CMS 3D CMS Logo

DDHGCalSiliconRotatedModule.cc
Go to the documentation of this file.
1 // File: DDHGCalSiliconRotatedModule.cc
3 // Description: Geometry factory class for HGCal (EE and HESil) using
4 // information from the file
6 
27 
28 #include <cmath>
29 #include <memory>
30 #include <sstream>
31 #include <string>
32 #include <unordered_set>
33 #include <vector>
34 
35 //#define EDM_ML_DEBUG
36 using namespace angle_units::operators;
37 
38 class DDHGCalSiliconRotatedModule : public DDAlgorithm {
39 public:
41 
42  void initialize(const DDNumericArguments& nArgs,
43  const DDVectorArguments& vArgs,
44  const DDMapArguments& mArgs,
45  const DDStringArguments& sArgs,
46  const DDStringVectorArguments& vsArgs) override;
47  void execute(DDCompactView& cpv) override;
48 
49 protected:
50  void constructLayers(const DDLogicalPart&, DDCompactView& cpv);
51  void positionSensitive(const DDLogicalPart& glog, int layer, DDCompactView& cpv);
52 
53 private:
56 
57  static constexpr double tol1_ = 0.01;
58  static constexpr double tol2_ = 0.00001;
59 
60  int waferTypes_; // Number of wafer types
61  int facingTypes_; // Types of facings of modules toward IP
62  int orientationTypes_; // Number of wafer orienations
63  int placeOffset_; // Offset for placement
64  int firstLayer_; // Copy # of the first sensitive layer
65  int absorbMode_; // Absorber mode
66  int sensitiveMode_; // Sensitive mode
67  double zMinBlock_; // Starting z-value of the block
68  double waferSize_; // Width of the wafer
69  double waferSepar_; // Sensor separation
70  int sectors_; // Sectors
71  int cassettes_; // Cassettes
72  std::string rotstr_; // Rotation matrix (if needed)
73  std::vector<std::string> waferFull_; // Names of full wafer modules
74  std::vector<std::string> waferPart_; // Names of partial wafer modules
75  std::vector<std::string> materials_; // names of materials
76  std::vector<std::string> names_; // Names of volumes
77  std::vector<double> thick_; // Thickness of the material
78  std::vector<int> copyNumber_; // Initial copy numbers
79  std::vector<int> layers_; // Number of layers in a section
80  std::vector<double> layerThick_; // Thickness of each section
81  std::vector<int> layerType_; // Type of the layer
82  std::vector<int> layerSense_; // Content of a layer (sensitive?)
83  std::vector<double> slopeB_; // Slope at the lower R
84  std::vector<double> zFrontB_; // Starting Z values for the slopes
85  std::vector<double> rMinFront_; // Corresponding rMin's
86  std::vector<double> slopeT_; // Slopes at the larger R
87  std::vector<double> zFrontT_; // Starting Z values for the slopes
88  std::vector<double> rMaxFront_; // Corresponding rMax's
89  std::vector<int> layerTypes_; // Layer type (Centering, rotations..)
90  std::vector<int> waferIndex_; // Wafer index for the types
91  std::vector<int> waferProperty_; // Wafer property
92  std::vector<int> waferLayerStart_; // Index of wafers in each layer
93  std::vector<double> cassetteShift_; // Shifts of the cassetes
94  std::string nameSpace_; // Namespace of this and ALL sub-parts
95  std::unordered_set<int> copies_; // List of copy #'s
96  double alpha_, cosAlpha_;
97 };
98 
100 #ifdef EDM_ML_DEBUG
101  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: Creating an instance";
102 #endif
103 }
104 
106  const DDVectorArguments& vArgs,
107  const DDMapArguments&,
108  const DDStringArguments& sArgs,
109  const DDStringVectorArguments& vsArgs) {
110  waferTypes_ = static_cast<int>(nArgs["WaferTypes"]);
111  facingTypes_ = static_cast<int>(nArgs["FacingTypes"]);
112  orientationTypes_ = static_cast<int>(nArgs["OrientationTypes"]);
113  placeOffset_ = static_cast<int>(nArgs["PlaceOffset"]);
114 #ifdef EDM_ML_DEBUG
115  edm::LogVerbatim("HGCalGeom") << "Number of types of wafers: " << waferTypes_ << " facings: " << facingTypes_
116  << " Orientations: " << orientationTypes_ << " PlaceOffset: " << placeOffset_;
117 #endif
118  firstLayer_ = static_cast<int>(nArgs["FirstLayer"]);
119  absorbMode_ = static_cast<int>(nArgs["AbsorberMode"]);
120  sensitiveMode_ = static_cast<int>(nArgs["SensitiveMode"]);
121 #ifdef EDM_ML_DEBUG
122  edm::LogVerbatim("HGCalGeom") << "First Layer " << firstLayer_ << " and "
123  << "Absober:Sensitive mode " << absorbMode_ << ":" << sensitiveMode_;
124 #endif
125  zMinBlock_ = nArgs["zMinBlock"];
126  waferSize_ = nArgs["waferSize"];
127  waferSepar_ = nArgs["SensorSeparation"];
128  sectors_ = static_cast<int>(nArgs["Sectors"]);
129  cassettes_ = static_cast<int>(nArgs["Cassettes"]);
130  alpha_ = (1._pi) / sectors_;
131  cosAlpha_ = cos(alpha_);
132  rotstr_ = sArgs["LayerRotation"];
133 #ifdef EDM_ML_DEBUG
134  edm::LogVerbatim("HGCalGeom") << "zStart " << zMinBlock_ << " wafer width " << waferSize_ << " separations "
135  << waferSepar_ << " sectors " << sectors_ << ":" << convertRadToDeg(alpha_) << ":"
136  << cosAlpha_ << " rotation matrix " << rotstr_ << " with " << cassettes_
137  << " cassettes";
138 #endif
139  waferFull_ = vsArgs["WaferNamesFull"];
140  waferPart_ = vsArgs["WaferNamesPartial"];
141 #ifdef EDM_ML_DEBUG
142  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: " << waferFull_.size() << " full and "
143  << waferPart_.size() << " partial modules\nDDHGCalSiliconRotatedModule:Full Modules:";
144  unsigned int i1max = static_cast<unsigned int>(waferFull_.size());
145  for (unsigned int i1 = 0; i1 < i1max; i1 += 2) {
146  std::ostringstream st1;
147  unsigned int i2 = std::min((i1 + 2), i1max);
148  for (unsigned int i = i1; i < i2; ++i)
149  st1 << " [" << i << "] " << waferFull_[i];
150  edm::LogVerbatim("HGCalGeom") << st1.str();
151  }
152  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: Partial Modules:";
153  i1max = static_cast<unsigned int>(waferPart_.size());
154  for (unsigned int i1 = 0; i1 < i1max; i1 += 2) {
155  std::ostringstream st1;
156  unsigned int i2 = std::min((i1 + 2), i1max);
157  for (unsigned int i = i1; i < i2; ++i)
158  st1 << " [" << i << "] " << waferPart_[i];
159  edm::LogVerbatim("HGCalGeom") << st1.str();
160  }
161 #endif
162  materials_ = vsArgs["MaterialNames"];
163  names_ = vsArgs["VolumeNames"];
164  thick_ = vArgs["Thickness"];
165  copyNumber_.resize(materials_.size(), 1);
166 #ifdef EDM_ML_DEBUG
167  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: " << materials_.size() << " types of volumes";
168  for (unsigned int i = 0; i < names_.size(); ++i)
169  edm::LogVerbatim("HGCalGeom") << "Volume [" << i << "] " << names_[i] << " of thickness " << thick_[i]
170  << " filled with " << materials_[i] << " first copy number " << copyNumber_[i];
171 #endif
172  layers_ = dbl_to_int(vArgs["Layers"]);
173  layerThick_ = vArgs["LayerThick"];
174 #ifdef EDM_ML_DEBUG
175  edm::LogVerbatim("HGCalGeom") << "There are " << layers_.size() << " blocks";
176  for (unsigned int i = 0; i < layers_.size(); ++i)
177  edm::LogVerbatim("HGCalGeom") << "Block [" << i << "] of thickness " << layerThick_[i] << " with " << layers_[i]
178  << " layers";
179 #endif
180  layerType_ = dbl_to_int(vArgs["LayerType"]);
181  layerSense_ = dbl_to_int(vArgs["LayerSense"]);
182  layerTypes_ = dbl_to_int(vArgs["LayerTypes"]);
183 #ifdef EDM_ML_DEBUG
184  for (unsigned int i = 0; i < layerTypes_.size(); ++i)
185  edm::LogVerbatim("HGCalGeom") << "LayerTypes [" << i << "] " << layerTypes_[i];
186 #endif
187  if (firstLayer_ > 0) {
188  for (unsigned int i = 0; i < layerType_.size(); ++i) {
189  if (layerSense_[i] > 0) {
190  int ii = layerType_[i];
191  copyNumber_[ii] = (layerSense_[i] == 1) ? firstLayer_ : (firstLayer_ + 1);
192 #ifdef EDM_ML_DEBUG
193  edm::LogVerbatim("HGCalGeom") << "First copy number for layer type " << i << ":" << ii << " with "
194  << materials_[ii] << " changed to " << copyNumber_[ii];
195 #endif
196  }
197  }
198  } else {
199  firstLayer_ = 1;
200  }
201 #ifdef EDM_ML_DEBUG
202  edm::LogVerbatim("HGCalGeom") << "There are " << layerType_.size() << " layers";
203  for (unsigned int i = 0; i < layerType_.size(); ++i)
204  edm::LogVerbatim("HGCalGeom") << "Layer [" << i << "] with material type " << layerType_[i] << " sensitive class "
205  << layerSense_[i];
206 #endif
207  slopeB_ = vArgs["SlopeBottom"];
208  zFrontB_ = vArgs["ZFrontBottom"];
209  rMinFront_ = vArgs["RMinFront"];
210  slopeT_ = vArgs["SlopeTop"];
211  zFrontT_ = vArgs["ZFrontTop"];
212  rMaxFront_ = vArgs["RMaxFront"];
213 #ifdef EDM_ML_DEBUG
214  for (unsigned int i = 0; i < slopeB_.size(); ++i)
215  edm::LogVerbatim("HGCalGeom") << "Bottom Block [" << i << "] Zmin " << zFrontB_[i] << " Rmin " << rMinFront_[i]
216  << " Slope " << slopeB_[i];
217  for (unsigned int i = 0; i < slopeT_.size(); ++i)
218  edm::LogVerbatim("HGCalGeom") << "Top Block [" << i << "] Zmin " << zFrontT_[i] << " Rmax " << rMaxFront_[i]
219  << " Slope " << slopeT_[i];
220 #endif
221  waferIndex_ = dbl_to_int(vArgs["WaferIndex"]);
222  waferProperty_ = dbl_to_int(vArgs["WaferProperties"]);
223  waferLayerStart_ = dbl_to_int(vArgs["WaferLayerStart"]);
224  cassetteShift_ = vArgs["CassetteShift"];
225 #ifdef EDM_ML_DEBUG
226  edm::LogVerbatim("HGCalGeom") << "waferProperties with " << waferIndex_.size() << " entries in "
227  << waferLayerStart_.size() << " layers";
228  for (unsigned int k = 0; k < waferLayerStart_.size(); ++k)
229  edm::LogVerbatim("HGCalGeom") << "LayerStart[" << k << "] " << waferLayerStart_[k];
230  for (unsigned int k = 0; k < waferIndex_.size(); ++k)
231  edm::LogVerbatim("HGCalGeom") << "Wafer[" << k << "] " << waferIndex_[k] << " ("
232  << HGCalWaferIndex::waferLayer(waferIndex_[k]) << ", "
233  << HGCalWaferIndex::waferU(waferIndex_[k]) << ", "
234  << HGCalWaferIndex::waferV(waferIndex_[k]) << ") : ("
235  << HGCalProperty::waferThick(waferProperty_[k]) << ":"
236  << HGCalProperty::waferPartial(waferProperty_[k]) << ":"
237  << HGCalProperty::waferOrient(waferProperty_[k]) << ")";
238  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: " << cassetteShift_.size()
239  << " elements for cassette shifts";
240  unsigned int j1max = cassetteShift_.size();
241  for (unsigned int j1 = 0; j1 < j1max; j1 += 6) {
242  std::ostringstream st1;
243  unsigned int j2 = std::min((j1 + 6), j1max);
244  for (unsigned int j = j1; j < j2; ++j)
245  st1 << " [" << j << "] " << std::setw(9) << cassetteShift_[j];
246  edm::LogVerbatim("HGCalGeom") << st1.str();
247  }
248 #endif
249  nameSpace_ = DDCurrentNamespace::ns();
250 #ifdef EDM_ML_DEBUG
251  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: NameSpace " << nameSpace_;
252 #endif
253  cassette_.setParameter(cassettes_, cassetteShift_);
254 }
255 
257 // DDHGCalSiliconRotatedModule methods...
259 
261 #ifdef EDM_ML_DEBUG
262  edm::LogVerbatim("HGCalGeom") << "==>> Constructing DDHGCalSiliconRotatedModule...";
263  copies_.clear();
264 #endif
265  constructLayers(parent(), cpv);
266 #ifdef EDM_ML_DEBUG
267  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: " << copies_.size() << " different wafer copy numbers";
268  int k(0);
269  for (std::unordered_set<int>::const_iterator itr = copies_.begin(); itr != copies_.end(); ++itr, ++k) {
270  edm::LogVerbatim("HGCalGeom") << "Copy [" << k << "] : " << (*itr);
271  }
272  copies_.clear();
273  edm::LogVerbatim("HGCalGeom") << "<<== End of DDHGCalSiliconRotatedModule construction...";
274 #endif
275 }
276 
278 #ifdef EDM_ML_DEBUG
279  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: \t\tInside Layers";
280 #endif
281  double zi(zMinBlock_);
282  int laymin(0);
283  for (unsigned int i = 0; i < layers_.size(); i++) {
284  double zo = zi + layerThick_[i];
285  double routF = HGCalGeomTools::radius(zi, zFrontT_, rMaxFront_, slopeT_);
286  int laymax = laymin + layers_[i];
287  double zz = zi;
288  double thickTot(0);
289  for (int ly = laymin; ly < laymax; ++ly) {
290  int ii = layerType_[ly];
291  int copy = copyNumber_[ii];
292  double hthick = 0.5 * thick_[ii];
293  double rinB = HGCalGeomTools::radius(zo - tol1_, zFrontB_, rMinFront_, slopeB_);
294  zz += hthick;
295  thickTot += thick_[ii];
296 
297  std::string name = names_[ii] + std::to_string(copy);
298 #ifdef EDM_ML_DEBUG
299  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: Layer " << ly << ":" << ii << " Front " << zi
300  << ", " << routF << " Back " << zo << ", " << rinB << " superlayer thickness "
301  << layerThick_[i];
302 #endif
303  DDName matName(DDSplit(materials_[ii]).first, DDSplit(materials_[ii]).second);
304  DDMaterial matter(matName);
305  DDLogicalPart glog;
306  if (layerSense_[ly] < 1) {
307  std::vector<double> pgonZ, pgonRin, pgonRout;
308  double rmax = routF * cosAlpha_ - tol1_;
309  HGCalGeomTools::radius(zz - hthick,
310  zz + hthick,
311  zFrontB_,
312  rMinFront_,
313  slopeB_,
314  zFrontT_,
315  rMaxFront_,
316  slopeT_,
317  -layerSense_[ly],
318  pgonZ,
319  pgonRin,
320  pgonRout);
321  for (unsigned int isec = 0; isec < pgonZ.size(); ++isec) {
322  pgonZ[isec] -= zz;
323  if (layerSense_[ly] == 0 || absorbMode_ == 0)
324  pgonRout[isec] = rmax;
325  else
326  pgonRout[isec] = pgonRout[isec] * cosAlpha_ - tol1_;
327  }
328  DDSolid solid =
329  DDSolidFactory::polyhedra(DDName(name, nameSpace_), sectors_, -alpha_, 2._pi, pgonZ, pgonRin, pgonRout);
330  glog = DDLogicalPart(solid.ddname(), matter, solid);
331 #ifdef EDM_ML_DEBUG
332  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: " << solid.name() << " polyhedra of " << sectors_
333  << " sectors covering " << convertRadToDeg(-alpha_) << ":"
334  << convertRadToDeg(-alpha_ + 2._pi) << " with " << pgonZ.size()
335  << " sections and filled with " << matName;
336  for (unsigned int k = 0; k < pgonZ.size(); ++k)
337  edm::LogVerbatim("HGCalGeom") << "[" << k << "] z " << pgonZ[k] << " R " << pgonRin[k] << ":" << pgonRout[k];
338 #endif
339  } else {
340  double rins =
341  (sensitiveMode_ < 1) ? rinB : HGCalGeomTools::radius(zz + hthick - tol1_, zFrontB_, rMinFront_, slopeB_);
342  double routs =
343  (sensitiveMode_ < 1) ? routF : HGCalGeomTools::radius(zz - hthick, zFrontT_, rMaxFront_, slopeT_);
344  DDSolid solid = DDSolidFactory::tubs(DDName(name, nameSpace_), hthick, rins, routs, 0.0, 2._pi);
345  glog = DDLogicalPart(solid.ddname(), matter, solid);
346 #ifdef EDM_ML_DEBUG
347  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: " << solid.name() << " Tubs made of " << matName
348  << " of dimensions " << rinB << ":" << rins << ", " << routF << ":" << routs
349  << ", " << hthick << ", 0.0, 360.0 and position " << glog.name() << " number "
350  << copy << ":" << layerTypes_[copy - firstLayer_];
351 #endif
352  positionSensitive(glog, (copy - firstLayer_), cpv);
353  }
354  DDTranslation r1(0, 0, zz);
355  DDRotation rot;
356 #ifdef EDM_ML_DEBUG
357  std::string rotName("Null");
358 #endif
359  if ((layerSense_[ly] > 0) && (layerTypes_[copy - firstLayer_] == HGCalTypes::WaferCenteredRotated)) {
360  rot = DDRotation(DDName(DDSplit(rotstr_).first, DDSplit(rotstr_).second));
361 #ifdef EDM_ML_DEBUG
362  rotName = rotstr_;
363 #endif
364  }
365  cpv.position(glog, module, copy, r1, rot);
366  int inc = ((layerSense_[ly] > 0) && (facingTypes_ > 1)) ? 2 : 1;
367  copyNumber_[ii] = copy + inc;
368 #ifdef EDM_ML_DEBUG
369  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: " << glog.name() << " number " << copy
370  << " positioned in " << module.name() << " at " << r1 << " with " << rotName
371  << " rotation";
372 #endif
373  zz += hthick;
374  } // End of loop over layers in a block
375  zi = zo;
376  laymin = laymax;
377  // Make consistency check of all the partitions of the block
378  if (std::abs(thickTot - layerThick_[i]) >= tol2_) {
379  if (thickTot > layerThick_[i]) {
380  edm::LogError("HGCalGeom") << "Thickness of the partition " << layerThick_[i] << " is smaller than " << thickTot
381  << ": thickness of all its components **** ERROR ****";
382  } else {
383  edm::LogWarning("HGCalGeom") << "Thickness of the partition " << layerThick_[i] << " does not match with "
384  << thickTot << " of the components";
385  }
386  }
387  } // End of loop over blocks
388 }
389 
391  static const double sqrt3 = std::sqrt(3.0);
392  int layercenter = (layerTypes_[layer] == HGCalTypes::CornerCenteredLambda)
396  int layertype = (layerTypes_[layer] == HGCalTypes::WaferCenteredBack) ? 1 : 0;
397  int firstWafer = waferLayerStart_[layer];
398  int lastWafer = ((layer + 1 < static_cast<int>(waferLayerStart_.size())) ? waferLayerStart_[layer + 1]
399  : static_cast<int>(waferIndex_.size()));
400  double r = 0.5 * (waferSize_ + waferSepar_);
401  double R = 2.0 * r / sqrt3;
402  double dy = 0.75 * R;
403  const auto& xyoff = geomTools_.shiftXY(layercenter, (waferSize_ + waferSepar_));
404 #ifdef EDM_ML_DEBUG
405  int ium(0), ivm(0), kount(0);
406  std::vector<int> ntype(3, 0);
407  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: " << glog.ddname() << " r " << r << " R " << R
408  << " dy " << dy << " Shift " << xyoff.first << ":" << xyoff.second << " WaferSize "
409  << (waferSize_ + waferSepar_) << " index " << firstWafer << ":" << (lastWafer - 1);
410 #endif
411  for (int k = firstWafer; k < lastWafer; ++k) {
412  int u = HGCalWaferIndex::waferU(waferIndex_[k]);
413  int v = HGCalWaferIndex::waferV(waferIndex_[k]);
414 #ifdef EDM_ML_DEBUG
415  int iu = std::abs(u);
416  int iv = std::abs(v);
417 #endif
418  int nr = 2 * v;
419  int nc = -2 * u + v;
420  int type = HGCalProperty::waferThick(waferProperty_[k]);
421  int part = HGCalProperty::waferPartial(waferProperty_[k]);
422  int orien = HGCalProperty::waferOrient(waferProperty_[k]);
423  int cassette = HGCalProperty::waferCassette(waferProperty_[k]);
424  int place = HGCalCell::cellPlacementIndex(1, layertype, orien);
425  auto cshift = cassette_.getShift(layer, 1, cassette);
426  double xpos = xyoff.first + cshift.first + nc * r;
427  double ypos = xyoff.second + cshift.second + nr * dy;
428  std::string wafer;
429  int i(999);
430  if (part == HGCalTypes::WaferFull) {
431  i = type * facingTypes_ * orientationTypes_ + place - placeOffset_;
432  wafer = waferFull_[i];
433  } else {
435  i = (part - partoffset) * facingTypes_ * orientationTypes_ +
436  HGCalTypes::WaferTypeOffset[type] * facingTypes_ * orientationTypes_ + place - placeOffset_;
437 #ifdef EDM_ML_DEBUG
438  edm::LogVerbatim("HGCalGeom") << " layertype:type:part:orien:cassette:place:offsets:ind " << layertype << ":"
439  << type << ":" << part << ":" << orien << ":" << cassette << ":" << place << ":"
440  << partoffset << ":" << HGCalTypes::WaferTypeOffset[type] << ":" << i << ":"
441  << waferPart_.size();
442 #endif
443  wafer = waferPart_[i];
444  }
445  int copy = HGCalTypes::packTypeUV(type, u, v);
446 #ifdef EDM_ML_DEBUG
447  edm::LogVerbatim("HGCalGeom") << " DDHGCalSiliconRotatedModule: Layer "
448  << HGCalWaferIndex::waferLayer(waferIndex_[k]) << " Wafer " << wafer << " number "
449  << copy << " type:part:orien:ind " << type << ":" << part << ":" << orien << ":" << i
450  << " layer:u:v:indx " << (layer + firstLayer_) << ":" << u << ":" << v;
451  if (iu > ium)
452  ium = iu;
453  if (iv > ivm)
454  ivm = iv;
455  kount++;
456  if (copies_.count(copy) == 0)
457  copies_.insert(copy);
458 #endif
459  DDTranslation tran(xpos, ypos, 0.0);
461  DDName name = DDName(DDSplit(wafer).first, DDSplit(wafer).second);
462  cpv.position(name, glog.ddname(), copy, tran, rotation);
463 #ifdef EDM_ML_DEBUG
464  ++ntype[type];
465  edm::LogVerbatim("HGCalGeom") << " DDHGCalSiliconRotatedModule: " << name << " number " << copy << " type "
466  << layertype << ":" << type << " positioned in " << glog.ddname() << " at " << tran
467  << " with no rotation";
468 #endif
469  }
470 #ifdef EDM_ML_DEBUG
471  edm::LogVerbatim("HGCalGeom") << "DDHGCalSiliconRotatedModule: Maximum # of u " << ium << " # of v " << ivm << " and "
472  << kount << " wafers (" << ntype[0] << ":" << ntype[1] << ":" << ntype[2] << ") for "
473  << glog.ddname();
474 #endif
475 }
476 
477 DEFINE_EDM_PLUGIN(DDAlgorithmFactory, DDHGCalSiliconRotatedModule, "hgcal:DDHGCalSiliconRotatedModule");
Log< level::Info, true > LogVerbatim
static AlgebraicMatrix initialize()
static constexpr int32_t WaferCenteredRotated
Definition: HGCalTypes.h:71
static constexpr int32_t WaferPartLDOffset
Definition: HGCalTypes.h:56
static constexpr int32_t WaferCenter
Definition: HGCalTypes.h:20
static void radius(double zf, double zb, std::vector< double > const &zFront1, std::vector< double > const &rFront1, std::vector< double > const &slope1, std::vector< double > const &zFront2, std::vector< double > const &rFront2, std::vector< double > const &slope2, int flag, std::vector< double > &zz, std::vector< double > &rin, std::vector< double > &rout)
int32_t *__restrict__ iv
void position(const DDLogicalPart &self, const DDLogicalPart &parent, const std::string &copyno, const DDTranslation &trans, const DDRotation &rot, const DDDivision *div=nullptr)
static constexpr int32_t WaferTypeOffset[3]
Definition: HGCalTypes.h:58
DDMaterial is used to define and access material information.
Definition: DDMaterial.h:45
int32_t waferU(const int32_t index)
int32_t waferLayer(const int32_t index)
static constexpr int32_t CornerCenterYm
Definition: HGCalTypes.h:22
constexpr NumType convertRadToDeg(NumType radians)
Definition: angle_units.h:21
DDName is used to identify DDD entities uniquely.
Definition: DDName.h:17
std::string to_string(const V &value)
Definition: OMSAccess.h:71
void positionSensitive(const DDLogicalPart &glog, int layer, DDCompactView &cpv)
static std::string & ns()
std::vector< std::string > waferFull_
Log< level::Error, false > LogError
Compact representation of the geometrical detector hierarchy.
Definition: DDCompactView.h:81
int32_t waferOrient(const int32_t property)
A DDSolid represents the shape of a part.
Definition: DDSolid.h:39
constexpr std::array< uint8_t, layerIndexSize > layer
Represents a uniquely identifyable rotation matrix.
Definition: DDTransform.h:57
static const std::string & rotName(const T &rot, const cms::DDParsingContext &context)
U second(std::pair< T, U > const &p)
int32_t waferCassette(const int32_t property)
static constexpr int32_t WaferFull
Definition: HGCalTypes.h:34
static int32_t cellPlacementIndex(int32_t iz, int32_t fwdBack, int32_t orient)
Definition: HGCalCell.cc:230
T sqrt(T t)
Definition: SSEVec.h:19
Cos< T >::type cos(const T &t)
Definition: Cos.h:22
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
void constructLayers(const cms::DDNamespace &ns, const std::vector< std::string > &wafers, const std::vector< std::string > &covers, const std::vector< int > &layerType, const std::vector< int > &layerSense, const std::vector< int > &maxModule, const std::vector< std::string > &names, const std::vector< std::string > &materials, std::vector< int > &copyNumber, const std::vector< double > &layerThick, const double &absorbW, const double &absorbH, const double &waferTot, const double &rMax, const double &rMaxFine, std::unordered_set< int > &copies, int firstLayer, int lastLayer, double zFront, double totalWidth, bool ignoreCenter, dd4hep::Volume &module)
A DDLogicalPart aggregates information concerning material, solid and sensitveness ...
Definition: DDLogicalPart.h:93
static DDSolid tubs(const DDName &name, double zhalf, double rIn, double rOut, double startPhi, double deltaPhi)
Definition: DDSolid.cc:667
int32_t waferThick(const int32_t property)
static constexpr int32_t CornerCenterYp
Definition: HGCalTypes.h:21
ii
Definition: cuy.py:589
std::vector< int > dbl_to_int(const std::vector< double > &vecdbl)
Converts a std::vector of doubles to a std::vector of int.
Definition: DDutils.h:7
const N & name() const
Definition: DDBase.h:59
static constexpr int32_t WaferPartHDOffset
Definition: HGCalTypes.h:57
static constexpr int32_t WaferCenteredBack
Definition: HGCalTypes.h:68
void constructLayers(const DDLogicalPart &, DDCompactView &cpv)
part
Definition: HCALResponse.h:20
const N & ddname() const
Definition: DDBase.h:61
static constexpr int32_t CornerCenteredLambda
Definition: HGCalTypes.h:70
std::vector< std::string > materials_
int32_t waferPartial(const int32_t property)
static constexpr int32_t CornerCenteredY
Definition: HGCalTypes.h:69
int32_t waferV(const int32_t index)
static int32_t packTypeUV(int type, int u, int v)
Definition: HGCalTypes.cc:3
void initialize(const DDNumericArguments &nArgs, const DDVectorArguments &vArgs, const DDMapArguments &mArgs, const DDStringArguments &sArgs, const DDStringVectorArguments &vsArgs) override
static constexpr int32_t WaferHDTop
Definition: HGCalTypes.h:50
#define DEFINE_EDM_PLUGIN(factory, type, name)
Log< level::Warning, false > LogWarning
std::pair< std::string, std::string > DDSplit(const std::string &n)
split into (name,namespace), separator = &#39;:&#39;
Definition: DDSplit.cc:3
ROOT::Math::DisplacementVector3D< ROOT::Math::Cartesian3D< double > > DDTranslation
Definition: DDTranslation.h:7
static DDSolid polyhedra(const DDName &name, int sides, double startPhi, double deltaPhi, const std::vector< double > &z, const std::vector< double > &rmin, const std::vector< double > &rmax)
Creates a polyhedra (refere to Geant3 or Geant4 documentation)
Definition: DDSolid.cc:565
std::vector< std::string > waferPart_
void execute(DDCompactView &cpv) override