CMS 3D CMS Logo

List of all members | Public Types | Public Member Functions | Private Attributes
TkRotation< T > Class Template Reference

#include <extTkRotation.h>

Public Types

typedef Basic3DVector< TBasicVector
 
typedef Basic3DVector< TBasicVector
 
typedef Vector3DBase< T, GlobalTagGlobalVector
 
typedef Vector3DBase< T, GlobalTagGlobalVector
 
typedef Vector3DBase< T, GlobalTagGlobalVector
 

Public Member Functions

Basic3DVector< TmultiplyInverse (const Basic3DVector< T > &v) const
 
Basic3DVector< TmultiplyInverse (const Basic3DVector< T > &v) const
 
template<class Scalar >
Basic3DVector< Scalar > multiplyInverse (const Basic3DVector< Scalar > &v) const
 
template<class Scalar >
Basic3DVector< Scalar > multiplyInverse (const Basic3DVector< Scalar > &v) const
 
Basic3DVector< TmultiplyInverse (const Basic2DVector< T > &v) const
 
Basic3DVector< TmultiplyInverse (const Basic2DVector< T > &v) const
 
Basic3DVector< TmultiplyInverse (const Basic3DVector< T > &v) const
 
TkRotation multiplyInverse (const TkRotation &b) const
 
TkRotation multiplyInverse (const TkRotation &b) const
 
Basic3DVector< TmultiplyInverse (const Basic2DVector< T > &v) const
 
TkRotation multiplyInverse (const TkRotation &b) const
 
Basic3DVector< Toperator* (const Basic3DVector< T > &v) const
 
Basic3DVector< Toperator* (const Basic3DVector< T > &v) const
 
Basic3DVector< Toperator* (const Basic3DVector< T > &v) const
 
Basic3DVector< Toperator* (const Basic2DVector< T > &v) const
 
Basic3DVector< Toperator* (const Basic2DVector< T > &v) const
 
TkRotation operator* (const TkRotation &b) const
 
TkRotation operator* (const TkRotation &b) const
 
Basic3DVector< Toperator* (const Basic2DVector< T > &v) const
 
TkRotation operator* (const TkRotation &b) const
 
TkRotationoperator*= (const TkRotation &b)
 
TkRotationoperator*= (const TkRotation &b)
 
TkRotationoperator*= (const TkRotation &b)
 
Basic3DVector< Trotate (const Basic3DVector< T > &v) const
 
Basic3DVector< Trotate (const Basic3DVector< T > &v) const
 
Basic3DVector< Trotate (const Basic3DVector< T > &v) const
 
TkRotationrotateAxes (const Basic3DVector< T > &newX, const Basic3DVector< T > &newY, const Basic3DVector< T > &newZ)
 
TkRotationrotateAxes (const Basic3DVector< T > &newX, const Basic3DVector< T > &newY, const Basic3DVector< T > &newZ)
 
TkRotationrotateAxes (const Basic3DVector< T > &newX, const Basic3DVector< T > &newY, const Basic3DVector< T > &newZ)
 
Basic3DVector< TrotateBack (const Basic3DVector< T > &v) const
 
Basic3DVector< TrotateBack (const Basic3DVector< T > &v) const
 
Basic3DVector< TrotateBack (const Basic3DVector< T > &v) const
 
 TkRotation ()
 
 TkRotation ()
 
 TkRotation ()
 
 TkRotation (Rot3< T > const &irot)
 
 TkRotation (mathSSE::Rot3< T > const &irot)
 
 TkRotation (T xx, T xy, T xz, T yx, T yy, T yz, T zx, T zy, T zz)
 
 TkRotation (T xx, T xy, T xz, T yx, T yy, T yz, T zx, T zy, T zz)
 
 TkRotation (T xx, T xy, T xz, T yx, T yy, T yz, T zx, T zy, T zz)
 
 TkRotation (const T *p)
 
 TkRotation (const T *p)
 
 TkRotation (const GlobalVector &aX, const GlobalVector &aY)
 
 TkRotation (const GlobalVector &aX, const GlobalVector &aY)
 
 TkRotation (const T *p)
 
 TkRotation (const GlobalVector &aX, const GlobalVector &aY)
 
 TkRotation (const BasicVector &aX, const BasicVector &aY)
 
 TkRotation (const BasicVector &aX, const BasicVector &aY)
 
 TkRotation (const GlobalVector &aX, const GlobalVector &aY, const GlobalVector &aZ)
 
 TkRotation (const GlobalVector &uX, const GlobalVector &uY, const GlobalVector &uZ)
 
 TkRotation (const GlobalVector &uX, const GlobalVector &uY, const GlobalVector &uZ)
 
 TkRotation (const BasicVector &uX, const BasicVector &uY, const BasicVector &uZ)
 
 TkRotation (const BasicVector &uX, const BasicVector &uY, const BasicVector &uZ)
 
 TkRotation (const Basic3DVector< T > &axis, T phi)
 
 TkRotation (const Basic3DVector< T > &axis, T phi)
 
 TkRotation (const Basic3DVector< T > &axis, T phi)
 
template<typename U >
 TkRotation (const TkRotation< U > &a)
 
template<typename U >
 TkRotation (const TkRotation< U > &a)
 
template<typename U >
 TkRotation (const TkRotation< U > &a)
 
TkRotationtransform (const TkRotation &b)
 
TkRotationtransform (const TkRotation &b)
 
TkRotationtransform (const TkRotation &b)
 
TkRotation transposed () const
 
TkRotation transposed () const
 
TkRotation transposed () const
 
Basic3DVector< Tx () const
 
Basic3DVector< Tx () const
 
Basic3DVector< Tx () const
 
T xx () const
 
T xx () const
 
T const & xx () const
 
T xy () const
 
T xy () const
 
T const & xy () const
 
T xz () const
 
T xz () const
 
T const & xz () const
 
Basic3DVector< Ty () const
 
Basic3DVector< Ty () const
 
Basic3DVector< Ty () const
 
T yx () const
 
T yx () const
 
T const & yx () const
 
T yy () const
 
T yy () const
 
T const & yy () const
 
T yz () const
 
T yz () const
 
T const & yz () const
 
Basic3DVector< Tz () const
 
Basic3DVector< Tz () const
 
Basic3DVector< Tz () const
 
T zx () const
 
T zx () const
 
T const & zx () const
 
T zy () const
 
T zy () const
 
T const & zy () const
 
T zz () const
 
T zz () const
 
T const & zz () const
 

Private Attributes

T R11
 
T R12
 
T R13
 
T R21
 
T R22
 
T R23
 
T R31
 
T R32
 
T R33
 
Rot3< Trot
 
mathSSE::Rot3< Trot
 

Detailed Description

template<class T>
class TkRotation< T >

Rotaion matrix used by Surface.

Definition at line 13 of file extTkRotation.h.

Member Typedef Documentation

◆ BasicVector [1/2]

template<class T>
typedef Basic3DVector<T> TkRotation< T >::BasicVector

Definition at line 35 of file extTkRotation.h.

◆ BasicVector [2/2]

template<class T>
typedef Basic3DVector<T> TkRotation< T >::BasicVector

Definition at line 35 of file sseTkRotation.h.

◆ GlobalVector [1/3]

template<class T>
typedef Vector3DBase<T, GlobalTag> TkRotation< T >::GlobalVector

Definition at line 34 of file sseTkRotation.h.

◆ GlobalVector [2/3]

template<class T>
typedef Vector3DBase< T, GlobalTag> TkRotation< T >::GlobalVector

Definition at line 34 of file oldTkRotation.h.

◆ GlobalVector [3/3]

template<class T>
typedef Vector3DBase<T, GlobalTag> TkRotation< T >::GlobalVector

Definition at line 34 of file extTkRotation.h.

Constructor & Destructor Documentation

◆ TkRotation() [1/27]

template<class T>
TkRotation< T >::TkRotation ( )
inline

◆ TkRotation() [2/27]

template<class T>
TkRotation< T >::TkRotation ( Rot3< T > const &  irot)
inline

Definition at line 38 of file extTkRotation.h.

38 : rot(irot) {}
Rot3< T > rot

◆ TkRotation() [3/27]

template<class T>
TkRotation< T >::TkRotation ( T  xx,
T  xy,
T  xz,
T  yx,
T  yy,
T  yz,
T  zx,
T  zy,
T  zz 
)
inline

Definition at line 40 of file extTkRotation.h.

40 : rot(xx, xy, xz, yx, yy, yz, zx, zy, zz) {}
T xx() const
T xy() const
T zz() const
T yy() const
T yz() const
T zx() const
T zy() const
Rot3< T > rot
T xz() const
T yx() const

◆ TkRotation() [4/27]

template<class T>
TkRotation< T >::TkRotation ( const T p)
inline

Definition at line 42 of file extTkRotation.h.

42 : rot(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8]) {}
Rot3< T > rot

◆ TkRotation() [5/27]

template<class T>
TkRotation< T >::TkRotation ( const GlobalVector aX,
const GlobalVector aY 
)
inline

Definition at line 44 of file extTkRotation.h.

44  {
45  GlobalVector uX = aX.unit();
46  GlobalVector uY = aY.unit();
47  GlobalVector uZ(uX.cross(uY));
48 
49  rot.axis[0] = uX.basicVector().v;
50  rot.axis[1] = uY.basicVector().v;
51  rot.axis[2] = uZ.basicVector().v;
52  }
Vector3DBase< typename PreciseFloatType< T, U >::Type, FrameTag > cross(const Vector3DBase< U, FrameTag > &v) const
Definition: Vector3DBase.h:110
const BasicVectorType & basicVector() const
Definition: PV3DBase.h:53
Rot3< T > rot
Vector3DBase unit() const
Definition: Vector3DBase.h:54

◆ TkRotation() [6/27]

template<class T>
TkRotation< T >::TkRotation ( const BasicVector aX,
const BasicVector aY 
)
inline

Definition at line 54 of file extTkRotation.h.

54  {
55  BasicVector uX = aX.unit();
56  BasicVector uY = aY.unit();
57  BasicVector uZ(uX.cross(uY));
58 
59  rot.axis[0] = uX.v;
60  rot.axis[1] = uY.v;
61  rot.axis[2] = uZ.v;
62  }
Basic3DVector< T > BasicVector
Definition: extTkRotation.h:35
Rot3< T > rot

◆ TkRotation() [7/27]

template<class T>
TkRotation< T >::TkRotation ( const GlobalVector uX,
const GlobalVector uY,
const GlobalVector uZ 
)
inline

Construct from global vectors of the x, y and z axes. The axes are assumed to be unit vectors forming a right-handed orthonormal basis. No checks are performed!

Definition at line 68 of file extTkRotation.h.

68  {
69  rot.axis[0] = uX.basicVector().v;
70  rot.axis[1] = uY.basicVector().v;
71  rot.axis[2] = uZ.basicVector().v;
72  }
const BasicVectorType & basicVector() const
Definition: PV3DBase.h:53
Rot3< T > rot

◆ TkRotation() [8/27]

template<class T>
TkRotation< T >::TkRotation ( const BasicVector uX,
const BasicVector uY,
const BasicVector uZ 
)
inline

Definition at line 74 of file extTkRotation.h.

74  {
75  rot.axis[0] = uX.v;
76  rot.axis[1] = uY.v;
77  rot.axis[2] = uZ.v;
78  }
Rot3< T > rot

◆ TkRotation() [9/27]

template<class T>
TkRotation< T >::TkRotation ( const Basic3DVector< T > &  axis,
T  phi 
)
inline

rotation around abritrary axis by the amount of phi: its constructed by O^-1(z<->axis) rot_z(phi) O(z<->axis) the frame is rotated such that the z-asis corresponds to the rotation axis desired. THen it's rotated round the "new" z-axis, and then the initial transformation is "taken back" again. unfortuately I'm too stupid to describe such thing directly by 3 Euler angles.. hence I have to construckt it this way...by brute force

Definition at line 88 of file extTkRotation.h.

88  : rot(cos(phi), sin(phi), 0, -sin(phi), cos(phi), 0, 0, 0, 1) {
89  //rotation around the z-axis by phi
90  TkRotation tmpRotz(cos(axis.phi()), sin(axis.phi()), 0., -sin(axis.phi()), cos(axis.phi()), 0., 0., 0., 1.);
91  //rotation around y-axis by theta
92  TkRotation tmpRoty(cos(axis.theta()), 0., -sin(axis.theta()), 0., 1., 0., sin(axis.theta()), 0., cos(axis.theta()));
93  (*this) *= tmpRoty;
94  (*this) *= tmpRotz; // = this * tmpRoty * tmpRotz
95 
96  // (tmpRoty * tmpRotz)^-1 * this * tmpRoty * tmpRotz
97 
98  *this = (tmpRoty * tmpRotz).multiplyInverse(*this);
99  }
Sin< T >::type sin(const T &t)
Definition: Sin.h:22
Geom::Theta< T > theta() const
Cos< T >::type cos(const T &t)
Definition: Cos.h:22
Basic3DVector< T > multiplyInverse(const Basic3DVector< T > &v) const
Rot3< T > rot
Geom::Phi< T > phi() const

◆ TkRotation() [10/27]

template<class T>
template<typename U >
TkRotation< T >::TkRotation ( const TkRotation< U > &  a)
inline

Definition at line 134 of file extTkRotation.h.

134 : rot(a.xx(), a.xy(), a.xz(), a.yx(), a.yy(), a.yz(), a.zx(), a.zy(), a.zz()) {}
double a
Definition: hdecay.h:119
Rot3< T > rot

◆ TkRotation() [11/27]

template<class T>
TkRotation< T >::TkRotation ( )
inline

Definition at line 36 of file oldTkRotation.h.

36  :
37  R11( 1), R12( 0), R13( 0),
38  R21( 0), R22( 1), R23( 0),
39  R31( 0), R32( 0), R33( 1) {}

◆ TkRotation() [12/27]

template<class T>
TkRotation< T >::TkRotation ( T  xx,
T  xy,
T  xz,
T  yx,
T  yy,
T  yz,
T  zx,
T  zy,
T  zz 
)
inline

Definition at line 41 of file oldTkRotation.h.

41  :
42  R11(xx), R12(xy), R13(xz),
43  R21(yx), R22(yy), R23(yz),
44  R31(zx), R32(zy), R33(zz) {}
T xx() const
T xy() const
T zz() const
T yy() const
T yz() const
T zx() const
T zy() const
T xz() const
T yx() const

◆ TkRotation() [13/27]

template<class T>
TkRotation< T >::TkRotation ( const T p)
inline

Definition at line 46 of file oldTkRotation.h.

◆ TkRotation() [14/27]

template<class T>
TkRotation< T >::TkRotation ( const GlobalVector aX,
const GlobalVector aY 
)
inline

Definition at line 51 of file oldTkRotation.h.

51  {
52 
53  GlobalVector uX = aX.unit();
54  GlobalVector uY = aY.unit();
55  GlobalVector uZ(uX.cross(uY));
56 
57  R11 = uX.x(); R12 = uX.y(); R13 = uX.z();
58  R21 = uY.x(); R22 = uY.y(); R23 = uY.z();
59  R31 = uZ.x(); R32 = uZ.y(); R33 = uZ.z();
60 
61  }
Vector3DBase< typename PreciseFloatType< T, U >::Type, FrameTag > cross(const Vector3DBase< U, FrameTag > &v) const
Definition: Vector3DBase.h:110
T z() const
Definition: PV3DBase.h:61
T x() const
Definition: PV3DBase.h:59
T y() const
Definition: PV3DBase.h:60
Vector3DBase unit() const
Definition: Vector3DBase.h:54

◆ TkRotation() [15/27]

template<class T>
TkRotation< T >::TkRotation ( const GlobalVector aX,
const GlobalVector aY,
const GlobalVector aZ 
)
inline

Construct from global vectors of the x, y and z axes. The axes are assumed to be unit vectors forming a right-handed orthonormal basis. No checks are performed!

Definition at line 67 of file oldTkRotation.h.

68  :
69  R11( aX.x()), R12( aX.y()), R13( aX.z()),
70  R21( aY.x()), R22( aY.y()), R23( aY.z()),
71  R31( aZ.x()), R32( aZ.y()), R33( aZ.z()) {}
T z() const
Definition: PV3DBase.h:61
T x() const
Definition: PV3DBase.h:59
T y() const
Definition: PV3DBase.h:60

◆ TkRotation() [16/27]

template<class T>
TkRotation< T >::TkRotation ( const Basic3DVector< T > &  axis,
T  phi 
)
inline

rotation around abritrary axis by the amount of phi: its constructed by O^-1(z<->axis) rot_z(phi) O(z<->axis) the frame is rotated such that the z-asis corresponds to the rotation axis desired. THen it's rotated round the "new" z-axis, and then the initial transformation is "taken back" again. unfortuately I'm too stupid to describe such thing directly by 3 Euler angles.. hence I have to construckt it this way...by brute force

Definition at line 82 of file oldTkRotation.h.

82  :
83  R11( cos(phi) ), R12( sin(phi)), R13( 0),
84  R21( -sin(phi)), R22( cos(phi)), R23( 0),
85  R31( 0), R32( 0), R33( 1) {
86 
87  //rotation around the z-axis by phi
88  TkRotation tmpRotz ( cos(axis.phi()), sin(axis.phi()), 0.,
89  -sin(axis.phi()), cos(axis.phi()), 0.,
90  0., 0., 1. );
91  //rotation around y-axis by theta
92  TkRotation tmpRoty ( cos(axis.theta()), 0.,-sin(axis.theta()),
93  0., 1., 0.,
94  sin(axis.theta()), 0., cos(axis.theta()) );
95  (*this)*=tmpRoty;
96  (*this)*=tmpRotz; // = this * tmpRoty * tmpRotz
97 
98  // (tmpRoty * tmpRotz)^-1 * this * tmpRoty * tmpRotz
99 
100  *this = (tmpRoty*tmpRotz).multiplyInverse(*this);
101 
102  }
Sin< T >::type sin(const T &t)
Definition: Sin.h:22
Geom::Theta< T > theta() const
Cos< T >::type cos(const T &t)
Definition: Cos.h:22
Basic3DVector< T > multiplyInverse(const Basic3DVector< T > &v) const
Geom::Phi< T > phi() const

◆ TkRotation() [17/27]

template<class T>
template<typename U >
TkRotation< T >::TkRotation ( const TkRotation< U > &  a)
inline

Definition at line 137 of file oldTkRotation.h.

137  :
138  R11(a.xx()), R12(a.xy()), R13(a.xz()),
139  R21(a.yx()), R22(a.yy()), R23(a.yz()),
140  R31(a.zx()), R32(a.zy()), R33(a.zz()) {}
double a
Definition: hdecay.h:119

◆ TkRotation() [18/27]

template<class T>
TkRotation< T >::TkRotation ( )
inline

Definition at line 37 of file sseTkRotation.h.

37 {}

◆ TkRotation() [19/27]

template<class T>
TkRotation< T >::TkRotation ( mathSSE::Rot3< T > const &  irot)
inline

Definition at line 38 of file sseTkRotation.h.

38 : rot(irot) {}
Rot3< T > rot

◆ TkRotation() [20/27]

template<class T>
TkRotation< T >::TkRotation ( T  xx,
T  xy,
T  xz,
T  yx,
T  yy,
T  yz,
T  zx,
T  zy,
T  zz 
)
inline

Definition at line 40 of file sseTkRotation.h.

40 : rot(xx, xy, xz, yx, yy, yz, zx, zy, zz) {}
T xx() const
T xy() const
T zz() const
T yy() const
T yz() const
T zx() const
T zy() const
Rot3< T > rot
T xz() const
T yx() const

◆ TkRotation() [21/27]

template<class T>
TkRotation< T >::TkRotation ( const T p)
inline

Definition at line 42 of file sseTkRotation.h.

42 : rot(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8]) {}
Rot3< T > rot

◆ TkRotation() [22/27]

template<class T>
TkRotation< T >::TkRotation ( const GlobalVector aX,
const GlobalVector aY 
)
inline

Definition at line 44 of file sseTkRotation.h.

44  {
45  GlobalVector uX = aX.unit();
46  GlobalVector uY = aY.unit();
47  GlobalVector uZ(uX.cross(uY));
48 
49  rot.axis[0] = uX.basicVector().v;
50  rot.axis[1] = uY.basicVector().v;
51  rot.axis[2] = uZ.basicVector().v;
52  }
Vector3DBase< typename PreciseFloatType< T, U >::Type, FrameTag > cross(const Vector3DBase< U, FrameTag > &v) const
Definition: Vector3DBase.h:110
const BasicVectorType & basicVector() const
Definition: PV3DBase.h:53
Rot3< T > rot
Vector3DBase unit() const
Definition: Vector3DBase.h:54

◆ TkRotation() [23/27]

template<class T>
TkRotation< T >::TkRotation ( const BasicVector aX,
const BasicVector aY 
)
inline

Definition at line 54 of file sseTkRotation.h.

54  {
55  BasicVector uX = aX.unit();
56  BasicVector uY = aY.unit();
57  BasicVector uZ(uX.cross(uY));
58 
59  rot.axis[0] = uX.v;
60  rot.axis[1] = uY.v;
61  rot.axis[2] = uZ.v;
62  }
Basic3DVector< T > BasicVector
Definition: extTkRotation.h:35
Rot3< T > rot

◆ TkRotation() [24/27]

template<class T>
TkRotation< T >::TkRotation ( const GlobalVector uX,
const GlobalVector uY,
const GlobalVector uZ 
)
inline

Construct from global vectors of the x, y and z axes. The axes are assumed to be unit vectors forming a right-handed orthonormal basis. No checks are performed!

Definition at line 68 of file sseTkRotation.h.

68  {
69  rot.axis[0] = uX.basicVector().v;
70  rot.axis[1] = uY.basicVector().v;
71  rot.axis[2] = uZ.basicVector().v;
72  }
const BasicVectorType & basicVector() const
Definition: PV3DBase.h:53
Rot3< T > rot

◆ TkRotation() [25/27]

template<class T>
TkRotation< T >::TkRotation ( const BasicVector uX,
const BasicVector uY,
const BasicVector uZ 
)
inline

Definition at line 74 of file sseTkRotation.h.

74  {
75  rot.axis[0] = uX.v;
76  rot.axis[1] = uY.v;
77  rot.axis[2] = uZ.v;
78  }
Rot3< T > rot

◆ TkRotation() [26/27]

template<class T>
TkRotation< T >::TkRotation ( const Basic3DVector< T > &  axis,
T  phi 
)
inline

rotation around abritrary axis by the amount of phi: its constructed by O^-1(z<->axis) rot_z(phi) O(z<->axis) the frame is rotated such that the z-asis corresponds to the rotation axis desired. THen it's rotated round the "new" z-axis, and then the initial transformation is "taken back" again. unfortuately I'm too stupid to describe such thing directly by 3 Euler angles.. hence I have to construckt it this way...by brute force

Definition at line 88 of file sseTkRotation.h.

88  : rot(cos(phi), sin(phi), 0, -sin(phi), cos(phi), 0, 0, 0, 1) {
89  //rotation around the z-axis by phi
90  TkRotation tmpRotz(cos(axis.phi()), sin(axis.phi()), 0., -sin(axis.phi()), cos(axis.phi()), 0., 0., 0., 1.);
91  //rotation around y-axis by theta
92  TkRotation tmpRoty(cos(axis.theta()), 0., -sin(axis.theta()), 0., 1., 0., sin(axis.theta()), 0., cos(axis.theta()));
93  (*this) *= tmpRoty;
94  (*this) *= tmpRotz; // = this * tmpRoty * tmpRotz
95 
96  // (tmpRoty * tmpRotz)^-1 * this * tmpRoty * tmpRotz
97 
98  *this = (tmpRoty * tmpRotz).multiplyInverse(*this);
99  }
Sin< T >::type sin(const T &t)
Definition: Sin.h:22
Geom::Theta< T > theta() const
Cos< T >::type cos(const T &t)
Definition: Cos.h:22
Basic3DVector< T > multiplyInverse(const Basic3DVector< T > &v) const
Rot3< T > rot
Geom::Phi< T > phi() const

◆ TkRotation() [27/27]

template<class T>
template<typename U >
TkRotation< T >::TkRotation ( const TkRotation< U > &  a)
inline

Definition at line 134 of file sseTkRotation.h.

134 : rot(a.xx(), a.xy(), a.xz(), a.yx(), a.yy(), a.yz(), a.zx(), a.zy(), a.zz()) {}
double a
Definition: hdecay.h:119
Rot3< T > rot

Member Function Documentation

◆ multiplyInverse() [1/11]

template<class T>
Basic3DVector<T> TkRotation< T >::multiplyInverse ( const Basic3DVector< T > &  v) const
inline

◆ multiplyInverse() [2/11]

template<class T>
Basic3DVector<T> TkRotation< T >::multiplyInverse ( const Basic3DVector< T > &  v) const
inline

Definition at line 144 of file sseTkRotation.h.

144 { return rot.rotateBack(v.v); }
Rot3< T > rot

◆ multiplyInverse() [3/11]

template<class T>
template<class Scalar >
Basic3DVector<Scalar> TkRotation< T >::multiplyInverse ( const Basic3DVector< Scalar > &  v) const
inline

Definition at line 147 of file extTkRotation.h.

147  {
148  return Basic3DVector<Scalar>(xx() * v.x() + yx() * v.y() + zx() * v.z(),
149  xy() * v.x() + yy() * v.y() + zy() * v.z(),
150  xz() * v.x() + yz() * v.y() + zz() * v.z());
151  }
T xx() const
T xy() const
T zz() const
T yy() const
T yz() const
T zx() const
T zy() const
T xz() const
T yx() const

◆ multiplyInverse() [4/11]

template<class T>
template<class Scalar >
Basic3DVector<Scalar> TkRotation< T >::multiplyInverse ( const Basic3DVector< Scalar > &  v) const
inline

Definition at line 147 of file sseTkRotation.h.

147  {
148  return Basic3DVector<Scalar>(xx() * v.x() + yx() * v.y() + zx() * v.z(),
149  xy() * v.x() + yy() * v.y() + zy() * v.z(),
150  xz() * v.x() + yz() * v.y() + zz() * v.z());
151  }
T xx() const
T xy() const
T zz() const
T yy() const
T yz() const
T zx() const
T zy() const
T xz() const
T yx() const

◆ multiplyInverse() [5/11]

template<class T>
Basic3DVector<T> TkRotation< T >::multiplyInverse ( const Basic2DVector< T > &  v) const
inline

Definition at line 156 of file extTkRotation.h.

156  {
157  return Basic3DVector<T>(xx() * v.x() + yx() * v.y(), xy() * v.x() + yy() * v.y(), xz() * v.x() + yz() * v.y());
158  }
T xx() const
T xy() const
T yy() const
T yz() const
T xz() const
T yx() const

◆ multiplyInverse() [6/11]

template<class T>
Basic3DVector<T> TkRotation< T >::multiplyInverse ( const Basic2DVector< T > &  v) const
inline

Definition at line 156 of file sseTkRotation.h.

156  {
157  return Basic3DVector<T>(xx() * v.x() + yx() * v.y(), xy() * v.x() + yy() * v.y(), xz() * v.x() + yz() * v.y());
158  }
T xx() const
T xy() const
T yy() const
T yz() const
T xz() const
T yx() const

◆ multiplyInverse() [7/11]

template<class T>
Basic3DVector<T> TkRotation< T >::multiplyInverse ( const Basic3DVector< T > &  v) const
inline

Definition at line 158 of file oldTkRotation.h.

158  {
159  return rotateBack(v);
160  }
Basic3DVector< T > rotateBack(const Basic3DVector< T > &v) const

◆ multiplyInverse() [8/11]

template<class T>
TkRotation TkRotation< T >::multiplyInverse ( const TkRotation< T > &  b) const
inline

Definition at line 161 of file extTkRotation.h.

161 { return rot.transpose() * b.rot; }
double b
Definition: hdecay.h:118
Rot3< T > rot

◆ multiplyInverse() [9/11]

template<class T>
TkRotation TkRotation< T >::multiplyInverse ( const TkRotation< T > &  b) const
inline

Definition at line 161 of file sseTkRotation.h.

161 { return rot.transpose() * b.rot; }
double b
Definition: hdecay.h:118
Rot3< T > rot

◆ multiplyInverse() [10/11]

template<class T>
Basic3DVector<T> TkRotation< T >::multiplyInverse ( const Basic2DVector< T > &  v) const
inline

Definition at line 174 of file oldTkRotation.h.

174  {
175  return Basic3DVector<T>( R11*v.x() + R21*v.y(),
176  R12*v.x() + R22*v.y(),
177  R13*v.x() + R23*v.y());
178  }

◆ multiplyInverse() [11/11]

template<class T>
TkRotation TkRotation< T >::multiplyInverse ( const TkRotation< T > &  b) const
inline

Definition at line 194 of file oldTkRotation.h.

194  {
195  return TkRotation(R11*b.R11 + R21*b.R21 + R31*b.R31,
196  R11*b.R12 + R21*b.R22 + R31*b.R32,
197  R11*b.R13 + R21*b.R23 + R31*b.R33,
198  R12*b.R11 + R22*b.R21 + R32*b.R31,
199  R12*b.R12 + R22*b.R22 + R32*b.R32,
200  R12*b.R13 + R22*b.R23 + R32*b.R33,
201  R13*b.R11 + R23*b.R21 + R33*b.R31,
202  R13*b.R12 + R23*b.R22 + R33*b.R32,
203  R13*b.R13 + R23*b.R23 + R33*b.R33);
204  }
double b
Definition: hdecay.h:118

◆ operator*() [1/9]

template<class T>
Basic3DVector<T> TkRotation< T >::operator* ( const Basic3DVector< T > &  v) const
inline

Definition at line 142 of file extTkRotation.h.

Referenced by TkRotation< align::Scalar >::operator*=().

142 { return rot.rotate(v.v); }
Rot3< T > rot

◆ operator*() [2/9]

template<class T>
Basic3DVector<T> TkRotation< T >::operator* ( const Basic3DVector< T > &  v) const
inline

Definition at line 142 of file sseTkRotation.h.

142 { return rot.rotate(v.v); }
Rot3< T > rot

◆ operator*() [3/9]

template<class T>
Basic3DVector<T> TkRotation< T >::operator* ( const Basic3DVector< T > &  v) const
inline

Definition at line 148 of file oldTkRotation.h.

148  {
149  return rotate(v);
150  }
Basic3DVector< T > rotate(const Basic3DVector< T > &v) const

◆ operator*() [4/9]

template<class T>
Basic3DVector<T> TkRotation< T >::operator* ( const Basic2DVector< T > &  v) const
inline

Definition at line 153 of file extTkRotation.h.

153  {
154  return Basic3DVector<T>(xx() * v.x() + xy() * v.y(), yx() * v.x() + yy() * v.y(), zx() * v.x() + zy() * v.y());
155  }
T xx() const
T xy() const
T yy() const
T zx() const
T zy() const
T yx() const

◆ operator*() [5/9]

template<class T>
Basic3DVector<T> TkRotation< T >::operator* ( const Basic2DVector< T > &  v) const
inline

Definition at line 153 of file sseTkRotation.h.

153  {
154  return Basic3DVector<T>(xx() * v.x() + xy() * v.y(), yx() * v.x() + yy() * v.y(), zx() * v.x() + zy() * v.y());
155  }
T xx() const
T xy() const
T yy() const
T zx() const
T zy() const
T yx() const

◆ operator*() [6/9]

template<class T>
TkRotation TkRotation< T >::operator* ( const TkRotation< T > &  b) const
inline

Definition at line 160 of file extTkRotation.h.

160 { return rot * b.rot; }
double b
Definition: hdecay.h:118
Rot3< T > rot

◆ operator*() [7/9]

template<class T>
TkRotation TkRotation< T >::operator* ( const TkRotation< T > &  b) const
inline

Definition at line 160 of file sseTkRotation.h.

160 { return rot * b.rot; }
double b
Definition: hdecay.h:118
Rot3< T > rot

◆ operator*() [8/9]

template<class T>
Basic3DVector<T> TkRotation< T >::operator* ( const Basic2DVector< T > &  v) const
inline

Definition at line 169 of file oldTkRotation.h.

169  {
170  return Basic3DVector<T>( R11*v.x() + R12*v.y(),
171  R21*v.x() + R22*v.y(),
172  R31*v.x() + R32*v.y());
173  }

◆ operator*() [9/9]

template<class T>
TkRotation TkRotation< T >::operator* ( const TkRotation< T > &  b) const
inline

Definition at line 182 of file oldTkRotation.h.

182  {
183  return TkRotation(R11*b.R11 + R12*b.R21 + R13*b.R31,
184  R11*b.R12 + R12*b.R22 + R13*b.R32,
185  R11*b.R13 + R12*b.R23 + R13*b.R33,
186  R21*b.R11 + R22*b.R21 + R23*b.R31,
187  R21*b.R12 + R22*b.R22 + R23*b.R32,
188  R21*b.R13 + R22*b.R23 + R23*b.R33,
189  R31*b.R11 + R32*b.R21 + R33*b.R31,
190  R31*b.R12 + R32*b.R22 + R33*b.R32,
191  R31*b.R13 + R32*b.R23 + R33*b.R33);
192  }
double b
Definition: hdecay.h:118

◆ operator*=() [1/3]

template<class T>
TkRotation& TkRotation< T >::operator*= ( const TkRotation< T > &  b)
inline

Definition at line 163 of file extTkRotation.h.

163 { return *this = operator*(b); }
Basic3DVector< T > operator*(const Basic3DVector< T > &v) const
double b
Definition: hdecay.h:118

◆ operator*=() [2/3]

template<class T>
TkRotation& TkRotation< T >::operator*= ( const TkRotation< T > &  b)
inline

Definition at line 163 of file sseTkRotation.h.

163 { return *this = operator*(b); }
Basic3DVector< T > operator*(const Basic3DVector< T > &v) const
double b
Definition: hdecay.h:118

◆ operator*=() [3/3]

template<class T>
TkRotation& TkRotation< T >::operator*= ( const TkRotation< T > &  b)
inline

Definition at line 206 of file oldTkRotation.h.

206  {
207  return *this = operator * (b);
208  }
Basic3DVector< T > operator*(const Basic3DVector< T > &v) const
double b
Definition: hdecay.h:118

◆ rotate() [1/3]

template<class T>
Basic3DVector<T> TkRotation< T >::rotate ( const Basic3DVector< T > &  v) const
inline

Definition at line 138 of file extTkRotation.h.

Referenced by TkRotation< align::Scalar >::operator*().

138 { return rot.rotate(v.v); }
Rot3< T > rot

◆ rotate() [2/3]

template<class T>
Basic3DVector<T> TkRotation< T >::rotate ( const Basic3DVector< T > &  v) const
inline

Definition at line 138 of file sseTkRotation.h.

138 { return rot.rotate(v.v); }
Rot3< T > rot

◆ rotate() [3/3]

template<class T>
Basic3DVector<T> TkRotation< T >::rotate ( const Basic3DVector< T > &  v) const
inline

Definition at line 152 of file oldTkRotation.h.

152  {
153  return Basic3DVector<T>( R11*v.x() + R12*v.y() + R13*v.z(),
154  R21*v.x() + R22*v.y() + R23*v.z(),
155  R31*v.x() + R32*v.y() + R33*v.z());
156  }

◆ rotateAxes() [1/3]

template<class T>
TkRotation& TkRotation< T >::rotateAxes ( const Basic3DVector< T > &  newX,
const Basic3DVector< T > &  newY,
const Basic3DVector< T > &  newZ 
)
inline

Definition at line 168 of file extTkRotation.h.

Referenced by GEMGeometryBuilderFromCondDB::boundPlane(), ME0GeometryBuilder::boundPlane(), GEMGeometryBuilder::boundPlane(), and CSCGeometryBuilder::buildChamber().

168  {
169  T del = 0.001;
170 
171  if (
172 
173  // the check for right-handedness is not needed since
174  // we want to change the handedness when it's left in cmsim
175  //
176  // fabs(newZ.x()-w.x()) > del ||
177  // fabs(newZ.y()-w.y()) > del ||
178  // fabs(newZ.z()-w.z()) > del ||
179  fabs(newX.mag2() - 1.) > del || fabs(newY.mag2() - 1.) > del || fabs(newZ.mag2() - 1.) > del ||
180  fabs(newX.dot(newY)) > del || fabs(newY.dot(newZ)) > del || fabs(newZ.dot(newX)) > del) {
182  return *this;
183  } else {
184  return transform(
185  TkRotation(newX.x(), newY.x(), newZ.x(), newX.y(), newY.y(), newZ.y(), newX.z(), newY.z(), newZ.z()));
186  }
187  }
T x() const
Cartesian x coordinate.
TkRotation & transform(const TkRotation &b)
T y() const
Cartesian y coordinate.
void TkRotationErr2()
Definition: TkRotation.cc:30
T z() const
Cartesian z coordinate.
T mag2() const
The vector magnitude squared. Equivalent to vec.dot(vec)
long double T
T dot(const Basic3DVector &rh) const
Scalar product, or "dot" product, with a vector of same type.

◆ rotateAxes() [2/3]

template<class T>
TkRotation& TkRotation< T >::rotateAxes ( const Basic3DVector< T > &  newX,
const Basic3DVector< T > &  newY,
const Basic3DVector< T > &  newZ 
)
inline

Definition at line 168 of file sseTkRotation.h.

168  {
169  T del = 0.001;
170 
171  if (
172 
173  // the check for right-handedness is not needed since
174  // we want to change the handedness when it's left in cmsim
175  //
176  // fabs(newZ.x()-w.x()) > del ||
177  // fabs(newZ.y()-w.y()) > del ||
178  // fabs(newZ.z()-w.z()) > del ||
179  fabs(newX.mag2() - 1.) > del || fabs(newY.mag2() - 1.) > del || fabs(newZ.mag2() - 1.) > del ||
180  fabs(newX.dot(newY)) > del || fabs(newY.dot(newZ)) > del || fabs(newZ.dot(newX)) > del) {
182  return *this;
183  } else {
184  return transform(
185  TkRotation(newX.x(), newY.x(), newZ.x(), newX.y(), newY.y(), newZ.y(), newX.z(), newY.z(), newZ.z()));
186  }
187  }
T x() const
Cartesian x coordinate.
TkRotation & transform(const TkRotation &b)
T y() const
Cartesian y coordinate.
void TkRotationErr2()
Definition: TkRotation.cc:30
T z() const
Cartesian z coordinate.
T mag2() const
The vector magnitude squared. Equivalent to vec.dot(vec)
long double T
T dot(const Basic3DVector &rh) const
Scalar product, or "dot" product, with a vector of same type.

◆ rotateAxes() [3/3]

template<class T>
TkRotation& TkRotation< T >::rotateAxes ( const Basic3DVector< T > &  newX,
const Basic3DVector< T > &  newY,
const Basic3DVector< T > &  newZ 
)
inline

Definition at line 215 of file oldTkRotation.h.

217  {
218  T del = 0.001;
219 
220  if (
221 
222  // the check for right-handedness is not needed since
223  // we want to change the handedness when it's left in cmsim
224  //
225  // fabs(newZ.x()-w.x()) > del ||
226  // fabs(newZ.y()-w.y()) > del ||
227  // fabs(newZ.z()-w.z()) > del ||
228  fabs(newX.mag2()-1.) > del ||
229  fabs(newY.mag2()-1.) > del ||
230  fabs(newZ.mag2()-1.) > del ||
231  fabs(newX.dot(newY)) > del ||
232  fabs(newY.dot(newZ)) > del ||
233  fabs(newZ.dot(newX)) > del) {
235  return *this;
236  } else {
237  return transform(TkRotation(newX.x(), newY.x(), newZ.x(),
238  newX.y(), newY.y(), newZ.y(),
239  newX.z(), newY.z(), newZ.z()));
240  }
241  }
T x() const
Cartesian x coordinate.
TkRotation & transform(const TkRotation &b)
T y() const
Cartesian y coordinate.
void TkRotationErr2()
Definition: TkRotation.cc:30
T z() const
Cartesian z coordinate.
T mag2() const
The vector magnitude squared. Equivalent to vec.dot(vec)
long double T
T dot(const Basic3DVector &rh) const
Scalar product, or "dot" product, with a vector of same type.

◆ rotateBack() [1/3]

template<class T>
Basic3DVector<T> TkRotation< T >::rotateBack ( const Basic3DVector< T > &  v) const
inline

Definition at line 140 of file sseTkRotation.h.

140 { return rot.rotateBack(v.v); }
Rot3< T > rot

◆ rotateBack() [2/3]

template<class T>
Basic3DVector<T> TkRotation< T >::rotateBack ( const Basic3DVector< T > &  v) const
inline

Definition at line 140 of file extTkRotation.h.

Referenced by TkRotation< align::Scalar >::multiplyInverse().

140 { return rot.rotateBack(v.v); }
Rot3< T > rot

◆ rotateBack() [3/3]

template<class T>
Basic3DVector<T> TkRotation< T >::rotateBack ( const Basic3DVector< T > &  v) const
inline

Definition at line 162 of file oldTkRotation.h.

162  {
163  return Basic3DVector<T>( R11*v.x() + R21*v.y() + R31*v.z(),
164  R12*v.x() + R22*v.y() + R32*v.z(),
165  R13*v.x() + R23*v.y() + R33*v.z());
166  }

◆ transform() [1/3]

template<class T>
TkRotation& TkRotation< T >::transform ( const TkRotation< T > &  b)
inline

Definition at line 166 of file extTkRotation.h.

Referenced by TkRotation< align::Scalar >::rotateAxes().

166 { return *this = b.operator*(*this); }
double b
Definition: hdecay.h:118

◆ transform() [2/3]

template<class T>
TkRotation& TkRotation< T >::transform ( const TkRotation< T > &  b)
inline

Definition at line 166 of file sseTkRotation.h.

166 { return *this = b.operator*(*this); }
double b
Definition: hdecay.h:118

◆ transform() [3/3]

template<class T>
TkRotation& TkRotation< T >::transform ( const TkRotation< T > &  b)
inline

Definition at line 211 of file oldTkRotation.h.

211  {
212  return *this = b.operator * (*this);
213  }
double b
Definition: hdecay.h:118

◆ transposed() [1/3]

template<class T>
TkRotation TkRotation< T >::transposed ( ) const
inline

◆ transposed() [2/3]

template<class T>
TkRotation TkRotation< T >::transposed ( ) const
inline

Definition at line 136 of file sseTkRotation.h.

136 { return rot.transpose(); }
Rot3< T > rot

◆ transposed() [3/3]

template<class T>
TkRotation TkRotation< T >::transposed ( ) const
inline

Definition at line 142 of file oldTkRotation.h.

◆ x() [1/3]

template<class T>
Basic3DVector<T> TkRotation< T >::x ( ) const
inline

◆ x() [2/3]

template<class T>
Basic3DVector<T> TkRotation< T >::x ( ) const
inline

◆ x() [3/3]

template<class T>
Basic3DVector<T> TkRotation< T >::x ( ) const
inline

◆ xx() [1/3]

template<class T>
T TkRotation< T >::xx ( ) const
inline

Definition at line 193 of file sseTkRotation.h.

Referenced by geometryXMLparser.Alignable::covariance().

193 { return rot.axis[0].arr[0]; }
Rot3< T > rot

◆ xx() [2/3]

template<class T>
T TkRotation< T >::xx ( ) const
inline

◆ xx() [3/3]

template<class T>
T const& TkRotation< T >::xx ( ) const
inline

Definition at line 248 of file oldTkRotation.h.

Referenced by geometryXMLparser.Alignable::covariance().

248 { return R11;}

◆ xy() [1/3]

template<class T>
T TkRotation< T >::xy ( ) const
inline

◆ xy() [2/3]

template<class T>
T TkRotation< T >::xy ( ) const
inline

Definition at line 194 of file sseTkRotation.h.

Referenced by geometryXMLparser.Alignable::covariance().

194 { return rot.axis[0].arr[1]; }
Rot3< T > rot

◆ xy() [3/3]

template<class T>
T const& TkRotation< T >::xy ( ) const
inline

Definition at line 249 of file oldTkRotation.h.

Referenced by geometryXMLparser.Alignable::covariance().

249 { return R12;}

◆ xz() [1/3]

template<class T>
T TkRotation< T >::xz ( ) const
inline

Definition at line 195 of file sseTkRotation.h.

Referenced by geometryXMLparser.Alignable::covariance().

195 { return rot.axis[0].arr[2]; }
Rot3< T > rot

◆ xz() [2/3]

template<class T>
T TkRotation< T >::xz ( ) const
inline

◆ xz() [3/3]

template<class T>
T const& TkRotation< T >::xz ( ) const
inline

Definition at line 250 of file oldTkRotation.h.

Referenced by geometryXMLparser.Alignable::covariance().

250 { return R13;}

◆ y() [1/3]

template<class T>
Basic3DVector<T> TkRotation< T >::y ( ) const
inline

◆ y() [2/3]

template<class T>
Basic3DVector<T> TkRotation< T >::y ( ) const
inline

◆ y() [3/3]

template<class T>
Basic3DVector<T> TkRotation< T >::y ( ) const
inline

◆ yx() [1/3]

template<class T>
T TkRotation< T >::yx ( ) const
inline

◆ yx() [2/3]

template<class T>
T TkRotation< T >::yx ( ) const
inline

Definition at line 196 of file sseTkRotation.h.

196 { return rot.axis[1].arr[0]; }
Rot3< T > rot

◆ yx() [3/3]

template<class T>
T const& TkRotation< T >::yx ( ) const
inline

Definition at line 251 of file oldTkRotation.h.

251 { return R21;}

◆ yy() [1/3]

template<class T>
T TkRotation< T >::yy ( ) const
inline

◆ yy() [2/3]

template<class T>
T TkRotation< T >::yy ( ) const
inline

Definition at line 197 of file sseTkRotation.h.

Referenced by geometryXMLparser.Alignable::covariance().

197 { return rot.axis[1].arr[1]; }
Rot3< T > rot

◆ yy() [3/3]

template<class T>
T const& TkRotation< T >::yy ( ) const
inline

Definition at line 252 of file oldTkRotation.h.

Referenced by geometryXMLparser.Alignable::covariance().

252 { return R22;}

◆ yz() [1/3]

template<class T>
T TkRotation< T >::yz ( ) const
inline

◆ yz() [2/3]

template<class T>
T TkRotation< T >::yz ( ) const
inline

Definition at line 198 of file sseTkRotation.h.

Referenced by geometryXMLparser.Alignable::covariance().

198 { return rot.axis[1].arr[2]; }
Rot3< T > rot

◆ yz() [3/3]

template<class T>
T const& TkRotation< T >::yz ( ) const
inline

Definition at line 253 of file oldTkRotation.h.

Referenced by geometryXMLparser.Alignable::covariance().

253 { return R23;}

◆ z() [1/3]

template<class T>
Basic3DVector<T> TkRotation< T >::z ( ) const
inline

◆ z() [2/3]

template<class T>
Basic3DVector<T> TkRotation< T >::z ( ) const
inline

Definition at line 191 of file sseTkRotation.h.

Referenced by geometryXMLparser.Alignable::pos(), and ntupleDataFormat._HitObject::r3D().

191 { return rot.axis[2]; }
Rot3< T > rot

◆ z() [3/3]

template<class T>
Basic3DVector<T> TkRotation< T >::z ( ) const
inline

Definition at line 245 of file oldTkRotation.h.

Referenced by geometryXMLparser.Alignable::pos(), and ntupleDataFormat._HitObject::r3D().

245 { return Basic3DVector<T>(zx(),zy(),zz());}
T zz() const
T zx() const
T zy() const

◆ zx() [1/3]

template<class T>
T TkRotation< T >::zx ( ) const
inline

◆ zx() [2/3]

template<class T>
T TkRotation< T >::zx ( ) const
inline

Definition at line 199 of file sseTkRotation.h.

199 { return rot.axis[2].arr[0]; }
Rot3< T > rot

◆ zx() [3/3]

template<class T>
T const& TkRotation< T >::zx ( ) const
inline

Definition at line 254 of file oldTkRotation.h.

254 { return R31;}

◆ zy() [1/3]

template<class T>
T TkRotation< T >::zy ( ) const
inline

◆ zy() [2/3]

template<class T>
T TkRotation< T >::zy ( ) const
inline

Definition at line 200 of file sseTkRotation.h.

200 { return rot.axis[2].arr[1]; }
Rot3< T > rot

◆ zy() [3/3]

template<class T>
T const& TkRotation< T >::zy ( ) const
inline

Definition at line 255 of file oldTkRotation.h.

255 { return R32;}

◆ zz() [1/3]

template<class T>
T TkRotation< T >::zz ( ) const
inline

◆ zz() [2/3]

template<class T>
T TkRotation< T >::zz ( ) const
inline

Definition at line 201 of file sseTkRotation.h.

Referenced by geometryXMLparser.Alignable::covariance().

201 { return rot.axis[2].arr[2]; }
Rot3< T > rot

◆ zz() [3/3]

template<class T>
T const& TkRotation< T >::zz ( ) const
inline

Definition at line 256 of file oldTkRotation.h.

Referenced by geometryXMLparser.Alignable::covariance().

256 { return R33;}

Member Data Documentation

◆ R11

template<class T>
T TkRotation< T >::R11
private

◆ R12

template<class T>
T TkRotation< T >::R12
private

◆ R13

template<class T>
T TkRotation< T >::R13
private

◆ R21

template<class T>
T TkRotation< T >::R21
private

◆ R22

template<class T>
T TkRotation< T >::R22
private

◆ R23

template<class T>
T TkRotation< T >::R23
private

◆ R31

template<class T>
T TkRotation< T >::R31
private

◆ R32

template<class T>
T TkRotation< T >::R32
private

◆ R33

template<class T>
T TkRotation< T >::R33
private

◆ rot [1/2]

template<class T>
Rot3<T> TkRotation< T >::rot
private

◆ rot [2/2]

template<class T>
mathSSE::Rot3<T> TkRotation< T >::rot
private

Definition at line 204 of file sseTkRotation.h.