std::vector< double > layerThick_
void initialize(const DDNumericArguments &nArgs, const DDVectorArguments &vArgs, const DDMapArguments &mArgs, const DDStringArguments &sArgs, const DDStringVectorArguments &vsArgs) override
std::vector< std::string > names_
T sqrt(T t)
Definition: SSEVec.h:19
Cos< T >::type cos(const T &t)
Definition: Cos.h:22
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
void constructLayers(const cms::DDNamespace &ns, const std::vector< std::string > &wafers, const std::vector< std::string > &covers, const std::vector< int > &layerType, const std::vector< int > &layerSense, const std::vector< int > &maxModule, const std::vector< std::string > &names, const std::vector< std::string > &materials, std::vector< int > &copyNumber, const std::vector< double > &layerThick, const double &absorbW, const double &absorbH, const double &waferTot, const double &rMax, const double &rMaxFine, std::unordered_set< int > &copies, int firstLayer, int lastLayer, double zFront, double totalWidth, bool ignoreCenter, dd4hep::Volume &module)
A DDLogicalPart aggregates information concerning material, solid and sensitveness ...
Definition: DDLogicalPart.h:93
void execute(DDCompactView &cpv) override
static DDSolid tubs(const DDName &name, double zhalf, double rIn, double rOut, double startPhi, double deltaPhi)
Definition: DDSolid.cc:667
int32_t waferThick(const int32_t property)
std::vector< int > copyNumber_
ii
Definition: cuy.py:589
std::vector< int > dbl_to_int(const std::vector< double > &vecdbl)
Converts a std::vector of doubles to a std::vector of int.
Definition: DDutils.h:7
const N & name() const
Definition: DDBase.h:59
static constexpr int32_t WaferCenterR
Definition: HGCalTypes.h:27
std::vector< int > layerOrient_
std::vector< int > waferLayerStart_
std::vector< double > zFrontB_
part
Definition: HCALResponse.h:20
const N & ddname() const
Definition: DDBase.h:61
std::vector< std::string > waferPart_
std::vector< std::string > waferFull_
int32_t waferPartial(const int32_t property)
std::unordered_set< int > copies_
std::vector< double > rMinFront_
int32_t waferV(const int32_t index)
std::vector< int > layerType_
static int32_t packTypeUV(int type, int u, int v)
Definition: HGCalTypes.cc:3
#define DEFINE_EDM_PLUGIN(factory, type, name)
Log< level::Warning, false > LogWarning
static int32_t layerType(int type)
Definition: HGCalTypes.cc:42
static constexpr int32_t WaferCenterB
Definition: HGCalTypes.h:26
std::pair< std::string, std::string > DDSplit(const std::string &n)
split into (name,namespace), separator = &#39;:&#39;
Definition: DDSplit.cc:3
ROOT::Math::DisplacementVector3D< ROOT::Math::Cartesian3D< double > > DDTranslation
Definition: DDTranslation.h:7
static DDSolid polyhedra(const DDName &name, int sides, double startPhi, double deltaPhi, const std::vector< double > &z, const std::vector< double > &rmin, const std::vector< double > &rmax)
Creates a polyhedra (refere to Geant3 or Geant4 documentation)
Definition: DDSolid.cc:565
std::vector< double > slopeB_