CMS 3D CMS Logo

DeepTauId.cc
Go to the documentation of this file.
1 /*
2  * \class DeepTauId
3  *
4  * Tau identification using Deep NN.
5  *
6  * \author Konstantin Androsov, INFN Pisa
7  * Christian Veelken, Tallinn
8  */
9 
15 
16 #include <fstream>
17 #include "oneapi/tbb/concurrent_unordered_set.h"
18 
19 namespace deep_tau {
20  constexpr int NumberOfOutputs = 4;
21 }
22 
23 namespace {
24 
25  namespace dnn_inputs_v2 {
26  constexpr int number_of_inner_cell = 11;
27  constexpr int number_of_outer_cell = 21;
28  constexpr int number_of_conv_features = 64;
29  namespace TauBlockInputs {
30  enum vars {
31  rho = 0,
32  tau_pt,
33  tau_eta,
34  tau_phi,
35  tau_mass,
36  tau_E_over_pt,
37  tau_charge,
38  tau_n_charged_prongs,
39  tau_n_neutral_prongs,
40  chargedIsoPtSum,
41  chargedIsoPtSumdR03_over_dR05,
42  footprintCorrection,
43  neutralIsoPtSum,
44  neutralIsoPtSumWeight_over_neutralIsoPtSum,
45  neutralIsoPtSumWeightdR03_over_neutralIsoPtSum,
46  neutralIsoPtSumdR03_over_dR05,
47  photonPtSumOutsideSignalCone,
48  puCorrPtSum,
49  tau_dxy_pca_x,
50  tau_dxy_pca_y,
51  tau_dxy_pca_z,
52  tau_dxy_valid,
53  tau_dxy,
54  tau_dxy_sig,
55  tau_ip3d_valid,
56  tau_ip3d,
57  tau_ip3d_sig,
58  tau_dz,
59  tau_dz_sig_valid,
60  tau_dz_sig,
61  tau_flightLength_x,
62  tau_flightLength_y,
63  tau_flightLength_z,
64  tau_flightLength_sig,
65  tau_pt_weighted_deta_strip,
66  tau_pt_weighted_dphi_strip,
67  tau_pt_weighted_dr_signal,
68  tau_pt_weighted_dr_iso,
69  tau_leadingTrackNormChi2,
70  tau_e_ratio_valid,
71  tau_e_ratio,
72  tau_gj_angle_diff_valid,
73  tau_gj_angle_diff,
74  tau_n_photons,
75  tau_emFraction,
76  tau_inside_ecal_crack,
77  leadChargedCand_etaAtEcalEntrance_minus_tau_eta,
78  NumberOfInputs
79  };
80  std::vector<int> varsToDrop = {
81  tau_phi, tau_dxy_pca_x, tau_dxy_pca_y, tau_dxy_pca_z}; // indices of vars to be dropped in the full var enum
82  } // namespace TauBlockInputs
83 
84  namespace EgammaBlockInputs {
85  enum vars {
86  rho = 0,
87  tau_pt,
88  tau_eta,
89  tau_inside_ecal_crack,
90  pfCand_ele_valid,
91  pfCand_ele_rel_pt,
92  pfCand_ele_deta,
93  pfCand_ele_dphi,
94  pfCand_ele_pvAssociationQuality,
95  pfCand_ele_puppiWeight,
96  pfCand_ele_charge,
97  pfCand_ele_lostInnerHits,
98  pfCand_ele_numberOfPixelHits,
99  pfCand_ele_vertex_dx,
100  pfCand_ele_vertex_dy,
101  pfCand_ele_vertex_dz,
102  pfCand_ele_vertex_dx_tauFL,
103  pfCand_ele_vertex_dy_tauFL,
104  pfCand_ele_vertex_dz_tauFL,
105  pfCand_ele_hasTrackDetails,
106  pfCand_ele_dxy,
107  pfCand_ele_dxy_sig,
108  pfCand_ele_dz,
109  pfCand_ele_dz_sig,
110  pfCand_ele_track_chi2_ndof,
111  pfCand_ele_track_ndof,
112  ele_valid,
113  ele_rel_pt,
114  ele_deta,
115  ele_dphi,
116  ele_cc_valid,
117  ele_cc_ele_rel_energy,
118  ele_cc_gamma_rel_energy,
119  ele_cc_n_gamma,
120  ele_rel_trackMomentumAtVtx,
121  ele_rel_trackMomentumAtCalo,
122  ele_rel_trackMomentumOut,
123  ele_rel_trackMomentumAtEleClus,
124  ele_rel_trackMomentumAtVtxWithConstraint,
125  ele_rel_ecalEnergy,
126  ele_ecalEnergy_sig,
127  ele_eSuperClusterOverP,
128  ele_eSeedClusterOverP,
129  ele_eSeedClusterOverPout,
130  ele_eEleClusterOverPout,
131  ele_deltaEtaSuperClusterTrackAtVtx,
132  ele_deltaEtaSeedClusterTrackAtCalo,
133  ele_deltaEtaEleClusterTrackAtCalo,
134  ele_deltaPhiEleClusterTrackAtCalo,
135  ele_deltaPhiSuperClusterTrackAtVtx,
136  ele_deltaPhiSeedClusterTrackAtCalo,
137  ele_mvaInput_earlyBrem,
138  ele_mvaInput_lateBrem,
139  ele_mvaInput_sigmaEtaEta,
140  ele_mvaInput_hadEnergy,
141  ele_mvaInput_deltaEta,
142  ele_gsfTrack_normalizedChi2,
143  ele_gsfTrack_numberOfValidHits,
144  ele_rel_gsfTrack_pt,
145  ele_gsfTrack_pt_sig,
146  ele_has_closestCtfTrack,
147  ele_closestCtfTrack_normalizedChi2,
148  ele_closestCtfTrack_numberOfValidHits,
149  pfCand_gamma_valid,
150  pfCand_gamma_rel_pt,
151  pfCand_gamma_deta,
152  pfCand_gamma_dphi,
153  pfCand_gamma_pvAssociationQuality,
154  pfCand_gamma_fromPV,
155  pfCand_gamma_puppiWeight,
156  pfCand_gamma_puppiWeightNoLep,
157  pfCand_gamma_lostInnerHits,
158  pfCand_gamma_numberOfPixelHits,
159  pfCand_gamma_vertex_dx,
160  pfCand_gamma_vertex_dy,
161  pfCand_gamma_vertex_dz,
162  pfCand_gamma_vertex_dx_tauFL,
163  pfCand_gamma_vertex_dy_tauFL,
164  pfCand_gamma_vertex_dz_tauFL,
165  pfCand_gamma_hasTrackDetails,
166  pfCand_gamma_dxy,
167  pfCand_gamma_dxy_sig,
168  pfCand_gamma_dz,
169  pfCand_gamma_dz_sig,
170  pfCand_gamma_track_chi2_ndof,
171  pfCand_gamma_track_ndof,
172  NumberOfInputs
173  };
174  }
175 
176  namespace MuonBlockInputs {
177  enum vars {
178  rho = 0,
179  tau_pt,
180  tau_eta,
181  tau_inside_ecal_crack,
182  pfCand_muon_valid,
183  pfCand_muon_rel_pt,
184  pfCand_muon_deta,
185  pfCand_muon_dphi,
186  pfCand_muon_pvAssociationQuality,
187  pfCand_muon_fromPV,
188  pfCand_muon_puppiWeight,
189  pfCand_muon_charge,
190  pfCand_muon_lostInnerHits,
191  pfCand_muon_numberOfPixelHits,
192  pfCand_muon_vertex_dx,
193  pfCand_muon_vertex_dy,
194  pfCand_muon_vertex_dz,
195  pfCand_muon_vertex_dx_tauFL,
196  pfCand_muon_vertex_dy_tauFL,
197  pfCand_muon_vertex_dz_tauFL,
198  pfCand_muon_hasTrackDetails,
199  pfCand_muon_dxy,
200  pfCand_muon_dxy_sig,
201  pfCand_muon_dz,
202  pfCand_muon_dz_sig,
203  pfCand_muon_track_chi2_ndof,
204  pfCand_muon_track_ndof,
205  muon_valid,
206  muon_rel_pt,
207  muon_deta,
208  muon_dphi,
209  muon_dxy,
210  muon_dxy_sig,
211  muon_normalizedChi2_valid,
212  muon_normalizedChi2,
213  muon_numberOfValidHits,
214  muon_segmentCompatibility,
215  muon_caloCompatibility,
216  muon_pfEcalEnergy_valid,
217  muon_rel_pfEcalEnergy,
218  muon_n_matches_DT_1,
219  muon_n_matches_DT_2,
220  muon_n_matches_DT_3,
221  muon_n_matches_DT_4,
222  muon_n_matches_CSC_1,
223  muon_n_matches_CSC_2,
224  muon_n_matches_CSC_3,
225  muon_n_matches_CSC_4,
226  muon_n_matches_RPC_1,
227  muon_n_matches_RPC_2,
228  muon_n_matches_RPC_3,
229  muon_n_matches_RPC_4,
230  muon_n_hits_DT_1,
231  muon_n_hits_DT_2,
232  muon_n_hits_DT_3,
233  muon_n_hits_DT_4,
234  muon_n_hits_CSC_1,
235  muon_n_hits_CSC_2,
236  muon_n_hits_CSC_3,
237  muon_n_hits_CSC_4,
238  muon_n_hits_RPC_1,
239  muon_n_hits_RPC_2,
240  muon_n_hits_RPC_3,
241  muon_n_hits_RPC_4,
242  NumberOfInputs
243  };
244  }
245 
246  namespace HadronBlockInputs {
247  enum vars {
248  rho = 0,
249  tau_pt,
250  tau_eta,
251  tau_inside_ecal_crack,
252  pfCand_chHad_valid,
253  pfCand_chHad_rel_pt,
254  pfCand_chHad_deta,
255  pfCand_chHad_dphi,
256  pfCand_chHad_leadChargedHadrCand,
257  pfCand_chHad_pvAssociationQuality,
258  pfCand_chHad_fromPV,
259  pfCand_chHad_puppiWeight,
260  pfCand_chHad_puppiWeightNoLep,
261  pfCand_chHad_charge,
262  pfCand_chHad_lostInnerHits,
263  pfCand_chHad_numberOfPixelHits,
264  pfCand_chHad_vertex_dx,
265  pfCand_chHad_vertex_dy,
266  pfCand_chHad_vertex_dz,
267  pfCand_chHad_vertex_dx_tauFL,
268  pfCand_chHad_vertex_dy_tauFL,
269  pfCand_chHad_vertex_dz_tauFL,
270  pfCand_chHad_hasTrackDetails,
271  pfCand_chHad_dxy,
272  pfCand_chHad_dxy_sig,
273  pfCand_chHad_dz,
274  pfCand_chHad_dz_sig,
275  pfCand_chHad_track_chi2_ndof,
276  pfCand_chHad_track_ndof,
277  pfCand_chHad_hcalFraction,
278  pfCand_chHad_rawCaloFraction,
279  pfCand_nHad_valid,
280  pfCand_nHad_rel_pt,
281  pfCand_nHad_deta,
282  pfCand_nHad_dphi,
283  pfCand_nHad_puppiWeight,
284  pfCand_nHad_puppiWeightNoLep,
285  pfCand_nHad_hcalFraction,
286  NumberOfInputs
287  };
288  }
289  } // namespace dnn_inputs_v2
290 
291  float getTauID(const pat::Tau& tau, const std::string& tauID, float default_value = -999., bool assert_input = true) {
292  static tbb::concurrent_unordered_set<std::string> isFirstWarning;
293  if (tau.isTauIDAvailable(tauID)) {
294  return tau.tauID(tauID);
295  } else {
296  if (assert_input) {
297  throw cms::Exception("DeepTauId")
298  << "Exception in <getTauID>: No tauID '" << tauID << "' available in pat::Tau given as function argument.";
299  }
300  if (isFirstWarning.insert(tauID).second) {
301  edm::LogWarning("DeepTauID") << "Warning in <getTauID>: No tauID '" << tauID
302  << "' available in pat::Tau given as function argument."
303  << " Using default_value = " << default_value << " instead." << std::endl;
304  }
305  return default_value;
306  }
307  }
308 
309  struct TauFunc {
310  const reco::TauDiscriminatorContainer* basicTauDiscriminatorCollection;
311  const reco::TauDiscriminatorContainer* basicTauDiscriminatordR03Collection;
314 
316  std::map<BasicDiscr, size_t> indexMap;
317  std::map<BasicDiscr, size_t> indexMapdR03;
318 
319  const float getChargedIsoPtSum(const reco::PFTau& tau, const edm::RefToBase<reco::BaseTau> tau_ref) const {
320  return (*basicTauDiscriminatorCollection)[tau_ref].rawValues.at(indexMap.at(BasicDiscr::ChargedIsoPtSum));
321  }
322  const float getChargedIsoPtSum(const pat::Tau& tau, const edm::RefToBase<reco::BaseTau> tau_ref) const {
323  return getTauID(tau, "chargedIsoPtSum");
324  }
325  const float getChargedIsoPtSumdR03(const reco::PFTau& tau, const edm::RefToBase<reco::BaseTau> tau_ref) const {
326  return (*basicTauDiscriminatordR03Collection)[tau_ref].rawValues.at(indexMapdR03.at(BasicDiscr::ChargedIsoPtSum));
327  }
328  const float getChargedIsoPtSumdR03(const pat::Tau& tau, const edm::RefToBase<reco::BaseTau> tau_ref) const {
329  return getTauID(tau, "chargedIsoPtSumdR03");
330  }
331  const float getFootprintCorrectiondR03(const reco::PFTau& tau, const edm::RefToBase<reco::BaseTau> tau_ref) const {
332  return (*basicTauDiscriminatordR03Collection)[tau_ref].rawValues.at(
333  indexMapdR03.at(BasicDiscr::FootprintCorrection));
334  }
335  const float getFootprintCorrectiondR03(const pat::Tau& tau, const edm::RefToBase<reco::BaseTau> tau_ref) const {
336  return getTauID(tau, "footprintCorrectiondR03");
337  }
338  const float getFootprintCorrection(const pat::Tau& tau, const edm::RefToBase<reco::BaseTau> tau_ref) const {
339  return getTauID(tau, "footprintCorrection");
340  }
341  const float getNeutralIsoPtSum(const reco::PFTau& tau, const edm::RefToBase<reco::BaseTau> tau_ref) const {
342  return (*basicTauDiscriminatorCollection)[tau_ref].rawValues.at(indexMap.at(BasicDiscr::NeutralIsoPtSum));
343  }
344  const float getNeutralIsoPtSum(const pat::Tau& tau, const edm::RefToBase<reco::BaseTau> tau_ref) const {
345  return getTauID(tau, "neutralIsoPtSum");
346  }
347  const float getNeutralIsoPtSumdR03(const reco::PFTau& tau, const edm::RefToBase<reco::BaseTau> tau_ref) const {
348  return (*basicTauDiscriminatordR03Collection)[tau_ref].rawValues.at(indexMapdR03.at(BasicDiscr::NeutralIsoPtSum));
349  }
350  const float getNeutralIsoPtSumdR03(const pat::Tau& tau, const edm::RefToBase<reco::BaseTau> tau_ref) const {
351  return getTauID(tau, "neutralIsoPtSumdR03");
352  }
353  const float getNeutralIsoPtSumWeight(const reco::PFTau& tau, const edm::RefToBase<reco::BaseTau> tau_ref) const {
354  return (*basicTauDiscriminatorCollection)[tau_ref].rawValues.at(indexMap.at(BasicDiscr::NeutralIsoPtSumWeight));
355  }
356  const float getNeutralIsoPtSumWeight(const pat::Tau& tau, const edm::RefToBase<reco::BaseTau> tau_ref) const {
357  return getTauID(tau, "neutralIsoPtSumWeight");
358  }
359  const float getNeutralIsoPtSumdR03Weight(const reco::PFTau& tau,
360  const edm::RefToBase<reco::BaseTau> tau_ref) const {
361  return (*basicTauDiscriminatordR03Collection)[tau_ref].rawValues.at(
362  indexMapdR03.at(BasicDiscr::NeutralIsoPtSumWeight));
363  }
364  const float getNeutralIsoPtSumdR03Weight(const pat::Tau& tau, const edm::RefToBase<reco::BaseTau> tau_ref) const {
365  return getTauID(tau, "neutralIsoPtSumWeightdR03");
366  }
367  const float getPhotonPtSumOutsideSignalCone(const reco::PFTau& tau,
368  const edm::RefToBase<reco::BaseTau> tau_ref) const {
369  return (*basicTauDiscriminatorCollection)[tau_ref].rawValues.at(
370  indexMap.at(BasicDiscr::PhotonPtSumOutsideSignalCone));
371  }
372  const float getPhotonPtSumOutsideSignalCone(const pat::Tau& tau,
373  const edm::RefToBase<reco::BaseTau> tau_ref) const {
374  return getTauID(tau, "photonPtSumOutsideSignalCone");
375  }
376  const float getPhotonPtSumOutsideSignalConedR03(const reco::PFTau& tau,
377  const edm::RefToBase<reco::BaseTau> tau_ref) const {
378  return (*basicTauDiscriminatordR03Collection)[tau_ref].rawValues.at(
379  indexMapdR03.at(BasicDiscr::PhotonPtSumOutsideSignalCone));
380  }
381  const float getPhotonPtSumOutsideSignalConedR03(const pat::Tau& tau,
382  const edm::RefToBase<reco::BaseTau> tau_ref) const {
383  return getTauID(tau, "photonPtSumOutsideSignalConedR03");
384  }
385  const float getPuCorrPtSum(const reco::PFTau& tau, const edm::RefToBase<reco::BaseTau> tau_ref) const {
386  return (*basicTauDiscriminatorCollection)[tau_ref].rawValues.at(indexMap.at(BasicDiscr::PUcorrPtSum));
387  }
388  const float getPuCorrPtSum(const pat::Tau& tau, const edm::RefToBase<reco::BaseTau> tau_ref) const {
389  return getTauID(tau, "puCorrPtSum");
390  }
391 
392  auto getdxyPCA(const reco::PFTau& tau, const size_t tau_index) const {
393  return pfTauTransverseImpactParameters->value(tau_index)->dxy_PCA();
394  }
395  auto getdxyPCA(const pat::Tau& tau, const size_t tau_index) const { return tau.dxy_PCA(); }
396  auto getdxy(const reco::PFTau& tau, const size_t tau_index) const {
397  return pfTauTransverseImpactParameters->value(tau_index)->dxy();
398  }
399  auto getdxy(const pat::Tau& tau, const size_t tau_index) const { return tau.dxy(); }
400  auto getdxyError(const reco::PFTau& tau, const size_t tau_index) const {
401  return pfTauTransverseImpactParameters->value(tau_index)->dxy_error();
402  }
403  auto getdxyError(const pat::Tau& tau, const size_t tau_index) const { return tau.dxy_error(); }
404  auto getdxySig(const reco::PFTau& tau, const size_t tau_index) const {
405  return pfTauTransverseImpactParameters->value(tau_index)->dxy_Sig();
406  }
407  auto getdxySig(const pat::Tau& tau, const size_t tau_index) const { return tau.dxy_Sig(); }
408  auto getip3d(const reco::PFTau& tau, const size_t tau_index) const {
409  return pfTauTransverseImpactParameters->value(tau_index)->ip3d();
410  }
411  auto getip3d(const pat::Tau& tau, const size_t tau_index) const { return tau.ip3d(); }
412  auto getip3dError(const reco::PFTau& tau, const size_t tau_index) const {
413  return pfTauTransverseImpactParameters->value(tau_index)->ip3d_error();
414  }
415  auto getip3dError(const pat::Tau& tau, const size_t tau_index) const { return tau.ip3d_error(); }
416  auto getip3dSig(const reco::PFTau& tau, const size_t tau_index) const {
417  return pfTauTransverseImpactParameters->value(tau_index)->ip3d_Sig();
418  }
419  auto getip3dSig(const pat::Tau& tau, const size_t tau_index) const { return tau.ip3d_Sig(); }
420  auto getHasSecondaryVertex(const reco::PFTau& tau, const size_t tau_index) const {
421  return pfTauTransverseImpactParameters->value(tau_index)->hasSecondaryVertex();
422  }
423  auto getHasSecondaryVertex(const pat::Tau& tau, const size_t tau_index) const { return tau.hasSecondaryVertex(); }
424  auto getFlightLength(const reco::PFTau& tau, const size_t tau_index) const {
425  return pfTauTransverseImpactParameters->value(tau_index)->flightLength();
426  }
427  auto getFlightLength(const pat::Tau& tau, const size_t tau_index) const { return tau.flightLength(); }
428  auto getFlightLengthSig(const reco::PFTau& tau, const size_t tau_index) const {
429  return pfTauTransverseImpactParameters->value(tau_index)->flightLengthSig();
430  }
431  auto getFlightLengthSig(const pat::Tau& tau, const size_t tau_index) const { return tau.flightLengthSig(); }
432 
433  auto getLeadingTrackNormChi2(const reco::PFTau& tau) { return reco::tau::lead_track_chi2(tau); }
434  auto getLeadingTrackNormChi2(const pat::Tau& tau) { return tau.leadingTrackNormChi2(); }
435  auto getEmFraction(const pat::Tau& tau) { return tau.emFraction_MVA(); }
436  auto getEmFraction(const reco::PFTau& tau) { return tau.emFraction(); }
437  auto getEtaAtEcalEntrance(const pat::Tau& tau) { return tau.etaAtEcalEntranceLeadChargedCand(); }
438  auto getEtaAtEcalEntrance(const reco::PFTau& tau) {
439  return tau.leadPFChargedHadrCand()->positionAtECALEntrance().eta();
440  }
441  auto getEcalEnergyLeadingChargedHadr(const reco::PFTau& tau) { return tau.leadPFChargedHadrCand()->ecalEnergy(); }
442  auto getEcalEnergyLeadingChargedHadr(const pat::Tau& tau) { return tau.ecalEnergyLeadChargedHadrCand(); }
443  auto getHcalEnergyLeadingChargedHadr(const reco::PFTau& tau) { return tau.leadPFChargedHadrCand()->hcalEnergy(); }
444  auto getHcalEnergyLeadingChargedHadr(const pat::Tau& tau) { return tau.hcalEnergyLeadChargedHadrCand(); }
445 
446  template <typename PreDiscrType>
447  bool passPrediscriminants(const PreDiscrType prediscriminants,
448  const size_t andPrediscriminants,
449  const edm::RefToBase<reco::BaseTau> tau_ref) {
450  bool passesPrediscriminants = (andPrediscriminants ? 1 : 0);
451  // check tau passes prediscriminants
452  size_t nPrediscriminants = prediscriminants.size();
453  for (size_t iDisc = 0; iDisc < nPrediscriminants; ++iDisc) {
454  // current discriminant result for this tau
455  double discResult = (*prediscriminants[iDisc].handle)[tau_ref];
456  uint8_t thisPasses = (discResult > prediscriminants[iDisc].cut) ? 1 : 0;
457 
458  // if we are using the AND option, as soon as one fails,
459  // the result is FAIL and we can quit looping.
460  // if we are using the OR option as soon as one passes,
461  // the result is pass and we can quit looping
462 
463  // truth table
464  // | result (thisPasses)
465  // | F | T
466  //-----------------------------------
467  // AND(T) | res=fails | continue
468  // | break |
469  //-----------------------------------
470  // OR (F) | continue | res=passes
471  // | | break
472 
473  if (thisPasses ^ andPrediscriminants) //XOR
474  {
475  passesPrediscriminants = (andPrediscriminants ? 0 : 1); //NOR
476  break;
477  }
478  }
479  return passesPrediscriminants;
480  }
481  };
482 
483  namespace candFunc {
484  auto getTauDz(const reco::PFCandidate& cand) { return cand.bestTrack()->dz(); }
485  auto getTauDz(const pat::PackedCandidate& cand) { return cand.dz(); }
486  auto getTauDZSigValid(const reco::PFCandidate& cand) {
487  return cand.bestTrack() != nullptr && std::isnormal(cand.bestTrack()->dz()) && std::isnormal(cand.dzError()) &&
488  cand.dzError() > 0;
489  }
490  auto getTauDZSigValid(const pat::PackedCandidate& cand) {
491  return cand.hasTrackDetails() && std::isnormal(cand.dz()) && std::isnormal(cand.dzError()) && cand.dzError() > 0;
492  }
493  auto getTauDxy(const reco::PFCandidate& cand) { return cand.bestTrack()->dxy(); }
494  auto getTauDxy(const pat::PackedCandidate& cand) { return cand.dxy(); }
495  auto getPvAssocationQuality(const reco::PFCandidate& cand) { return 0.7013f; }
496  auto getPvAssocationQuality(const pat::PackedCandidate& cand) { return cand.pvAssociationQuality(); }
497  auto getPuppiWeight(const reco::PFCandidate& cand, const float aod_value) { return aod_value; }
498  auto getPuppiWeight(const pat::PackedCandidate& cand, const float aod_value) { return cand.puppiWeight(); }
499  auto getPuppiWeightNoLep(const reco::PFCandidate& cand, const float aod_value) { return aod_value; }
500  auto getPuppiWeightNoLep(const pat::PackedCandidate& cand, const float aod_value) {
501  return cand.puppiWeightNoLep();
502  }
503  auto getLostInnerHits(const reco::PFCandidate& cand, float default_value) {
504  return cand.bestTrack() != nullptr
505  ? cand.bestTrack()->hitPattern().numberOfLostHits(reco::HitPattern::MISSING_INNER_HITS)
506  : default_value;
507  }
508  auto getLostInnerHits(const pat::PackedCandidate& cand, float default_value) { return cand.lostInnerHits(); }
509  auto getNumberOfPixelHits(const reco::PFCandidate& cand, float default_value) {
510  return cand.bestTrack() != nullptr
511  ? cand.bestTrack()->hitPattern().numberOfLostHits(reco::HitPattern::MISSING_INNER_HITS)
512  : default_value;
513  }
514  auto getNumberOfPixelHits(const pat::PackedCandidate& cand, float default_value) {
515  return cand.numberOfPixelHits();
516  }
517  auto getHasTrackDetails(const reco::PFCandidate& cand) { return cand.bestTrack() != nullptr; }
518  auto getHasTrackDetails(const pat::PackedCandidate& cand) { return cand.hasTrackDetails(); }
519  auto getPseudoTrack(const reco::PFCandidate& cand) { return *cand.bestTrack(); }
520  auto getPseudoTrack(const pat::PackedCandidate& cand) { return cand.pseudoTrack(); }
521  auto getFromPV(const reco::PFCandidate& cand) { return 0.9994f; }
522  auto getFromPV(const pat::PackedCandidate& cand) { return cand.fromPV(); }
523  auto getHCalFraction(const reco::PFCandidate& cand, bool disable_hcalFraction_workaround) {
524  return cand.rawHcalEnergy() / (cand.rawHcalEnergy() + cand.rawEcalEnergy());
525  }
526  auto getHCalFraction(const pat::PackedCandidate& cand, bool disable_hcalFraction_workaround) {
527  float hcal_fraction = 0.;
529  // CV: use consistent definition for pfCand_chHad_hcalFraction
530  // in DeepTauId.cc code and in TauMLTools/Production/plugins/TauTupleProducer.cc
531  hcal_fraction = cand.hcalFraction();
532  } else {
533  // CV: backwards compatibility with DeepTau training v2p1 used during Run 2
534  if (cand.pdgId() == 1 || cand.pdgId() == 130) {
535  hcal_fraction = cand.hcalFraction();
536  } else if (cand.isIsolatedChargedHadron()) {
537  hcal_fraction = cand.rawHcalFraction();
538  }
539  }
540  return hcal_fraction;
541  }
542  auto getRawCaloFraction(const reco::PFCandidate& cand) {
543  return (cand.rawEcalEnergy() + cand.rawHcalEnergy()) / cand.energy();
544  }
545  auto getRawCaloFraction(const pat::PackedCandidate& cand) { return cand.rawCaloFraction(); }
546  }; // namespace candFunc
547 
548  template <typename LVector1, typename LVector2>
549  float dEta(const LVector1& p4, const LVector2& tau_p4) {
550  return static_cast<float>(p4.eta() - tau_p4.eta());
551  }
552 
553  template <typename LVector1, typename LVector2>
554  float dPhi(const LVector1& p4_1, const LVector2& p4_2) {
555  return static_cast<float>(reco::deltaPhi(p4_2.phi(), p4_1.phi()));
556  }
557 
558  struct MuonHitMatchV2 {
559  static constexpr size_t n_muon_stations = 4;
560  static constexpr int first_station_id = 1;
561  static constexpr int last_station_id = first_station_id + n_muon_stations - 1;
562  using CountArray = std::array<unsigned, n_muon_stations>;
563  using CountMap = std::map<int, CountArray>;
564 
565  const std::vector<int>& consideredSubdets() {
566  static const std::vector<int> subdets = {MuonSubdetId::DT, MuonSubdetId::CSC, MuonSubdetId::RPC};
567  return subdets;
568  }
569 
570  const std::string& subdetName(int subdet) {
571  static const std::map<int, std::string> subdet_names = {
572  {MuonSubdetId::DT, "DT"}, {MuonSubdetId::CSC, "CSC"}, {MuonSubdetId::RPC, "RPC"}};
573  if (!subdet_names.count(subdet))
574  throw cms::Exception("MuonHitMatch") << "Subdet name for subdet id " << subdet << " not found.";
575  return subdet_names.at(subdet);
576  }
577 
578  size_t getStationIndex(int station, bool throw_exception) const {
579  if (station < first_station_id || station > last_station_id) {
580  if (throw_exception)
581  throw cms::Exception("MuonHitMatch") << "Station id is out of range";
583  }
584  return static_cast<size_t>(station - 1);
585  }
586 
587  MuonHitMatchV2(const pat::Muon& muon) {
588  for (int subdet : consideredSubdets()) {
589  n_matches[subdet].fill(0);
590  n_hits[subdet].fill(0);
591  }
592 
593  countMatches(muon, n_matches);
594  countHits(muon, n_hits);
595  }
596 
597  void countMatches(const pat::Muon& muon, CountMap& n_matches) {
598  for (const auto& segment : muon.matches()) {
599  if (segment.segmentMatches.empty() && segment.rpcMatches.empty())
600  continue;
601  if (n_matches.count(segment.detector())) {
602  const size_t station_index = getStationIndex(segment.station(), true);
603  ++n_matches.at(segment.detector()).at(station_index);
604  }
605  }
606  }
607 
608  void countHits(const pat::Muon& muon, CountMap& n_hits) {
609  if (muon.outerTrack().isNonnull()) {
610  const auto& hit_pattern = muon.outerTrack()->hitPattern();
611  for (int hit_index = 0; hit_index < hit_pattern.numberOfAllHits(reco::HitPattern::TRACK_HITS); ++hit_index) {
612  auto hit_id = hit_pattern.getHitPattern(reco::HitPattern::TRACK_HITS, hit_index);
613  if (hit_id == 0)
614  break;
615  if (hit_pattern.muonHitFilter(hit_id) && (hit_pattern.getHitType(hit_id) == TrackingRecHit::valid ||
616  hit_pattern.getHitType(hit_id) == TrackingRecHit::bad)) {
617  const size_t station_index = getStationIndex(hit_pattern.getMuonStation(hit_id), false);
618  if (station_index < n_muon_stations) {
619  CountArray* muon_n_hits = nullptr;
620  if (hit_pattern.muonDTHitFilter(hit_id))
621  muon_n_hits = &n_hits.at(MuonSubdetId::DT);
622  else if (hit_pattern.muonCSCHitFilter(hit_id))
623  muon_n_hits = &n_hits.at(MuonSubdetId::CSC);
624  else if (hit_pattern.muonRPCHitFilter(hit_id))
625  muon_n_hits = &n_hits.at(MuonSubdetId::RPC);
626 
627  if (muon_n_hits)
628  ++muon_n_hits->at(station_index);
629  }
630  }
631  }
632  }
633  }
634 
635  unsigned nMatches(int subdet, int station) const {
636  if (!n_matches.count(subdet))
637  throw cms::Exception("MuonHitMatch") << "Subdet " << subdet << " not found.";
638  const size_t station_index = getStationIndex(station, true);
639  return n_matches.at(subdet).at(station_index);
640  }
641 
642  unsigned nHits(int subdet, int station) const {
643  if (!n_hits.count(subdet))
644  throw cms::Exception("MuonHitMatch") << "Subdet " << subdet << " not found.";
645  const size_t station_index = getStationIndex(station, true);
646  return n_hits.at(subdet).at(station_index);
647  }
648 
649  unsigned countMuonStationsWithMatches(int first_station, int last_station) const {
650  static const std::map<int, std::vector<bool>> masks = {
651  {MuonSubdetId::DT, {false, false, false, false}},
652  {MuonSubdetId::CSC, {true, false, false, false}},
653  {MuonSubdetId::RPC, {false, false, false, false}},
654  };
655  const size_t first_station_index = getStationIndex(first_station, true);
656  const size_t last_station_index = getStationIndex(last_station, true);
657  unsigned cnt = 0;
658  for (size_t n = first_station_index; n <= last_station_index; ++n) {
659  for (const auto& match : n_matches) {
660  if (!masks.at(match.first).at(n) && match.second.at(n) > 0)
661  ++cnt;
662  }
663  }
664  return cnt;
665  }
666 
667  unsigned countMuonStationsWithHits(int first_station, int last_station) const {
668  static const std::map<int, std::vector<bool>> masks = {
669  {MuonSubdetId::DT, {false, false, false, false}},
670  {MuonSubdetId::CSC, {false, false, false, false}},
671  {MuonSubdetId::RPC, {false, false, false, false}},
672  };
673 
674  const size_t first_station_index = getStationIndex(first_station, true);
675  const size_t last_station_index = getStationIndex(last_station, true);
676  unsigned cnt = 0;
677  for (size_t n = first_station_index; n <= last_station_index; ++n) {
678  for (const auto& hit : n_hits) {
679  if (!masks.at(hit.first).at(n) && hit.second.at(n) > 0)
680  ++cnt;
681  }
682  }
683  return cnt;
684  }
685 
686  private:
687  CountMap n_matches, n_hits;
688  };
689 
690  enum class CellObjectType {
691  PfCand_electron,
692  PfCand_muon,
693  PfCand_chargedHadron,
694  PfCand_neutralHadron,
695  PfCand_gamma,
696  Electron,
697  Muon,
698  Other
699  };
700 
701  template <typename Object>
702  CellObjectType GetCellObjectType(const Object&);
703  template <>
704  CellObjectType GetCellObjectType(const pat::Electron&) {
706  }
707  template <>
708  CellObjectType GetCellObjectType(const pat::Muon&) {
709  return CellObjectType::Muon;
710  }
711 
712  template <>
713  CellObjectType GetCellObjectType(reco::Candidate const& cand) {
714  static const std::map<int, CellObjectType> obj_types = {{11, CellObjectType::PfCand_electron},
715  {13, CellObjectType::PfCand_muon},
716  {22, CellObjectType::PfCand_gamma},
717  {130, CellObjectType::PfCand_neutralHadron},
718  {211, CellObjectType::PfCand_chargedHadron}};
719 
720  auto iter = obj_types.find(std::abs(cand.pdgId()));
721  if (iter == obj_types.end())
722  return CellObjectType::Other;
723  return iter->second;
724  }
725 
726  using Cell = std::map<CellObjectType, size_t>;
727  struct CellIndex {
728  int eta, phi;
729 
730  bool operator<(const CellIndex& other) const {
731  if (eta != other.eta)
732  return eta < other.eta;
733  return phi < other.phi;
734  }
735  };
736 
737  class CellGrid {
738  public:
739  using Map = std::map<CellIndex, Cell>;
740  using const_iterator = Map::const_iterator;
741 
742  CellGrid(unsigned n_cells_eta,
743  unsigned n_cells_phi,
744  double cell_size_eta,
745  double cell_size_phi,
747  : nCellsEta(n_cells_eta),
748  nCellsPhi(n_cells_phi),
749  nTotal(nCellsEta * nCellsPhi),
750  cellSizeEta(cell_size_eta),
751  cellSizePhi(cell_size_phi),
752  disable_CellIndex_workaround_(disable_CellIndex_workaround) {
753  if (nCellsEta % 2 != 1 || nCellsEta < 1)
754  throw cms::Exception("DeepTauId") << "Invalid number of eta cells.";
755  if (nCellsPhi % 2 != 1 || nCellsPhi < 1)
756  throw cms::Exception("DeepTauId") << "Invalid number of phi cells.";
757  if (cellSizeEta <= 0 || cellSizePhi <= 0)
758  throw cms::Exception("DeepTauId") << "Invalid cell size.";
759  }
760 
761  int maxEtaIndex() const { return static_cast<int>((nCellsEta - 1) / 2); }
762  int maxPhiIndex() const { return static_cast<int>((nCellsPhi - 1) / 2); }
763  double maxDeltaEta() const { return cellSizeEta * (0.5 + maxEtaIndex()); }
764  double maxDeltaPhi() const { return cellSizePhi * (0.5 + maxPhiIndex()); }
765  int getEtaTensorIndex(const CellIndex& cellIndex) const { return cellIndex.eta + maxEtaIndex(); }
766  int getPhiTensorIndex(const CellIndex& cellIndex) const { return cellIndex.phi + maxPhiIndex(); }
767 
768  bool tryGetCellIndex(double deltaEta, double deltaPhi, CellIndex& cellIndex) const {
769  const auto getCellIndex = [this](double x, double maxX, double size, int& index) {
770  const double absX = std::abs(x);
771  if (absX > maxX)
772  return false;
773  double absIndex;
774  if (disable_CellIndex_workaround_) {
775  // CV: use consistent definition for CellIndex
776  // in DeepTauId.cc code and new DeepTau trainings
777  absIndex = std::floor(absX / size + 0.5);
778  } else {
779  // CV: backwards compatibility with DeepTau training v2p1 used during Run 2
780  absIndex = std::floor(std::abs(absX / size - 0.5));
781  }
782  index = static_cast<int>(std::copysign(absIndex, x));
783  return true;
784  };
785 
786  return getCellIndex(deltaEta, maxDeltaEta(), cellSizeEta, cellIndex.eta) &&
787  getCellIndex(deltaPhi, maxDeltaPhi(), cellSizePhi, cellIndex.phi);
788  }
789 
790  size_t num_valid_cells() const { return cells.size(); }
791  Cell& operator[](const CellIndex& cellIndex) { return cells[cellIndex]; }
792  const Cell& at(const CellIndex& cellIndex) const { return cells.at(cellIndex); }
793  size_t count(const CellIndex& cellIndex) const { return cells.count(cellIndex); }
794  const_iterator find(const CellIndex& cellIndex) const { return cells.find(cellIndex); }
795  const_iterator begin() const { return cells.begin(); }
796  const_iterator end() const { return cells.end(); }
797 
798  public:
799  const unsigned nCellsEta, nCellsPhi, nTotal;
800  const double cellSizeEta, cellSizePhi;
801 
802  private:
803  std::map<CellIndex, Cell> cells;
804  const bool disable_CellIndex_workaround_;
805  };
806 } // anonymous namespace
807 
809 const std::map<bd, std::string> deep_tau::DeepTauBase::stringFromDiscriminator_{
810  {bd::ChargedIsoPtSum, "ChargedIsoPtSum"},
811  {bd::NeutralIsoPtSum, "NeutralIsoPtSum"},
812  {bd::NeutralIsoPtSumWeight, "NeutralIsoPtSumWeight"},
813  {bd::FootprintCorrection, "TauFootprintCorrection"},
814  {bd::PhotonPtSumOutsideSignalCone, "PhotonPtSumOutsideSignalCone"},
815  {bd::PUcorrPtSum, "PUcorrPtSum"}};
816 const std::vector<bd> deep_tau::DeepTauBase::requiredBasicDiscriminators_ = {bd::ChargedIsoPtSum,
817  bd::NeutralIsoPtSum,
818  bd::NeutralIsoPtSumWeight,
819  bd::PhotonPtSumOutsideSignalCone,
820  bd::PUcorrPtSum};
821 const std::vector<bd> deep_tau::DeepTauBase::requiredBasicDiscriminatorsdR03_ = {bd::ChargedIsoPtSum,
822  bd::NeutralIsoPtSum,
823  bd::NeutralIsoPtSumWeight,
824  bd::PhotonPtSumOutsideSignalCone,
825  bd::FootprintCorrection};
826 
828 public:
829  static constexpr float default_value = -999.;
830 
831  static const OutputCollection& GetOutputs() {
832  static constexpr size_t e_index = 0, mu_index = 1, tau_index = 2, jet_index = 3;
833  static const OutputCollection outputs_ = {
834  {"VSe", Output({tau_index}, {e_index, tau_index})},
835  {"VSmu", Output({tau_index}, {mu_index, tau_index})},
836  {"VSjet", Output({tau_index}, {jet_index, tau_index})},
837  };
838  return outputs_;
839  }
840 
841  const std::map<BasicDiscriminator, size_t> matchDiscriminatorIndices(
842  edm::Event& event,
843  edm::EDGetTokenT<reco::TauDiscriminatorContainer> discriminatorContainerToken,
844  std::vector<BasicDiscriminator> requiredDiscr) {
845  std::map<std::string, size_t> discrIndexMapStr;
846  auto const aHandle = event.getHandle(discriminatorContainerToken);
847  auto const aProv = aHandle.provenance();
848  if (aProv == nullptr)
849  aHandle.whyFailed()->raise();
850  const auto& psetsFromProvenance = edm::parameterSet(aProv->stable(), event.processHistory());
851  auto const idlist = psetsFromProvenance.getParameter<std::vector<edm::ParameterSet>>("IDdefinitions");
852  for (size_t j = 0; j < idlist.size(); ++j) {
853  std::string idname = idlist[j].getParameter<std::string>("IDname");
854  if (discrIndexMapStr.count(idname)) {
855  throw cms::Exception("DeepTauId")
856  << "basic discriminator " << idname << " appears more than once in the input.";
857  }
858  discrIndexMapStr[idname] = j;
859  }
860 
861  //translate to a map of <BasicDiscriminator, index> and check if all discriminators are present
862  std::map<BasicDiscriminator, size_t> discrIndexMap;
863  for (size_t i = 0; i < requiredDiscr.size(); i++) {
864  if (discrIndexMapStr.find(stringFromDiscriminator_.at(requiredDiscr[i])) == discrIndexMapStr.end())
865  throw cms::Exception("DeepTauId") << "Basic Discriminator " << stringFromDiscriminator_.at(requiredDiscr[i])
866  << " was not provided in the config file.";
867  else
868  discrIndexMap[requiredDiscr[i]] = discrIndexMapStr[stringFromDiscriminator_.at(requiredDiscr[i])];
869  }
870  return discrIndexMap;
871  }
872 
875  desc.add<edm::InputTag>("electrons", edm::InputTag("slimmedElectrons"));
876  desc.add<edm::InputTag>("muons", edm::InputTag("slimmedMuons"));
877  desc.add<edm::InputTag>("taus", edm::InputTag("slimmedTaus"));
878  desc.add<edm::InputTag>("pfcands", edm::InputTag("packedPFCandidates"));
879  desc.add<edm::InputTag>("vertices", edm::InputTag("offlineSlimmedPrimaryVertices"));
880  desc.add<edm::InputTag>("rho", edm::InputTag("fixedGridRhoAll"));
881  desc.add<std::vector<std::string>>("graph_file",
882  {"RecoTauTag/TrainingFiles/data/DeepTauId/deepTau_2017v2p6_e6.pb"});
883  desc.add<bool>("mem_mapped", false);
884  desc.add<unsigned>("version", 2);
885  desc.add<unsigned>("sub_version", 1);
886  desc.add<int>("debug_level", 0);
887  desc.add<bool>("disable_dxy_pca", false);
888  desc.add<bool>("disable_hcalFraction_workaround", false);
889  desc.add<bool>("disable_CellIndex_workaround", false);
890  desc.add<bool>("save_inputs", false);
891  desc.add<bool>("is_online", false);
892 
893  desc.add<std::vector<std::string>>("VSeWP", {"-1."});
894  desc.add<std::vector<std::string>>("VSmuWP", {"-1."});
895  desc.add<std::vector<std::string>>("VSjetWP", {"-1."});
896 
897  desc.addUntracked<edm::InputTag>("basicTauDiscriminators", edm::InputTag("basicTauDiscriminators"));
898  desc.addUntracked<edm::InputTag>("basicTauDiscriminatorsdR03", edm::InputTag("basicTauDiscriminatorsdR03"));
899  desc.add<edm::InputTag>("pfTauTransverseImpactParameters", edm::InputTag("hpsPFTauTransverseImpactParameters"));
900 
901  {
902  edm::ParameterSetDescription pset_Prediscriminants;
903  pset_Prediscriminants.add<std::string>("BooleanOperator", "and");
904  {
906  psd1.add<double>("cut");
907  psd1.add<edm::InputTag>("Producer");
908  pset_Prediscriminants.addOptional<edm::ParameterSetDescription>("decayMode", psd1);
909  }
910  desc.add<edm::ParameterSetDescription>("Prediscriminants", pset_Prediscriminants);
911  }
912 
913  descriptions.add("DeepTau", desc);
914  }
915 
916 public:
919  electrons_token_(consumes<std::vector<pat::Electron>>(cfg.getParameter<edm::InputTag>("electrons"))),
920  muons_token_(consumes<std::vector<pat::Muon>>(cfg.getParameter<edm::InputTag>("muons"))),
921  rho_token_(consumes<double>(cfg.getParameter<edm::InputTag>("rho"))),
923  cfg.getUntrackedParameter<edm::InputTag>("basicTauDiscriminators"))),
925  cfg.getUntrackedParameter<edm::InputTag>("basicTauDiscriminatorsdR03"))),
927  consumes<edm::AssociationVector<reco::PFTauRefProd, std::vector<reco::PFTauTransverseImpactParameterRef>>>(
928  cfg.getParameter<edm::InputTag>("pfTauTransverseImpactParameters"))),
929  version_(cfg.getParameter<unsigned>("version")),
930  sub_version_(cfg.getParameter<unsigned>("sub_version")),
931  debug_level(cfg.getParameter<int>("debug_level")),
932  disable_dxy_pca_(cfg.getParameter<bool>("disable_dxy_pca")),
933  disable_hcalFraction_workaround_(cfg.getParameter<bool>("disable_hcalFraction_workaround")),
934  disable_CellIndex_workaround_(cfg.getParameter<bool>("disable_CellIndex_workaround")),
935  save_inputs_(cfg.getParameter<bool>("save_inputs")),
936  json_file_(nullptr),
937  file_counter_(0) {
938  if (version_ == 2) {
939  using namespace dnn_inputs_v2;
940  namespace sc = deep_tau::Scaling;
941  tauInputs_indices_.resize(TauBlockInputs::NumberOfInputs);
942  std::iota(std::begin(tauInputs_indices_), std::end(tauInputs_indices_), 0);
943 
944  if (sub_version_ == 1) {
945  tauBlockTensor_ = std::make_unique<tensorflow::Tensor>(
946  tensorflow::DT_FLOAT, tensorflow::TensorShape{1, TauBlockInputs::NumberOfInputs});
948  } else if (sub_version_ == 5) {
949  std::sort(TauBlockInputs::varsToDrop.begin(), TauBlockInputs::varsToDrop.end());
950  for (auto v : TauBlockInputs::varsToDrop) {
951  tauInputs_indices_.at(v) = -1; // set index to -1
952  for (std::size_t i = v + 1; i < TauBlockInputs::NumberOfInputs; ++i)
953  tauInputs_indices_.at(i) -= 1; // shift all the following indices by 1
954  }
955  tauBlockTensor_ = std::make_unique<tensorflow::Tensor>(
956  tensorflow::DT_FLOAT,
957  tensorflow::TensorShape{1,
958  static_cast<int>(TauBlockInputs::NumberOfInputs) -
959  static_cast<int>(TauBlockInputs::varsToDrop.size())});
961  } else
962  throw cms::Exception("DeepTauId") << "subversion " << sub_version_ << " is not supported.";
963 
964  std::map<std::vector<bool>, std::vector<sc::FeatureT>> GridFeatureTypes_map = {
965  {{false}, {sc::FeatureT::TauFlat, sc::FeatureT::GridGlobal}}, // feature types without inner/outer grid split
966  {{false, true},
967  {sc::FeatureT::PfCand_electron,
968  sc::FeatureT::PfCand_muon, // feature types with inner/outer grid split
969  sc::FeatureT::PfCand_chHad,
970  sc::FeatureT::PfCand_nHad,
971  sc::FeatureT::PfCand_gamma,
974 
975  // check that sizes of mean/std/lim_min/lim_max vectors are equal between each other
976  for (const auto& p : GridFeatureTypes_map) {
977  for (auto is_inner : p.first) {
978  for (auto featureType : p.second) {
979  const sc::ScalingParams& sp = scalingParamsMap_->at(std::make_pair(featureType, is_inner));
980  if (!(sp.mean_.size() == sp.std_.size() && sp.mean_.size() == sp.lim_min_.size() &&
981  sp.mean_.size() == sp.lim_max_.size()))
982  throw cms::Exception("DeepTauId") << "sizes of scaling parameter vectors do not match between each other";
983  }
984  }
985  }
986 
987  for (size_t n = 0; n < 2; ++n) {
988  const bool is_inner = n == 0;
989  const auto n_cells = is_inner ? number_of_inner_cell : number_of_outer_cell;
990  eGammaTensor_[is_inner] = std::make_unique<tensorflow::Tensor>(
991  tensorflow::DT_FLOAT, tensorflow::TensorShape{1, 1, 1, EgammaBlockInputs::NumberOfInputs});
992  muonTensor_[is_inner] = std::make_unique<tensorflow::Tensor>(
993  tensorflow::DT_FLOAT, tensorflow::TensorShape{1, 1, 1, MuonBlockInputs::NumberOfInputs});
994  hadronsTensor_[is_inner] = std::make_unique<tensorflow::Tensor>(
995  tensorflow::DT_FLOAT, tensorflow::TensorShape{1, 1, 1, HadronBlockInputs::NumberOfInputs});
996  convTensor_[is_inner] = std::make_unique<tensorflow::Tensor>(
997  tensorflow::DT_FLOAT, tensorflow::TensorShape{1, n_cells, n_cells, number_of_conv_features});
998  zeroOutputTensor_[is_inner] = std::make_unique<tensorflow::Tensor>(
999  tensorflow::DT_FLOAT, tensorflow::TensorShape{1, 1, 1, number_of_conv_features});
1000 
1001  eGammaTensor_[is_inner]->flat<float>().setZero();
1002  muonTensor_[is_inner]->flat<float>().setZero();
1003  hadronsTensor_[is_inner]->flat<float>().setZero();
1004 
1005  setCellConvFeatures(*zeroOutputTensor_[is_inner], getPartialPredictions(is_inner), 0, 0, 0);
1006  }
1007  } else {
1008  throw cms::Exception("DeepTauId") << "version " << version_ << " is not supported.";
1009  }
1010  }
1011 
1012  static std::unique_ptr<deep_tau::DeepTauCache> initializeGlobalCache(const edm::ParameterSet& cfg) {
1013  return DeepTauBase::initializeGlobalCache(cfg);
1014  }
1015 
1016  static void globalEndJob(const deep_tau::DeepTauCache* cache_) { return DeepTauBase::globalEndJob(cache_); }
1017 
1018 private:
1019  static constexpr float pi = M_PI;
1020 
1021  template <typename T>
1022  static float getValue(T value) {
1023  return std::isnormal(value) ? static_cast<float>(value) : 0.f;
1024  }
1025 
1026  template <typename T>
1027  static float getValueLinear(T value, float min_value, float max_value, bool positive) {
1028  const float fixed_value = getValue(value);
1029  const float clamped_value = std::clamp(fixed_value, min_value, max_value);
1030  float transformed_value = (clamped_value - min_value) / (max_value - min_value);
1031  if (!positive)
1032  transformed_value = transformed_value * 2 - 1;
1033  return transformed_value;
1034  }
1035 
1036  template <typename T>
1037  static float getValueNorm(T value, float mean, float sigma, float n_sigmas_max = 5) {
1038  const float fixed_value = getValue(value);
1039  const float norm_value = (fixed_value - mean) / sigma;
1040  return std::clamp(norm_value, -n_sigmas_max, n_sigmas_max);
1041  }
1042 
1043  static bool isAbove(double value, double min) { return std::isnormal(value) && value > min; }
1044 
1046  float& cc_ele_energy,
1047  float& cc_gamma_energy,
1048  int& cc_n_gamma) {
1049  cc_ele_energy = cc_gamma_energy = 0;
1050  cc_n_gamma = 0;
1051  const auto& superCluster = ele.superCluster();
1052  if (superCluster.isNonnull() && superCluster.isAvailable() && superCluster->clusters().isNonnull() &&
1053  superCluster->clusters().isAvailable()) {
1054  for (auto iter = superCluster->clustersBegin(); iter != superCluster->clustersEnd(); ++iter) {
1055  const float energy = static_cast<float>((*iter)->energy());
1056  if (iter == superCluster->clustersBegin())
1057  cc_ele_energy += energy;
1058  else {
1059  cc_gamma_energy += energy;
1060  ++cc_n_gamma;
1061  }
1062  }
1063  return true;
1064  } else
1065  return false;
1066  }
1067 
1068  inline void checkInputs(const tensorflow::Tensor& inputs,
1069  const std::string& block_name,
1070  int n_inputs,
1071  const CellGrid* grid = nullptr) const {
1072  if (debug_level >= 1) {
1073  std::cout << "<checkInputs>: block_name = " << block_name << std::endl;
1074  if (block_name == "input_tau") {
1075  for (int input_index = 0; input_index < n_inputs; ++input_index) {
1076  float input = inputs.matrix<float>()(0, input_index);
1077  if (edm::isNotFinite(input)) {
1078  throw cms::Exception("DeepTauId")
1079  << "in the " << block_name
1080  << ", input is not finite, i.e. infinite or NaN, for input_index = " << input_index;
1081  }
1082  if (debug_level >= 2) {
1083  std::cout << block_name << "[var = " << input_index << "] = " << std::setprecision(5) << std::fixed << input
1084  << std::endl;
1085  }
1086  }
1087  } else {
1088  assert(grid);
1089  int n_eta, n_phi;
1090  if (block_name.find("input_inner") != std::string::npos) {
1091  n_eta = 5;
1092  n_phi = 5;
1093  } else if (block_name.find("input_outer") != std::string::npos) {
1094  n_eta = 10;
1095  n_phi = 10;
1096  } else
1097  assert(0);
1098  int eta_phi_index = 0;
1099  for (int eta = -n_eta; eta <= n_eta; ++eta) {
1100  for (int phi = -n_phi; phi <= n_phi; ++phi) {
1101  const CellIndex cell_index{eta, phi};
1102  const auto cell_iter = grid->find(cell_index);
1103  if (cell_iter != grid->end()) {
1104  for (int input_index = 0; input_index < n_inputs; ++input_index) {
1105  float input = inputs.tensor<float, 4>()(eta_phi_index, 0, 0, input_index);
1106  if (edm::isNotFinite(input)) {
1107  throw cms::Exception("DeepTauId")
1108  << "in the " << block_name << ", input is not finite, i.e. infinite or NaN, for eta = " << eta
1109  << ", phi = " << phi << ", input_index = " << input_index;
1110  }
1111  if (debug_level >= 2) {
1112  std::cout << block_name << "[eta = " << eta << "][phi = " << phi << "][var = " << input_index
1113  << "] = " << std::setprecision(5) << std::fixed << input << std::endl;
1114  }
1115  }
1116  eta_phi_index += 1;
1117  }
1118  }
1119  }
1120  }
1121  }
1122  }
1123 
1124  inline void saveInputs(const tensorflow::Tensor& inputs,
1125  const std::string& block_name,
1126  int n_inputs,
1127  const CellGrid* grid = nullptr) {
1128  if (debug_level >= 1) {
1129  std::cout << "<saveInputs>: block_name = " << block_name << std::endl;
1130  }
1131  if (!is_first_block_)
1132  (*json_file_) << ", ";
1133  (*json_file_) << "\"" << block_name << "\": [";
1134  if (block_name == "input_tau") {
1135  for (int input_index = 0; input_index < n_inputs; ++input_index) {
1136  float input = inputs.matrix<float>()(0, input_index);
1137  if (input_index != 0)
1138  (*json_file_) << ", ";
1139  (*json_file_) << input;
1140  }
1141  } else {
1142  assert(grid);
1143  int n_eta, n_phi;
1144  if (block_name.find("input_inner") != std::string::npos) {
1145  n_eta = 5;
1146  n_phi = 5;
1147  } else if (block_name.find("input_outer") != std::string::npos) {
1148  n_eta = 10;
1149  n_phi = 10;
1150  } else
1151  assert(0);
1152  int eta_phi_index = 0;
1153  for (int eta = -n_eta; eta <= n_eta; ++eta) {
1154  if (eta != -n_eta)
1155  (*json_file_) << ", ";
1156  (*json_file_) << "[";
1157  for (int phi = -n_phi; phi <= n_phi; ++phi) {
1158  if (phi != -n_phi)
1159  (*json_file_) << ", ";
1160  (*json_file_) << "[";
1161  const CellIndex cell_index{eta, phi};
1162  const auto cell_iter = grid->find(cell_index);
1163  for (int input_index = 0; input_index < n_inputs; ++input_index) {
1164  float input = 0.;
1165  if (cell_iter != grid->end()) {
1166  input = inputs.tensor<float, 4>()(eta_phi_index, 0, 0, input_index);
1167  }
1168  if (input_index != 0)
1169  (*json_file_) << ", ";
1170  (*json_file_) << input;
1171  }
1172  if (cell_iter != grid->end()) {
1173  eta_phi_index += 1;
1174  }
1175  (*json_file_) << "]";
1176  }
1177  (*json_file_) << "]";
1178  }
1179  }
1180  (*json_file_) << "]";
1181  is_first_block_ = false;
1182  }
1183 
1184 private:
1186  // Empty dummy vectors
1187  const std::vector<pat::Electron> electron_collection_default;
1188  const std::vector<pat::Muon> muon_collection_default;
1189  const reco::TauDiscriminatorContainer basicTauDiscriminators_default;
1190  const reco::TauDiscriminatorContainer basicTauDiscriminatorsdR03_default;
1192  pfTauTransverseImpactParameters_default;
1193 
1194  const std::vector<pat::Electron>* electron_collection;
1195  const std::vector<pat::Muon>* muon_collection;
1200 
1201  if (!is_online_) {
1202  electron_collection = &event.get(electrons_token_);
1203  muon_collection = &event.get(muons_token_);
1204  pfTauTransverseImpactParameters = &pfTauTransverseImpactParameters_default;
1205  basicTauDiscriminators = &basicTauDiscriminators_default;
1206  basicTauDiscriminatorsdR03 = &basicTauDiscriminatorsdR03_default;
1207  } else {
1208  electron_collection = &electron_collection_default;
1209  muon_collection = &muon_collection_default;
1213 
1214  // Get indices for discriminators
1215  if (!discrIndicesMapped_) {
1220  discrIndicesMapped_ = true;
1221  }
1222  }
1223 
1224  TauFunc tauIDs = {basicTauDiscriminators,
1229 
1231  event.getByToken(pfcandToken_, pfCands);
1232 
1234  event.getByToken(vtxToken_, vertices);
1235 
1237  event.getByToken(rho_token_, rho);
1238 
1239  tensorflow::Tensor predictions(tensorflow::DT_FLOAT, {static_cast<int>(taus->size()), deep_tau::NumberOfOutputs});
1240 
1241  for (size_t tau_index = 0; tau_index < taus->size(); ++tau_index) {
1242  const edm::RefToBase<reco::BaseTau> tauRef = taus->refAt(tau_index);
1243 
1244  std::vector<tensorflow::Tensor> pred_vector;
1245 
1246  bool passesPrediscriminants;
1247  if (is_online_) {
1248  passesPrediscriminants = tauIDs.passPrediscriminants<std::vector<TauDiscInfo<reco::PFTauDiscriminator>>>(
1250  } else {
1251  passesPrediscriminants = tauIDs.passPrediscriminants<std::vector<TauDiscInfo<pat::PATTauDiscriminator>>>(
1253  }
1254 
1255  if (passesPrediscriminants) {
1256  if (version_ == 2) {
1257  if (is_online_) {
1258  getPredictionsV2<reco::PFCandidate, reco::PFTau>(taus->at(tau_index),
1259  tau_index,
1260  tauRef,
1261  electron_collection,
1262  muon_collection,
1263  *pfCands,
1264  vertices->at(0),
1265  *rho,
1266  pred_vector,
1267  tauIDs);
1268  } else
1269  getPredictionsV2<pat::PackedCandidate, pat::Tau>(taus->at(tau_index),
1270  tau_index,
1271  tauRef,
1272  electron_collection,
1273  muon_collection,
1274  *pfCands,
1275  vertices->at(0),
1276  *rho,
1277  pred_vector,
1278  tauIDs);
1279  } else {
1280  throw cms::Exception("DeepTauId") << "version " << version_ << " is not supported.";
1281  }
1282 
1283  for (int k = 0; k < deep_tau::NumberOfOutputs; ++k) {
1284  const float pred = pred_vector[0].flat<float>()(k);
1285  if (!(pred >= 0 && pred <= 1))
1286  throw cms::Exception("DeepTauId")
1287  << "invalid prediction = " << pred << " for tau_index = " << tau_index << ", pred_index = " << k;
1288  predictions.matrix<float>()(tau_index, k) = pred;
1289  }
1290  } else {
1291  // This else statement was added as a part of the DeepTau@HLT development. It does not affect the current state
1292  // of offline DeepTauId code as there the preselection is not used (it was added in the DeepTau@HLT). It returns
1293  // default values for deepTau score if the preselection failed. Before this statement the values given for this tau
1294  // were random. k == 2 corresponds to the tau score and all other k values to e, mu and jets. By defining in this way
1295  // the final score is -1.
1296  for (int k = 0; k < deep_tau::NumberOfOutputs; ++k) {
1297  predictions.matrix<float>()(tau_index, k) = (k == 2) ? -1.f : 2.f;
1298  }
1299  }
1300  }
1301  return predictions;
1302  }
1303 
1304  template <typename CandidateCastType, typename TauCastType>
1306  const size_t tau_index,
1307  const edm::RefToBase<reco::BaseTau> tau_ref,
1308  const std::vector<pat::Electron>* electrons,
1309  const std::vector<pat::Muon>* muons,
1310  const edm::View<reco::Candidate>& pfCands,
1311  const reco::Vertex& pv,
1312  double rho,
1313  std::vector<tensorflow::Tensor>& pred_vector,
1314  TauFunc tau_funcs) {
1315  using namespace dnn_inputs_v2;
1316  if (debug_level >= 2) {
1317  std::cout << "<DeepTauId::getPredictionsV2 (moduleLabel = " << moduleDescription().moduleLabel()
1318  << ")>:" << std::endl;
1319  std::cout << " tau: pT = " << tau.pt() << ", eta = " << tau.eta() << ", phi = " << tau.phi() << std::endl;
1320  }
1321  CellGrid inner_grid(number_of_inner_cell, number_of_inner_cell, 0.02, 0.02, disable_CellIndex_workaround_);
1322  CellGrid outer_grid(number_of_outer_cell, number_of_outer_cell, 0.05, 0.05, disable_CellIndex_workaround_);
1323  fillGrids(dynamic_cast<const TauCastType&>(tau), *electrons, inner_grid, outer_grid);
1324  fillGrids(dynamic_cast<const TauCastType&>(tau), *muons, inner_grid, outer_grid);
1325  fillGrids(dynamic_cast<const TauCastType&>(tau), pfCands, inner_grid, outer_grid);
1326 
1327  createTauBlockInputs<CandidateCastType>(
1328  dynamic_cast<const TauCastType&>(tau), tau_index, tau_ref, pv, rho, tau_funcs);
1329  checkInputs(*tauBlockTensor_, "input_tau", static_cast<int>(tauBlockTensor_->shape().dim_size(1)));
1330  createConvFeatures<CandidateCastType>(dynamic_cast<const TauCastType&>(tau),
1331  tau_index,
1332  tau_ref,
1333  pv,
1334  rho,
1335  electrons,
1336  muons,
1337  pfCands,
1338  inner_grid,
1339  tau_funcs,
1340  true);
1341  checkInputs(*eGammaTensor_[true], "input_inner_egamma", EgammaBlockInputs::NumberOfInputs, &inner_grid);
1342  checkInputs(*muonTensor_[true], "input_inner_muon", MuonBlockInputs::NumberOfInputs, &inner_grid);
1343  checkInputs(*hadronsTensor_[true], "input_inner_hadrons", HadronBlockInputs::NumberOfInputs, &inner_grid);
1344  createConvFeatures<CandidateCastType>(dynamic_cast<const TauCastType&>(tau),
1345  tau_index,
1346  tau_ref,
1347  pv,
1348  rho,
1349  electrons,
1350  muons,
1351  pfCands,
1352  outer_grid,
1353  tau_funcs,
1354  false);
1355  checkInputs(*eGammaTensor_[false], "input_outer_egamma", EgammaBlockInputs::NumberOfInputs, &outer_grid);
1356  checkInputs(*muonTensor_[false], "input_outer_muon", MuonBlockInputs::NumberOfInputs, &outer_grid);
1357  checkInputs(*hadronsTensor_[false], "input_outer_hadrons", HadronBlockInputs::NumberOfInputs, &outer_grid);
1358 
1359  if (save_inputs_) {
1360  std::string json_file_name = "DeepTauId_" + std::to_string(file_counter_) + ".json";
1361  json_file_ = new std::ofstream(json_file_name.data());
1362  is_first_block_ = true;
1363  (*json_file_) << "{";
1364  saveInputs(*tauBlockTensor_, "input_tau", static_cast<int>(tauBlockTensor_->shape().dim_size(1)));
1365  saveInputs(
1366  *eGammaTensor_[true], "input_inner_egamma", dnn_inputs_v2::EgammaBlockInputs::NumberOfInputs, &inner_grid);
1367  saveInputs(*muonTensor_[true], "input_inner_muon", dnn_inputs_v2::MuonBlockInputs::NumberOfInputs, &inner_grid);
1368  saveInputs(
1369  *hadronsTensor_[true], "input_inner_hadrons", dnn_inputs_v2::HadronBlockInputs::NumberOfInputs, &inner_grid);
1370  saveInputs(
1371  *eGammaTensor_[false], "input_outer_egamma", dnn_inputs_v2::EgammaBlockInputs::NumberOfInputs, &outer_grid);
1372  saveInputs(*muonTensor_[false], "input_outer_muon", dnn_inputs_v2::MuonBlockInputs::NumberOfInputs, &outer_grid);
1373  saveInputs(
1374  *hadronsTensor_[false], "input_outer_hadrons", dnn_inputs_v2::HadronBlockInputs::NumberOfInputs, &outer_grid);
1375  (*json_file_) << "}";
1376  delete json_file_;
1377  ++file_counter_;
1378  }
1379 
1380  tensorflow::run(&(cache_->getSession("core")),
1381  {{"input_tau", *tauBlockTensor_},
1382  {"input_inner", *convTensor_.at(true)},
1383  {"input_outer", *convTensor_.at(false)}},
1384  {"main_output/Softmax"},
1385  &pred_vector);
1386  if (debug_level >= 1) {
1387  std::cout << "output = { ";
1388  for (int idx = 0; idx < deep_tau::NumberOfOutputs; ++idx) {
1389  if (idx > 0)
1390  std::cout << ", ";
1392  if (idx == 0)
1393  label = "e";
1394  else if (idx == 1)
1395  label = "mu";
1396  else if (idx == 2)
1397  label = "tau";
1398  else if (idx == 3)
1399  label = "jet";
1400  else
1401  assert(0);
1402  std::cout << label << " = " << pred_vector[0].flat<float>()(idx);
1403  }
1404  std::cout << " }" << std::endl;
1405  }
1406  }
1407 
1408  template <typename Collection, typename TauCastType>
1409  void fillGrids(const TauCastType& tau, const Collection& objects, CellGrid& inner_grid, CellGrid& outer_grid) {
1410  static constexpr double outer_dR2 = 0.25; //0.5^2
1411  const double inner_radius = getInnerSignalConeRadius(tau.polarP4().pt());
1412  const double inner_dR2 = std::pow(inner_radius, 2);
1413 
1414  const auto addObject = [&](size_t n, double deta, double dphi, CellGrid& grid) {
1415  const auto& obj = objects.at(n);
1416  const CellObjectType obj_type = GetCellObjectType(obj);
1417  if (obj_type == CellObjectType::Other)
1418  return;
1419  CellIndex cell_index;
1420  if (grid.tryGetCellIndex(deta, dphi, cell_index)) {
1421  Cell& cell = grid[cell_index];
1422  auto iter = cell.find(obj_type);
1423  if (iter != cell.end()) {
1424  const auto& prev_obj = objects.at(iter->second);
1425  if (obj.polarP4().pt() > prev_obj.polarP4().pt())
1426  iter->second = n;
1427  } else {
1428  cell[obj_type] = n;
1429  }
1430  }
1431  };
1432 
1433  for (size_t n = 0; n < objects.size(); ++n) {
1434  const auto& obj = objects.at(n);
1435  const double deta = obj.polarP4().eta() - tau.polarP4().eta();
1436  const double dphi = reco::deltaPhi(obj.polarP4().phi(), tau.polarP4().phi());
1437  const double dR2 = std::pow(deta, 2) + std::pow(dphi, 2);
1438  if (dR2 < inner_dR2)
1439  addObject(n, deta, dphi, inner_grid);
1440  if (dR2 < outer_dR2)
1441  addObject(n, deta, dphi, outer_grid);
1442  }
1443  }
1444 
1445  tensorflow::Tensor getPartialPredictions(bool is_inner) {
1446  std::vector<tensorflow::Tensor> pred_vector;
1447  if (is_inner) {
1448  tensorflow::run(&(cache_->getSession("inner")),
1449  {
1450  {"input_inner_egamma", *eGammaTensor_.at(is_inner)},
1451  {"input_inner_muon", *muonTensor_.at(is_inner)},
1452  {"input_inner_hadrons", *hadronsTensor_.at(is_inner)},
1453  },
1454  {"inner_all_dropout_4/Identity"},
1455  &pred_vector);
1456  } else {
1457  tensorflow::run(&(cache_->getSession("outer")),
1458  {
1459  {"input_outer_egamma", *eGammaTensor_.at(is_inner)},
1460  {"input_outer_muon", *muonTensor_.at(is_inner)},
1461  {"input_outer_hadrons", *hadronsTensor_.at(is_inner)},
1462  },
1463  {"outer_all_dropout_4/Identity"},
1464  &pred_vector);
1465  }
1466  return pred_vector.at(0);
1467  }
1468 
1469  template <typename CandidateCastType, typename TauCastType>
1470  void createConvFeatures(const TauCastType& tau,
1471  const size_t tau_index,
1472  const edm::RefToBase<reco::BaseTau> tau_ref,
1473  const reco::Vertex& pv,
1474  double rho,
1475  const std::vector<pat::Electron>* electrons,
1476  const std::vector<pat::Muon>* muons,
1477  const edm::View<reco::Candidate>& pfCands,
1478  const CellGrid& grid,
1479  TauFunc tau_funcs,
1480  bool is_inner) {
1481  if (debug_level >= 2) {
1482  std::cout << "<DeepTauId::createConvFeatures (is_inner = " << is_inner << ")>:" << std::endl;
1483  }
1484  tensorflow::Tensor& convTensor = *convTensor_.at(is_inner);
1485  eGammaTensor_[is_inner] = std::make_unique<tensorflow::Tensor>(
1486  tensorflow::DT_FLOAT,
1487  tensorflow::TensorShape{
1488  (long long int)grid.num_valid_cells(), 1, 1, dnn_inputs_v2::EgammaBlockInputs::NumberOfInputs});
1489  muonTensor_[is_inner] = std::make_unique<tensorflow::Tensor>(
1490  tensorflow::DT_FLOAT,
1491  tensorflow::TensorShape{
1492  (long long int)grid.num_valid_cells(), 1, 1, dnn_inputs_v2::MuonBlockInputs::NumberOfInputs});
1493  hadronsTensor_[is_inner] = std::make_unique<tensorflow::Tensor>(
1494  tensorflow::DT_FLOAT,
1495  tensorflow::TensorShape{
1496  (long long int)grid.num_valid_cells(), 1, 1, dnn_inputs_v2::HadronBlockInputs::NumberOfInputs});
1497 
1498  eGammaTensor_[is_inner]->flat<float>().setZero();
1499  muonTensor_[is_inner]->flat<float>().setZero();
1500  hadronsTensor_[is_inner]->flat<float>().setZero();
1501 
1502  unsigned idx = 0;
1503  for (int eta = -grid.maxEtaIndex(); eta <= grid.maxEtaIndex(); ++eta) {
1504  for (int phi = -grid.maxPhiIndex(); phi <= grid.maxPhiIndex(); ++phi) {
1505  if (debug_level >= 2) {
1506  std::cout << "processing ( eta = " << eta << ", phi = " << phi << " )" << std::endl;
1507  }
1508  const CellIndex cell_index{eta, phi};
1509  const auto cell_iter = grid.find(cell_index);
1510  if (cell_iter != grid.end()) {
1511  if (debug_level >= 2) {
1512  std::cout << " creating inputs for ( eta = " << eta << ", phi = " << phi << " ): idx = " << idx
1513  << std::endl;
1514  }
1515  const Cell& cell = cell_iter->second;
1516  createEgammaBlockInputs<CandidateCastType>(
1517  idx, tau, tau_index, tau_ref, pv, rho, electrons, pfCands, cell, tau_funcs, is_inner);
1518  createMuonBlockInputs<CandidateCastType>(
1519  idx, tau, tau_index, tau_ref, pv, rho, muons, pfCands, cell, tau_funcs, is_inner);
1520  createHadronsBlockInputs<CandidateCastType>(
1521  idx, tau, tau_index, tau_ref, pv, rho, pfCands, cell, tau_funcs, is_inner);
1522  idx += 1;
1523  } else {
1524  if (debug_level >= 2) {
1525  std::cout << " skipping creation of inputs, because ( eta = " << eta << ", phi = " << phi
1526  << " ) is not in the grid !!" << std::endl;
1527  }
1528  }
1529  }
1530  }
1531 
1532  const auto predTensor = getPartialPredictions(is_inner);
1533  idx = 0;
1534  for (int eta = -grid.maxEtaIndex(); eta <= grid.maxEtaIndex(); ++eta) {
1535  for (int phi = -grid.maxPhiIndex(); phi <= grid.maxPhiIndex(); ++phi) {
1536  const CellIndex cell_index{eta, phi};
1537  const int eta_index = grid.getEtaTensorIndex(cell_index);
1538  const int phi_index = grid.getPhiTensorIndex(cell_index);
1539 
1540  const auto cell_iter = grid.find(cell_index);
1541  if (cell_iter != grid.end()) {
1542  setCellConvFeatures(convTensor, predTensor, idx, eta_index, phi_index);
1543  idx += 1;
1544  } else {
1545  setCellConvFeatures(convTensor, *zeroOutputTensor_[is_inner], 0, eta_index, phi_index);
1546  }
1547  }
1548  }
1549  }
1550 
1551  void setCellConvFeatures(tensorflow::Tensor& convTensor,
1552  const tensorflow::Tensor& features,
1553  unsigned batch_idx,
1554  int eta_index,
1555  int phi_index) {
1556  for (int n = 0; n < dnn_inputs_v2::number_of_conv_features; ++n) {
1557  convTensor.tensor<float, 4>()(0, eta_index, phi_index, n) = features.tensor<float, 4>()(batch_idx, 0, 0, n);
1558  }
1559  }
1560 
1561  template <typename CandidateCastType, typename TauCastType>
1562  void createTauBlockInputs(const TauCastType& tau,
1563  const size_t& tau_index,
1564  const edm::RefToBase<reco::BaseTau> tau_ref,
1565  const reco::Vertex& pv,
1566  double rho,
1567  TauFunc tau_funcs) {
1568  namespace dnn = dnn_inputs_v2::TauBlockInputs;
1569  namespace sc = deep_tau::Scaling;
1570  sc::FeatureT ft = sc::FeatureT::TauFlat;
1571  const sc::ScalingParams& sp = scalingParamsMap_->at(std::make_pair(ft, false));
1572 
1573  tensorflow::Tensor& inputs = *tauBlockTensor_;
1574  inputs.flat<float>().setZero();
1575 
1576  const auto& get = [&](int var_index) -> float& {
1577  return inputs.matrix<float>()(0, tauInputs_indices_.at(var_index));
1578  };
1579 
1580  auto leadChargedHadrCand = dynamic_cast<const CandidateCastType*>(tau.leadChargedHadrCand().get());
1581 
1582  get(dnn::rho) = sp.scale(rho, tauInputs_indices_[dnn::rho]);
1583  get(dnn::tau_pt) = sp.scale(tau.polarP4().pt(), tauInputs_indices_[dnn::tau_pt]);
1584  get(dnn::tau_eta) = sp.scale(tau.polarP4().eta(), tauInputs_indices_[dnn::tau_eta]);
1585  if (sub_version_ == 1) {
1586  get(dnn::tau_phi) = getValueLinear(tau.polarP4().phi(), -pi, pi, false);
1587  }
1588  get(dnn::tau_mass) = sp.scale(tau.polarP4().mass(), tauInputs_indices_[dnn::tau_mass]);
1589  get(dnn::tau_E_over_pt) = sp.scale(tau.p4().energy() / tau.p4().pt(), tauInputs_indices_[dnn::tau_E_over_pt]);
1590  get(dnn::tau_charge) = sp.scale(tau.charge(), tauInputs_indices_[dnn::tau_charge]);
1591  get(dnn::tau_n_charged_prongs) = sp.scale(tau.decayMode() / 5 + 1, tauInputs_indices_[dnn::tau_n_charged_prongs]);
1592  get(dnn::tau_n_neutral_prongs) = sp.scale(tau.decayMode() % 5, tauInputs_indices_[dnn::tau_n_neutral_prongs]);
1593  get(dnn::chargedIsoPtSum) =
1594  sp.scale(tau_funcs.getChargedIsoPtSum(tau, tau_ref), tauInputs_indices_[dnn::chargedIsoPtSum]);
1595  get(dnn::chargedIsoPtSumdR03_over_dR05) =
1596  sp.scale(tau_funcs.getChargedIsoPtSumdR03(tau, tau_ref) / tau_funcs.getChargedIsoPtSum(tau, tau_ref),
1597  tauInputs_indices_[dnn::chargedIsoPtSumdR03_over_dR05]);
1598  if (sub_version_ == 1)
1599  get(dnn::footprintCorrection) =
1600  sp.scale(tau_funcs.getFootprintCorrectiondR03(tau, tau_ref), tauInputs_indices_[dnn::footprintCorrection]);
1601  else if (sub_version_ == 5)
1602  get(dnn::footprintCorrection) =
1603  sp.scale(tau_funcs.getFootprintCorrection(tau, tau_ref), tauInputs_indices_[dnn::footprintCorrection]);
1604 
1605  get(dnn::neutralIsoPtSum) =
1606  sp.scale(tau_funcs.getNeutralIsoPtSum(tau, tau_ref), tauInputs_indices_[dnn::neutralIsoPtSum]);
1607  get(dnn::neutralIsoPtSumWeight_over_neutralIsoPtSum) =
1608  sp.scale(tau_funcs.getNeutralIsoPtSumWeight(tau, tau_ref) / tau_funcs.getNeutralIsoPtSum(tau, tau_ref),
1609  tauInputs_indices_[dnn::neutralIsoPtSumWeight_over_neutralIsoPtSum]);
1610  get(dnn::neutralIsoPtSumWeightdR03_over_neutralIsoPtSum) =
1611  sp.scale(tau_funcs.getNeutralIsoPtSumdR03Weight(tau, tau_ref) / tau_funcs.getNeutralIsoPtSum(tau, tau_ref),
1612  tauInputs_indices_[dnn::neutralIsoPtSumWeightdR03_over_neutralIsoPtSum]);
1613  get(dnn::neutralIsoPtSumdR03_over_dR05) =
1614  sp.scale(tau_funcs.getNeutralIsoPtSumdR03(tau, tau_ref) / tau_funcs.getNeutralIsoPtSum(tau, tau_ref),
1615  tauInputs_indices_[dnn::neutralIsoPtSumdR03_over_dR05]);
1616  get(dnn::photonPtSumOutsideSignalCone) = sp.scale(tau_funcs.getPhotonPtSumOutsideSignalCone(tau, tau_ref),
1617  tauInputs_indices_[dnn::photonPtSumOutsideSignalCone]);
1618  get(dnn::puCorrPtSum) = sp.scale(tau_funcs.getPuCorrPtSum(tau, tau_ref), tauInputs_indices_[dnn::puCorrPtSum]);
1619  // The global PCA coordinates were used as inputs during the NN training, but it was decided to disable
1620  // them for the inference, because modeling of dxy_PCA in MC poorly describes the data, and x and y coordinates
1621  // in data results outside of the expected 5 std. dev. input validity range. On the other hand,
1622  // these coordinates are strongly era-dependent. Kept as comment to document what NN expects.
1623  if (sub_version_ == 1) {
1624  if (!disable_dxy_pca_) {
1625  auto const pca = tau_funcs.getdxyPCA(tau, tau_index);
1626  get(dnn::tau_dxy_pca_x) = sp.scale(pca.x(), tauInputs_indices_[dnn::tau_dxy_pca_x]);
1627  get(dnn::tau_dxy_pca_y) = sp.scale(pca.y(), tauInputs_indices_[dnn::tau_dxy_pca_y]);
1628  get(dnn::tau_dxy_pca_z) = sp.scale(pca.z(), tauInputs_indices_[dnn::tau_dxy_pca_z]);
1629  } else {
1630  get(dnn::tau_dxy_pca_x) = 0;
1631  get(dnn::tau_dxy_pca_y) = 0;
1632  get(dnn::tau_dxy_pca_z) = 0;
1633  }
1634  }
1635 
1636  const bool tau_dxy_valid =
1637  isAbove(tau_funcs.getdxy(tau, tau_index), -10) && isAbove(tau_funcs.getdxyError(tau, tau_index), 0);
1638  if (tau_dxy_valid) {
1639  get(dnn::tau_dxy_valid) = sp.scale(tau_dxy_valid, tauInputs_indices_[dnn::tau_dxy_valid]);
1640  get(dnn::tau_dxy) = sp.scale(tau_funcs.getdxy(tau, tau_index), tauInputs_indices_[dnn::tau_dxy]);
1641  get(dnn::tau_dxy_sig) =
1642  sp.scale(std::abs(tau_funcs.getdxy(tau, tau_index)) / tau_funcs.getdxyError(tau, tau_index),
1643  tauInputs_indices_[dnn::tau_dxy_sig]);
1644  }
1645  const bool tau_ip3d_valid =
1646  isAbove(tau_funcs.getip3d(tau, tau_index), -10) && isAbove(tau_funcs.getip3dError(tau, tau_index), 0);
1647  if (tau_ip3d_valid) {
1648  get(dnn::tau_ip3d_valid) = sp.scale(tau_ip3d_valid, tauInputs_indices_[dnn::tau_ip3d_valid]);
1649  get(dnn::tau_ip3d) = sp.scale(tau_funcs.getip3d(tau, tau_index), tauInputs_indices_[dnn::tau_ip3d]);
1650  get(dnn::tau_ip3d_sig) =
1651  sp.scale(std::abs(tau_funcs.getip3d(tau, tau_index)) / tau_funcs.getip3dError(tau, tau_index),
1652  tauInputs_indices_[dnn::tau_ip3d_sig]);
1653  }
1654  if (leadChargedHadrCand) {
1655  const bool hasTrackDetails = candFunc::getHasTrackDetails(*leadChargedHadrCand);
1656  const float tau_dz = (is_online_ && !hasTrackDetails) ? 0 : candFunc::getTauDz(*leadChargedHadrCand);
1657  get(dnn::tau_dz) = sp.scale(tau_dz, tauInputs_indices_[dnn::tau_dz]);
1658  get(dnn::tau_dz_sig_valid) =
1659  sp.scale(candFunc::getTauDZSigValid(*leadChargedHadrCand), tauInputs_indices_[dnn::tau_dz_sig_valid]);
1660  const double dzError = hasTrackDetails ? leadChargedHadrCand->dzError() : -999.;
1661  get(dnn::tau_dz_sig) = sp.scale(std::abs(tau_dz) / dzError, tauInputs_indices_[dnn::tau_dz_sig]);
1662  }
1663  get(dnn::tau_flightLength_x) =
1664  sp.scale(tau_funcs.getFlightLength(tau, tau_index).x(), tauInputs_indices_[dnn::tau_flightLength_x]);
1665  get(dnn::tau_flightLength_y) =
1666  sp.scale(tau_funcs.getFlightLength(tau, tau_index).y(), tauInputs_indices_[dnn::tau_flightLength_y]);
1667  get(dnn::tau_flightLength_z) =
1668  sp.scale(tau_funcs.getFlightLength(tau, tau_index).z(), tauInputs_indices_[dnn::tau_flightLength_z]);
1669  if (sub_version_ == 1)
1670  get(dnn::tau_flightLength_sig) = 0.55756444; //This value is set due to a bug in the training
1671  else if (sub_version_ == 5)
1672  get(dnn::tau_flightLength_sig) =
1673  sp.scale(tau_funcs.getFlightLengthSig(tau, tau_index), tauInputs_indices_[dnn::tau_flightLength_sig]);
1674 
1675  get(dnn::tau_pt_weighted_deta_strip) = sp.scale(reco::tau::pt_weighted_deta_strip(tau, tau.decayMode()),
1676  tauInputs_indices_[dnn::tau_pt_weighted_deta_strip]);
1677 
1678  get(dnn::tau_pt_weighted_dphi_strip) = sp.scale(reco::tau::pt_weighted_dphi_strip(tau, tau.decayMode()),
1679  tauInputs_indices_[dnn::tau_pt_weighted_dphi_strip]);
1680  get(dnn::tau_pt_weighted_dr_signal) = sp.scale(reco::tau::pt_weighted_dr_signal(tau, tau.decayMode()),
1681  tauInputs_indices_[dnn::tau_pt_weighted_dr_signal]);
1682  get(dnn::tau_pt_weighted_dr_iso) =
1683  sp.scale(reco::tau::pt_weighted_dr_iso(tau, tau.decayMode()), tauInputs_indices_[dnn::tau_pt_weighted_dr_iso]);
1684  get(dnn::tau_leadingTrackNormChi2) =
1685  sp.scale(tau_funcs.getLeadingTrackNormChi2(tau), tauInputs_indices_[dnn::tau_leadingTrackNormChi2]);
1686  const auto eratio = reco::tau::eratio(tau);
1687  const bool tau_e_ratio_valid = std::isnormal(eratio) && eratio > 0.f;
1688  get(dnn::tau_e_ratio_valid) = sp.scale(tau_e_ratio_valid, tauInputs_indices_[dnn::tau_e_ratio_valid]);
1689  get(dnn::tau_e_ratio) = tau_e_ratio_valid ? sp.scale(eratio, tauInputs_indices_[dnn::tau_e_ratio]) : 0.f;
1690  const double gj_angle_diff = calculateGottfriedJacksonAngleDifference(tau, tau_index, tau_funcs);
1691  const bool tau_gj_angle_diff_valid = (std::isnormal(gj_angle_diff) || gj_angle_diff == 0) && gj_angle_diff >= 0;
1692  get(dnn::tau_gj_angle_diff_valid) =
1693  sp.scale(tau_gj_angle_diff_valid, tauInputs_indices_[dnn::tau_gj_angle_diff_valid]);
1694  get(dnn::tau_gj_angle_diff) =
1695  tau_gj_angle_diff_valid ? sp.scale(gj_angle_diff, tauInputs_indices_[dnn::tau_gj_angle_diff]) : 0;
1696  get(dnn::tau_n_photons) = sp.scale(reco::tau::n_photons_total(tau), tauInputs_indices_[dnn::tau_n_photons]);
1697  get(dnn::tau_emFraction) = sp.scale(tau_funcs.getEmFraction(tau), tauInputs_indices_[dnn::tau_emFraction]);
1698 
1699  get(dnn::tau_inside_ecal_crack) =
1700  sp.scale(isInEcalCrack(tau.p4().eta()), tauInputs_indices_[dnn::tau_inside_ecal_crack]);
1701  get(dnn::leadChargedCand_etaAtEcalEntrance_minus_tau_eta) =
1702  sp.scale(tau_funcs.getEtaAtEcalEntrance(tau) - tau.p4().eta(),
1703  tauInputs_indices_[dnn::leadChargedCand_etaAtEcalEntrance_minus_tau_eta]);
1704  }
1705 
1706  template <typename CandidateCastType, typename TauCastType>
1708  const TauCastType& tau,
1709  const size_t tau_index,
1710  const edm::RefToBase<reco::BaseTau> tau_ref,
1711  const reco::Vertex& pv,
1712  double rho,
1713  const std::vector<pat::Electron>* electrons,
1714  const edm::View<reco::Candidate>& pfCands,
1715  const Cell& cell_map,
1716  TauFunc tau_funcs,
1717  bool is_inner) {
1718  namespace dnn = dnn_inputs_v2::EgammaBlockInputs;
1719  namespace sc = deep_tau::Scaling;
1720  sc::FeatureT ft_global = sc::FeatureT::GridGlobal;
1721  sc::FeatureT ft_PFe = sc::FeatureT::PfCand_electron;
1722  sc::FeatureT ft_PFg = sc::FeatureT::PfCand_gamma;
1724 
1725  // needed to remap indices from scaling vectors to those from dnn_inputs_v2::EgammaBlockInputs
1726  int PFe_index_offset = scalingParamsMap_->at(std::make_pair(ft_global, false)).mean_.size();
1727  int e_index_offset = PFe_index_offset + scalingParamsMap_->at(std::make_pair(ft_PFe, false)).mean_.size();
1728  int PFg_index_offset = e_index_offset + scalingParamsMap_->at(std::make_pair(ft_e, false)).mean_.size();
1729 
1730  // to account for swapped order of PfCand_gamma and Electron blocks for v2p5 training w.r.t. v2p1
1731  int fill_index_offset_e = 0;
1732  int fill_index_offset_PFg = 0;
1733  if (sub_version_ == 5) {
1734  fill_index_offset_e =
1735  scalingParamsMap_->at(std::make_pair(ft_PFg, false)).mean_.size(); // size of PF gamma features
1736  fill_index_offset_PFg =
1737  -scalingParamsMap_->at(std::make_pair(ft_e, false)).mean_.size(); // size of Electron features
1738  }
1739 
1740  tensorflow::Tensor& inputs = *eGammaTensor_.at(is_inner);
1741 
1742  const auto& get = [&](int var_index) -> float& { return inputs.tensor<float, 4>()(idx, 0, 0, var_index); };
1743 
1744  const bool valid_index_pf_ele = cell_map.count(CellObjectType::PfCand_electron);
1745  const bool valid_index_pf_gamma = cell_map.count(CellObjectType::PfCand_gamma);
1746  const bool valid_index_ele = cell_map.count(CellObjectType::Electron);
1747 
1748  if (!cell_map.empty()) {
1749  const sc::ScalingParams& sp = scalingParamsMap_->at(std::make_pair(ft_global, false));
1750  get(dnn::rho) = sp.scale(rho, dnn::rho);
1751  get(dnn::tau_pt) = sp.scale(tau.polarP4().pt(), dnn::tau_pt);
1752  get(dnn::tau_eta) = sp.scale(tau.polarP4().eta(), dnn::tau_eta);
1753  get(dnn::tau_inside_ecal_crack) = sp.scale(isInEcalCrack(tau.polarP4().eta()), dnn::tau_inside_ecal_crack);
1754  }
1755  if (valid_index_pf_ele) {
1756  const sc::ScalingParams& sp = scalingParamsMap_->at(std::make_pair(ft_PFe, is_inner));
1757  size_t index_pf_ele = cell_map.at(CellObjectType::PfCand_electron);
1758  const auto& ele_cand = dynamic_cast<const CandidateCastType&>(pfCands.at(index_pf_ele));
1759 
1760  get(dnn::pfCand_ele_valid) = sp.scale(valid_index_pf_ele, dnn::pfCand_ele_valid - PFe_index_offset);
1761  get(dnn::pfCand_ele_rel_pt) =
1762  sp.scale(ele_cand.polarP4().pt() / tau.polarP4().pt(), dnn::pfCand_ele_rel_pt - PFe_index_offset);
1763  get(dnn::pfCand_ele_deta) =
1764  sp.scale(ele_cand.polarP4().eta() - tau.polarP4().eta(), dnn::pfCand_ele_deta - PFe_index_offset);
1765  get(dnn::pfCand_ele_dphi) =
1766  sp.scale(dPhi(tau.polarP4(), ele_cand.polarP4()), dnn::pfCand_ele_dphi - PFe_index_offset);
1767  get(dnn::pfCand_ele_pvAssociationQuality) = sp.scale<int>(
1768  candFunc::getPvAssocationQuality(ele_cand), dnn::pfCand_ele_pvAssociationQuality - PFe_index_offset);
1769  get(dnn::pfCand_ele_puppiWeight) = is_inner ? sp.scale(candFunc::getPuppiWeight(ele_cand, 0.9906834f),
1770  dnn::pfCand_ele_puppiWeight - PFe_index_offset)
1771  : sp.scale(candFunc::getPuppiWeight(ele_cand, 0.9669586f),
1772  dnn::pfCand_ele_puppiWeight - PFe_index_offset);
1773  get(dnn::pfCand_ele_charge) = sp.scale(ele_cand.charge(), dnn::pfCand_ele_charge - PFe_index_offset);
1774  get(dnn::pfCand_ele_lostInnerHits) =
1775  sp.scale<int>(candFunc::getLostInnerHits(ele_cand, 0), dnn::pfCand_ele_lostInnerHits - PFe_index_offset);
1776  get(dnn::pfCand_ele_numberOfPixelHits) =
1777  sp.scale(candFunc::getNumberOfPixelHits(ele_cand, 0), dnn::pfCand_ele_numberOfPixelHits - PFe_index_offset);
1778  get(dnn::pfCand_ele_vertex_dx) =
1779  sp.scale(ele_cand.vertex().x() - pv.position().x(), dnn::pfCand_ele_vertex_dx - PFe_index_offset);
1780  get(dnn::pfCand_ele_vertex_dy) =
1781  sp.scale(ele_cand.vertex().y() - pv.position().y(), dnn::pfCand_ele_vertex_dy - PFe_index_offset);
1782  get(dnn::pfCand_ele_vertex_dz) =
1783  sp.scale(ele_cand.vertex().z() - pv.position().z(), dnn::pfCand_ele_vertex_dz - PFe_index_offset);
1784  get(dnn::pfCand_ele_vertex_dx_tauFL) =
1785  sp.scale(ele_cand.vertex().x() - pv.position().x() - tau_funcs.getFlightLength(tau, tau_index).x(),
1786  dnn::pfCand_ele_vertex_dx_tauFL - PFe_index_offset);
1787  get(dnn::pfCand_ele_vertex_dy_tauFL) =
1788  sp.scale(ele_cand.vertex().y() - pv.position().y() - tau_funcs.getFlightLength(tau, tau_index).y(),
1789  dnn::pfCand_ele_vertex_dy_tauFL - PFe_index_offset);
1790  get(dnn::pfCand_ele_vertex_dz_tauFL) =
1791  sp.scale(ele_cand.vertex().z() - pv.position().z() - tau_funcs.getFlightLength(tau, tau_index).z(),
1792  dnn::pfCand_ele_vertex_dz_tauFL - PFe_index_offset);
1793 
1794  const bool hasTrackDetails = candFunc::getHasTrackDetails(ele_cand);
1795  if (hasTrackDetails) {
1796  get(dnn::pfCand_ele_hasTrackDetails) =
1797  sp.scale(hasTrackDetails, dnn::pfCand_ele_hasTrackDetails - PFe_index_offset);
1798  get(dnn::pfCand_ele_dxy) = sp.scale(candFunc::getTauDxy(ele_cand), dnn::pfCand_ele_dxy - PFe_index_offset);
1799  get(dnn::pfCand_ele_dxy_sig) = sp.scale(std::abs(candFunc::getTauDxy(ele_cand)) / ele_cand.dxyError(),
1800  dnn::pfCand_ele_dxy_sig - PFe_index_offset);
1801  get(dnn::pfCand_ele_dz) = sp.scale(candFunc::getTauDz(ele_cand), dnn::pfCand_ele_dz - PFe_index_offset);
1802  get(dnn::pfCand_ele_dz_sig) = sp.scale(std::abs(candFunc::getTauDz(ele_cand)) / ele_cand.dzError(),
1803  dnn::pfCand_ele_dz_sig - PFe_index_offset);
1804  get(dnn::pfCand_ele_track_chi2_ndof) =
1805  candFunc::getPseudoTrack(ele_cand).ndof() > 0
1806  ? sp.scale(candFunc::getPseudoTrack(ele_cand).chi2() / candFunc::getPseudoTrack(ele_cand).ndof(),
1807  dnn::pfCand_ele_track_chi2_ndof - PFe_index_offset)
1808  : 0;
1809  get(dnn::pfCand_ele_track_ndof) =
1810  candFunc::getPseudoTrack(ele_cand).ndof() > 0
1811  ? sp.scale(candFunc::getPseudoTrack(ele_cand).ndof(), dnn::pfCand_ele_track_ndof - PFe_index_offset)
1812  : 0;
1813  }
1814  }
1815  if (valid_index_pf_gamma) {
1816  const sc::ScalingParams& sp = scalingParamsMap_->at(std::make_pair(ft_PFg, is_inner));
1817  size_t index_pf_gamma = cell_map.at(CellObjectType::PfCand_gamma);
1818  const auto& gamma_cand = dynamic_cast<const CandidateCastType&>(pfCands.at(index_pf_gamma));
1819 
1820  get(dnn::pfCand_gamma_valid + fill_index_offset_PFg) =
1821  sp.scale(valid_index_pf_gamma, dnn::pfCand_gamma_valid - PFg_index_offset);
1822  get(dnn::pfCand_gamma_rel_pt + fill_index_offset_PFg) =
1823  sp.scale(gamma_cand.polarP4().pt() / tau.polarP4().pt(), dnn::pfCand_gamma_rel_pt - PFg_index_offset);
1824  get(dnn::pfCand_gamma_deta + fill_index_offset_PFg) =
1825  sp.scale(gamma_cand.polarP4().eta() - tau.polarP4().eta(), dnn::pfCand_gamma_deta - PFg_index_offset);
1826  get(dnn::pfCand_gamma_dphi + fill_index_offset_PFg) =
1827  sp.scale(dPhi(tau.polarP4(), gamma_cand.polarP4()), dnn::pfCand_gamma_dphi - PFg_index_offset);
1828  get(dnn::pfCand_gamma_pvAssociationQuality + fill_index_offset_PFg) = sp.scale<int>(
1829  candFunc::getPvAssocationQuality(gamma_cand), dnn::pfCand_gamma_pvAssociationQuality - PFg_index_offset);
1830  get(dnn::pfCand_gamma_fromPV + fill_index_offset_PFg) =
1831  sp.scale<int>(candFunc::getFromPV(gamma_cand), dnn::pfCand_gamma_fromPV - PFg_index_offset);
1832  get(dnn::pfCand_gamma_puppiWeight + fill_index_offset_PFg) =
1833  is_inner ? sp.scale(candFunc::getPuppiWeight(gamma_cand, 0.9084110f),
1834  dnn::pfCand_gamma_puppiWeight - PFg_index_offset)
1835  : sp.scale(candFunc::getPuppiWeight(gamma_cand, 0.4211567f),
1836  dnn::pfCand_gamma_puppiWeight - PFg_index_offset);
1837  get(dnn::pfCand_gamma_puppiWeightNoLep + fill_index_offset_PFg) =
1838  is_inner ? sp.scale(candFunc::getPuppiWeightNoLep(gamma_cand, 0.8857716f),
1839  dnn::pfCand_gamma_puppiWeightNoLep - PFg_index_offset)
1840  : sp.scale(candFunc::getPuppiWeightNoLep(gamma_cand, 0.3822604f),
1841  dnn::pfCand_gamma_puppiWeightNoLep - PFg_index_offset);
1842  get(dnn::pfCand_gamma_lostInnerHits + fill_index_offset_PFg) =
1843  sp.scale<int>(candFunc::getLostInnerHits(gamma_cand, 0), dnn::pfCand_gamma_lostInnerHits - PFg_index_offset);
1844  get(dnn::pfCand_gamma_numberOfPixelHits + fill_index_offset_PFg) = sp.scale(
1845  candFunc::getNumberOfPixelHits(gamma_cand, 0), dnn::pfCand_gamma_numberOfPixelHits - PFg_index_offset);
1846  get(dnn::pfCand_gamma_vertex_dx + fill_index_offset_PFg) =
1847  sp.scale(gamma_cand.vertex().x() - pv.position().x(), dnn::pfCand_gamma_vertex_dx - PFg_index_offset);
1848  get(dnn::pfCand_gamma_vertex_dy + fill_index_offset_PFg) =
1849  sp.scale(gamma_cand.vertex().y() - pv.position().y(), dnn::pfCand_gamma_vertex_dy - PFg_index_offset);
1850  get(dnn::pfCand_gamma_vertex_dz + fill_index_offset_PFg) =
1851  sp.scale(gamma_cand.vertex().z() - pv.position().z(), dnn::pfCand_gamma_vertex_dz - PFg_index_offset);
1852  get(dnn::pfCand_gamma_vertex_dx_tauFL + fill_index_offset_PFg) =
1853  sp.scale(gamma_cand.vertex().x() - pv.position().x() - tau_funcs.getFlightLength(tau, tau_index).x(),
1854  dnn::pfCand_gamma_vertex_dx_tauFL - PFg_index_offset);
1855  get(dnn::pfCand_gamma_vertex_dy_tauFL + fill_index_offset_PFg) =
1856  sp.scale(gamma_cand.vertex().y() - pv.position().y() - tau_funcs.getFlightLength(tau, tau_index).y(),
1857  dnn::pfCand_gamma_vertex_dy_tauFL - PFg_index_offset);
1858  get(dnn::pfCand_gamma_vertex_dz_tauFL + fill_index_offset_PFg) =
1859  sp.scale(gamma_cand.vertex().z() - pv.position().z() - tau_funcs.getFlightLength(tau, tau_index).z(),
1860  dnn::pfCand_gamma_vertex_dz_tauFL - PFg_index_offset);
1861  const bool hasTrackDetails = candFunc::getHasTrackDetails(gamma_cand);
1862  if (hasTrackDetails) {
1863  get(dnn::pfCand_gamma_hasTrackDetails + fill_index_offset_PFg) =
1864  sp.scale(hasTrackDetails, dnn::pfCand_gamma_hasTrackDetails - PFg_index_offset);
1865  get(dnn::pfCand_gamma_dxy + fill_index_offset_PFg) =
1866  sp.scale(candFunc::getTauDxy(gamma_cand), dnn::pfCand_gamma_dxy - PFg_index_offset);
1867  get(dnn::pfCand_gamma_dxy_sig + fill_index_offset_PFg) =
1868  sp.scale(std::abs(candFunc::getTauDxy(gamma_cand)) / gamma_cand.dxyError(),
1869  dnn::pfCand_gamma_dxy_sig - PFg_index_offset);
1870  get(dnn::pfCand_gamma_dz + fill_index_offset_PFg) =
1871  sp.scale(candFunc::getTauDz(gamma_cand), dnn::pfCand_gamma_dz - PFg_index_offset);
1872  get(dnn::pfCand_gamma_dz_sig + fill_index_offset_PFg) =
1873  sp.scale(std::abs(candFunc::getTauDz(gamma_cand)) / gamma_cand.dzError(),
1874  dnn::pfCand_gamma_dz_sig - PFg_index_offset);
1875  get(dnn::pfCand_gamma_track_chi2_ndof + fill_index_offset_PFg) =
1876  candFunc::getPseudoTrack(gamma_cand).ndof() > 0
1877  ? sp.scale(candFunc::getPseudoTrack(gamma_cand).chi2() / candFunc::getPseudoTrack(gamma_cand).ndof(),
1878  dnn::pfCand_gamma_track_chi2_ndof - PFg_index_offset)
1879  : 0;
1880  get(dnn::pfCand_gamma_track_ndof + fill_index_offset_PFg) =
1881  candFunc::getPseudoTrack(gamma_cand).ndof() > 0
1882  ? sp.scale(candFunc::getPseudoTrack(gamma_cand).ndof(), dnn::pfCand_gamma_track_ndof - PFg_index_offset)
1883  : 0;
1884  }
1885  }
1886  if (valid_index_ele) {
1887  const sc::ScalingParams& sp = scalingParamsMap_->at(std::make_pair(ft_e, is_inner));
1888  size_t index_ele = cell_map.at(CellObjectType::Electron);
1889  const auto& ele = electrons->at(index_ele);
1890 
1891  get(dnn::ele_valid + fill_index_offset_e) = sp.scale(valid_index_ele, dnn::ele_valid - e_index_offset);
1892  get(dnn::ele_rel_pt + fill_index_offset_e) =
1893  sp.scale(ele.polarP4().pt() / tau.polarP4().pt(), dnn::ele_rel_pt - e_index_offset);
1894  get(dnn::ele_deta + fill_index_offset_e) =
1895  sp.scale(ele.polarP4().eta() - tau.polarP4().eta(), dnn::ele_deta - e_index_offset);
1896  get(dnn::ele_dphi + fill_index_offset_e) =
1897  sp.scale(dPhi(tau.polarP4(), ele.polarP4()), dnn::ele_dphi - e_index_offset);
1898 
1899  float cc_ele_energy, cc_gamma_energy;
1900  int cc_n_gamma;
1901  const bool cc_valid = calculateElectronClusterVarsV2(ele, cc_ele_energy, cc_gamma_energy, cc_n_gamma);
1902  if (cc_valid) {
1903  get(dnn::ele_cc_valid + fill_index_offset_e) = sp.scale(cc_valid, dnn::ele_cc_valid - e_index_offset);
1904  get(dnn::ele_cc_ele_rel_energy + fill_index_offset_e) =
1905  sp.scale(cc_ele_energy / ele.polarP4().pt(), dnn::ele_cc_ele_rel_energy - e_index_offset);
1906  get(dnn::ele_cc_gamma_rel_energy + fill_index_offset_e) =
1907  sp.scale(cc_gamma_energy / cc_ele_energy, dnn::ele_cc_gamma_rel_energy - e_index_offset);
1908  get(dnn::ele_cc_n_gamma + fill_index_offset_e) = sp.scale(cc_n_gamma, dnn::ele_cc_n_gamma - e_index_offset);
1909  }
1910  get(dnn::ele_rel_trackMomentumAtVtx + fill_index_offset_e) =
1911  sp.scale(ele.trackMomentumAtVtx().R() / ele.polarP4().pt(), dnn::ele_rel_trackMomentumAtVtx - e_index_offset);
1912  get(dnn::ele_rel_trackMomentumAtCalo + fill_index_offset_e) = sp.scale(
1913  ele.trackMomentumAtCalo().R() / ele.polarP4().pt(), dnn::ele_rel_trackMomentumAtCalo - e_index_offset);
1914  get(dnn::ele_rel_trackMomentumOut + fill_index_offset_e) =
1915  sp.scale(ele.trackMomentumOut().R() / ele.polarP4().pt(), dnn::ele_rel_trackMomentumOut - e_index_offset);
1916  get(dnn::ele_rel_trackMomentumAtEleClus + fill_index_offset_e) = sp.scale(
1917  ele.trackMomentumAtEleClus().R() / ele.polarP4().pt(), dnn::ele_rel_trackMomentumAtEleClus - e_index_offset);
1918  get(dnn::ele_rel_trackMomentumAtVtxWithConstraint + fill_index_offset_e) =
1919  sp.scale(ele.trackMomentumAtVtxWithConstraint().R() / ele.polarP4().pt(),
1920  dnn::ele_rel_trackMomentumAtVtxWithConstraint - e_index_offset);
1921  get(dnn::ele_rel_ecalEnergy + fill_index_offset_e) =
1922  sp.scale(ele.ecalEnergy() / ele.polarP4().pt(), dnn::ele_rel_ecalEnergy - e_index_offset);
1923  get(dnn::ele_ecalEnergy_sig + fill_index_offset_e) =
1924  sp.scale(ele.ecalEnergy() / ele.ecalEnergyError(), dnn::ele_ecalEnergy_sig - e_index_offset);
1925  get(dnn::ele_eSuperClusterOverP + fill_index_offset_e) =
1926  sp.scale(ele.eSuperClusterOverP(), dnn::ele_eSuperClusterOverP - e_index_offset);
1927  get(dnn::ele_eSeedClusterOverP + fill_index_offset_e) =
1928  sp.scale(ele.eSeedClusterOverP(), dnn::ele_eSeedClusterOverP - e_index_offset);
1929  get(dnn::ele_eSeedClusterOverPout + fill_index_offset_e) =
1930  sp.scale(ele.eSeedClusterOverPout(), dnn::ele_eSeedClusterOverPout - e_index_offset);
1931  get(dnn::ele_eEleClusterOverPout + fill_index_offset_e) =
1932  sp.scale(ele.eEleClusterOverPout(), dnn::ele_eEleClusterOverPout - e_index_offset);
1933  get(dnn::ele_deltaEtaSuperClusterTrackAtVtx + fill_index_offset_e) =
1934  sp.scale(ele.deltaEtaSuperClusterTrackAtVtx(), dnn::ele_deltaEtaSuperClusterTrackAtVtx - e_index_offset);
1935  get(dnn::ele_deltaEtaSeedClusterTrackAtCalo + fill_index_offset_e) =
1936  sp.scale(ele.deltaEtaSeedClusterTrackAtCalo(), dnn::ele_deltaEtaSeedClusterTrackAtCalo - e_index_offset);
1937  get(dnn::ele_deltaEtaEleClusterTrackAtCalo + fill_index_offset_e) =
1938  sp.scale(ele.deltaEtaEleClusterTrackAtCalo(), dnn::ele_deltaEtaEleClusterTrackAtCalo - e_index_offset);
1939  get(dnn::ele_deltaPhiEleClusterTrackAtCalo + fill_index_offset_e) =
1940  sp.scale(ele.deltaPhiEleClusterTrackAtCalo(), dnn::ele_deltaPhiEleClusterTrackAtCalo - e_index_offset);
1941  get(dnn::ele_deltaPhiSuperClusterTrackAtVtx + fill_index_offset_e) =
1942  sp.scale(ele.deltaPhiSuperClusterTrackAtVtx(), dnn::ele_deltaPhiSuperClusterTrackAtVtx - e_index_offset);
1943  get(dnn::ele_deltaPhiSeedClusterTrackAtCalo + fill_index_offset_e) =
1944  sp.scale(ele.deltaPhiSeedClusterTrackAtCalo(), dnn::ele_deltaPhiSeedClusterTrackAtCalo - e_index_offset);
1945  get(dnn::ele_mvaInput_earlyBrem + fill_index_offset_e) =
1946  sp.scale(ele.mvaInput().earlyBrem, dnn::ele_mvaInput_earlyBrem - e_index_offset);
1947  get(dnn::ele_mvaInput_lateBrem + fill_index_offset_e) =
1948  sp.scale(ele.mvaInput().lateBrem, dnn::ele_mvaInput_lateBrem - e_index_offset);
1949  get(dnn::ele_mvaInput_sigmaEtaEta + fill_index_offset_e) =
1950  sp.scale(ele.mvaInput().sigmaEtaEta, dnn::ele_mvaInput_sigmaEtaEta - e_index_offset);
1951  get(dnn::ele_mvaInput_hadEnergy + fill_index_offset_e) =
1952  sp.scale(ele.mvaInput().hadEnergy, dnn::ele_mvaInput_hadEnergy - e_index_offset);
1953  get(dnn::ele_mvaInput_deltaEta + fill_index_offset_e) =
1954  sp.scale(ele.mvaInput().deltaEta, dnn::ele_mvaInput_deltaEta - e_index_offset);
1955  const auto& gsfTrack = ele.gsfTrack();
1956  if (gsfTrack.isNonnull()) {
1957  get(dnn::ele_gsfTrack_normalizedChi2 + fill_index_offset_e) =
1958  sp.scale(gsfTrack->normalizedChi2(), dnn::ele_gsfTrack_normalizedChi2 - e_index_offset);
1959  get(dnn::ele_gsfTrack_numberOfValidHits + fill_index_offset_e) =
1960  sp.scale(gsfTrack->numberOfValidHits(), dnn::ele_gsfTrack_numberOfValidHits - e_index_offset);
1961  get(dnn::ele_rel_gsfTrack_pt + fill_index_offset_e) =
1962  sp.scale(gsfTrack->pt() / ele.polarP4().pt(), dnn::ele_rel_gsfTrack_pt - e_index_offset);
1963  get(dnn::ele_gsfTrack_pt_sig + fill_index_offset_e) =
1964  sp.scale(gsfTrack->pt() / gsfTrack->ptError(), dnn::ele_gsfTrack_pt_sig - e_index_offset);
1965  }
1966  const auto& closestCtfTrack = ele.closestCtfTrackRef();
1967  const bool has_closestCtfTrack = closestCtfTrack.isNonnull();
1968  if (has_closestCtfTrack) {
1969  get(dnn::ele_has_closestCtfTrack + fill_index_offset_e) =
1970  sp.scale(has_closestCtfTrack, dnn::ele_has_closestCtfTrack - e_index_offset);
1971  get(dnn::ele_closestCtfTrack_normalizedChi2 + fill_index_offset_e) =
1972  sp.scale(closestCtfTrack->normalizedChi2(), dnn::ele_closestCtfTrack_normalizedChi2 - e_index_offset);
1973  get(dnn::ele_closestCtfTrack_numberOfValidHits + fill_index_offset_e) =
1974  sp.scale(closestCtfTrack->numberOfValidHits(), dnn::ele_closestCtfTrack_numberOfValidHits - e_index_offset);
1975  }
1976  }
1977  }
1978 
1979  template <typename CandidateCastType, typename TauCastType>
1981  const TauCastType& tau,
1982  const size_t tau_index,
1983  const edm::RefToBase<reco::BaseTau> tau_ref,
1984  const reco::Vertex& pv,
1985  double rho,
1986  const std::vector<pat::Muon>* muons,
1987  const edm::View<reco::Candidate>& pfCands,
1988  const Cell& cell_map,
1989  TauFunc tau_funcs,
1990  bool is_inner) {
1991  namespace dnn = dnn_inputs_v2::MuonBlockInputs;
1992  namespace sc = deep_tau::Scaling;
1993  sc::FeatureT ft_global = sc::FeatureT::GridGlobal;
1994  sc::FeatureT ft_PFmu = sc::FeatureT::PfCand_muon;
1996 
1997  // needed to remap indices from scaling vectors to those from dnn_inputs_v2::MuonBlockInputs
1998  int PFmu_index_offset = scalingParamsMap_->at(std::make_pair(ft_global, false)).mean_.size();
1999  int mu_index_offset = PFmu_index_offset + scalingParamsMap_->at(std::make_pair(ft_PFmu, false)).mean_.size();
2000 
2001  tensorflow::Tensor& inputs = *muonTensor_.at(is_inner);
2002 
2003  const auto& get = [&](int var_index) -> float& { return inputs.tensor<float, 4>()(idx, 0, 0, var_index); };
2004 
2005  const bool valid_index_pf_muon = cell_map.count(CellObjectType::PfCand_muon);
2006  const bool valid_index_muon = cell_map.count(CellObjectType::Muon);
2007 
2008  if (!cell_map.empty()) {
2009  const sc::ScalingParams& sp = scalingParamsMap_->at(std::make_pair(ft_global, false));
2010  get(dnn::rho) = sp.scale(rho, dnn::rho);
2011  get(dnn::tau_pt) = sp.scale(tau.polarP4().pt(), dnn::tau_pt);
2012  get(dnn::tau_eta) = sp.scale(tau.polarP4().eta(), dnn::tau_eta);
2013  get(dnn::tau_inside_ecal_crack) = sp.scale(isInEcalCrack(tau.polarP4().eta()), dnn::tau_inside_ecal_crack);
2014  }
2015  if (valid_index_pf_muon) {
2016  const sc::ScalingParams& sp = scalingParamsMap_->at(std::make_pair(ft_PFmu, is_inner));
2017  size_t index_pf_muon = cell_map.at(CellObjectType::PfCand_muon);
2018  const auto& muon_cand = dynamic_cast<const CandidateCastType&>(pfCands.at(index_pf_muon));
2019 
2020  get(dnn::pfCand_muon_valid) = sp.scale(valid_index_pf_muon, dnn::pfCand_muon_valid - PFmu_index_offset);
2021  get(dnn::pfCand_muon_rel_pt) =
2022  sp.scale(muon_cand.polarP4().pt() / tau.polarP4().pt(), dnn::pfCand_muon_rel_pt - PFmu_index_offset);
2023  get(dnn::pfCand_muon_deta) =
2024  sp.scale(muon_cand.polarP4().eta() - tau.polarP4().eta(), dnn::pfCand_muon_deta - PFmu_index_offset);
2025  get(dnn::pfCand_muon_dphi) =
2026  sp.scale(dPhi(tau.polarP4(), muon_cand.polarP4()), dnn::pfCand_muon_dphi - PFmu_index_offset);
2027  get(dnn::pfCand_muon_pvAssociationQuality) = sp.scale<int>(
2028  candFunc::getPvAssocationQuality(muon_cand), dnn::pfCand_muon_pvAssociationQuality - PFmu_index_offset);
2029  get(dnn::pfCand_muon_fromPV) =
2030  sp.scale<int>(candFunc::getFromPV(muon_cand), dnn::pfCand_muon_fromPV - PFmu_index_offset);
2031  get(dnn::pfCand_muon_puppiWeight) = is_inner ? sp.scale(candFunc::getPuppiWeight(muon_cand, 0.9786588f),
2032  dnn::pfCand_muon_puppiWeight - PFmu_index_offset)
2033  : sp.scale(candFunc::getPuppiWeight(muon_cand, 0.8132477f),
2034  dnn::pfCand_muon_puppiWeight - PFmu_index_offset);
2035  get(dnn::pfCand_muon_charge) = sp.scale(muon_cand.charge(), dnn::pfCand_muon_charge - PFmu_index_offset);
2036  get(dnn::pfCand_muon_lostInnerHits) =
2037  sp.scale<int>(candFunc::getLostInnerHits(muon_cand, 0), dnn::pfCand_muon_lostInnerHits - PFmu_index_offset);
2038  get(dnn::pfCand_muon_numberOfPixelHits) = sp.scale(candFunc::getNumberOfPixelHits(muon_cand, 0),
2039  dnn::pfCand_muon_numberOfPixelHits - PFmu_index_offset);
2040  get(dnn::pfCand_muon_vertex_dx) =
2041  sp.scale(muon_cand.vertex().x() - pv.position().x(), dnn::pfCand_muon_vertex_dx - PFmu_index_offset);
2042  get(dnn::pfCand_muon_vertex_dy) =
2043  sp.scale(muon_cand.vertex().y() - pv.position().y(), dnn::pfCand_muon_vertex_dy - PFmu_index_offset);
2044  get(dnn::pfCand_muon_vertex_dz) =
2045  sp.scale(muon_cand.vertex().z() - pv.position().z(), dnn::pfCand_muon_vertex_dz - PFmu_index_offset);
2046  get(dnn::pfCand_muon_vertex_dx_tauFL) =
2047  sp.scale(muon_cand.vertex().x() - pv.position().x() - tau_funcs.getFlightLength(tau, tau_index).x(),
2048  dnn::pfCand_muon_vertex_dx_tauFL - PFmu_index_offset);
2049  get(dnn::pfCand_muon_vertex_dy_tauFL) =
2050  sp.scale(muon_cand.vertex().y() - pv.position().y() - tau_funcs.getFlightLength(tau, tau_index).y(),
2051  dnn::pfCand_muon_vertex_dy_tauFL - PFmu_index_offset);
2052  get(dnn::pfCand_muon_vertex_dz_tauFL) =
2053  sp.scale(muon_cand.vertex().z() - pv.position().z() - tau_funcs.getFlightLength(tau, tau_index).z(),
2054  dnn::pfCand_muon_vertex_dz_tauFL - PFmu_index_offset);
2055 
2056  const bool hasTrackDetails = candFunc::getHasTrackDetails(muon_cand);
2057  if (hasTrackDetails) {
2058  get(dnn::pfCand_muon_hasTrackDetails) =
2059  sp.scale(hasTrackDetails, dnn::pfCand_muon_hasTrackDetails - PFmu_index_offset);
2060  get(dnn::pfCand_muon_dxy) = sp.scale(candFunc::getTauDxy(muon_cand), dnn::pfCand_muon_dxy - PFmu_index_offset);
2061  get(dnn::pfCand_muon_dxy_sig) = sp.scale(std::abs(candFunc::getTauDxy(muon_cand)) / muon_cand.dxyError(),
2062  dnn::pfCand_muon_dxy_sig - PFmu_index_offset);
2063  get(dnn::pfCand_muon_dz) = sp.scale(candFunc::getTauDz(muon_cand), dnn::pfCand_muon_dz - PFmu_index_offset);
2064  get(dnn::pfCand_muon_dz_sig) = sp.scale(std::abs(candFunc::getTauDz(muon_cand)) / muon_cand.dzError(),
2065  dnn::pfCand_muon_dz_sig - PFmu_index_offset);
2066  get(dnn::pfCand_muon_track_chi2_ndof) =
2067  candFunc::getPseudoTrack(muon_cand).ndof() > 0
2068  ? sp.scale(candFunc::getPseudoTrack(muon_cand).chi2() / candFunc::getPseudoTrack(muon_cand).ndof(),
2069  dnn::pfCand_muon_track_chi2_ndof - PFmu_index_offset)
2070  : 0;
2071  get(dnn::pfCand_muon_track_ndof) =
2072  candFunc::getPseudoTrack(muon_cand).ndof() > 0
2073  ? sp.scale(candFunc::getPseudoTrack(muon_cand).ndof(), dnn::pfCand_muon_track_ndof - PFmu_index_offset)
2074  : 0;
2075  }
2076  }
2077  if (valid_index_muon) {
2078  const sc::ScalingParams& sp = scalingParamsMap_->at(std::make_pair(ft_mu, is_inner));
2079  size_t index_muon = cell_map.at(CellObjectType::Muon);
2080  const auto& muon = muons->at(index_muon);
2081 
2082  get(dnn::muon_valid) = sp.scale(valid_index_muon, dnn::muon_valid - mu_index_offset);
2083  get(dnn::muon_rel_pt) = sp.scale(muon.polarP4().pt() / tau.polarP4().pt(), dnn::muon_rel_pt - mu_index_offset);
2084  get(dnn::muon_deta) = sp.scale(muon.polarP4().eta() - tau.polarP4().eta(), dnn::muon_deta - mu_index_offset);
2085  get(dnn::muon_dphi) = sp.scale(dPhi(tau.polarP4(), muon.polarP4()), dnn::muon_dphi - mu_index_offset);
2086  get(dnn::muon_dxy) = sp.scale(muon.dB(pat::Muon::PV2D), dnn::muon_dxy - mu_index_offset);
2087  get(dnn::muon_dxy_sig) =
2088  sp.scale(std::abs(muon.dB(pat::Muon::PV2D)) / muon.edB(pat::Muon::PV2D), dnn::muon_dxy_sig - mu_index_offset);
2089 
2090  const bool normalizedChi2_valid = muon.globalTrack().isNonnull() && muon.normChi2() >= 0;
2091  if (normalizedChi2_valid) {
2092  get(dnn::muon_normalizedChi2_valid) =
2093  sp.scale(normalizedChi2_valid, dnn::muon_normalizedChi2_valid - mu_index_offset);
2094  get(dnn::muon_normalizedChi2) = sp.scale(muon.normChi2(), dnn::muon_normalizedChi2 - mu_index_offset);
2095  if (muon.innerTrack().isNonnull())
2096  get(dnn::muon_numberOfValidHits) =
2097  sp.scale(muon.numberOfValidHits(), dnn::muon_numberOfValidHits - mu_index_offset);
2098  }
2099  get(dnn::muon_segmentCompatibility) =
2100  sp.scale(muon.segmentCompatibility(), dnn::muon_segmentCompatibility - mu_index_offset);
2101  get(dnn::muon_caloCompatibility) =
2102  sp.scale(muon.caloCompatibility(), dnn::muon_caloCompatibility - mu_index_offset);
2103 
2104  const bool pfEcalEnergy_valid = muon.pfEcalEnergy() >= 0;
2105  if (pfEcalEnergy_valid) {
2106  get(dnn::muon_pfEcalEnergy_valid) =
2107  sp.scale(pfEcalEnergy_valid, dnn::muon_pfEcalEnergy_valid - mu_index_offset);
2108  get(dnn::muon_rel_pfEcalEnergy) =
2109  sp.scale(muon.pfEcalEnergy() / muon.polarP4().pt(), dnn::muon_rel_pfEcalEnergy - mu_index_offset);
2110  }
2111 
2112  MuonHitMatchV2 hit_match(muon);
2113  static const std::map<int, std::pair<int, int>> muonMatchHitVars = {
2114  {MuonSubdetId::DT, {dnn::muon_n_matches_DT_1, dnn::muon_n_hits_DT_1}},
2115  {MuonSubdetId::CSC, {dnn::muon_n_matches_CSC_1, dnn::muon_n_hits_CSC_1}},
2116  {MuonSubdetId::RPC, {dnn::muon_n_matches_RPC_1, dnn::muon_n_hits_RPC_1}}};
2117 
2118  for (int subdet : hit_match.MuonHitMatchV2::consideredSubdets()) {
2119  const auto& matchHitVar = muonMatchHitVars.at(subdet);
2120  for (int station = MuonHitMatchV2::first_station_id; station <= MuonHitMatchV2::last_station_id; ++station) {
2121  const unsigned n_matches = hit_match.nMatches(subdet, station);
2122  const unsigned n_hits = hit_match.nHits(subdet, station);
2123  get(matchHitVar.first + station - 1) = sp.scale(n_matches, matchHitVar.first + station - 1 - mu_index_offset);
2124  get(matchHitVar.second + station - 1) = sp.scale(n_hits, matchHitVar.second + station - 1 - mu_index_offset);
2125  }
2126  }
2127  }
2128  }
2129 
2130  template <typename CandidateCastType, typename TauCastType>
2132  const TauCastType& tau,
2133  const size_t tau_index,
2134  const edm::RefToBase<reco::BaseTau> tau_ref,
2135  const reco::Vertex& pv,
2136  double rho,
2137  const edm::View<reco::Candidate>& pfCands,
2138  const Cell& cell_map,
2139  TauFunc tau_funcs,
2140  bool is_inner) {
2141  namespace dnn = dnn_inputs_v2::HadronBlockInputs;
2142  namespace sc = deep_tau::Scaling;
2143  sc::FeatureT ft_global = sc::FeatureT::GridGlobal;
2144  sc::FeatureT ft_PFchH = sc::FeatureT::PfCand_chHad;
2145  sc::FeatureT ft_PFnH = sc::FeatureT::PfCand_nHad;
2146 
2147  // needed to remap indices from scaling vectors to those from dnn_inputs_v2::HadronBlockInputs
2148  int PFchH_index_offset = scalingParamsMap_->at(std::make_pair(ft_global, false)).mean_.size();
2149  int PFnH_index_offset = PFchH_index_offset + scalingParamsMap_->at(std::make_pair(ft_PFchH, false)).mean_.size();
2150 
2151  tensorflow::Tensor& inputs = *hadronsTensor_.at(is_inner);
2152 
2153  const auto& get = [&](int var_index) -> float& { return inputs.tensor<float, 4>()(idx, 0, 0, var_index); };
2154 
2155  const bool valid_chH = cell_map.count(CellObjectType::PfCand_chargedHadron);
2156  const bool valid_nH = cell_map.count(CellObjectType::PfCand_neutralHadron);
2157 
2158  if (!cell_map.empty()) {
2159  const sc::ScalingParams& sp = scalingParamsMap_->at(std::make_pair(ft_global, false));
2160  get(dnn::rho) = sp.scale(rho, dnn::rho);
2161  get(dnn::tau_pt) = sp.scale(tau.polarP4().pt(), dnn::tau_pt);
2162  get(dnn::tau_eta) = sp.scale(tau.polarP4().eta(), dnn::tau_eta);
2163  get(dnn::tau_inside_ecal_crack) = sp.scale(isInEcalCrack(tau.polarP4().eta()), dnn::tau_inside_ecal_crack);
2164  }
2165  if (valid_chH) {
2166  const sc::ScalingParams& sp = scalingParamsMap_->at(std::make_pair(ft_PFchH, is_inner));
2167  size_t index_chH = cell_map.at(CellObjectType::PfCand_chargedHadron);
2168  const auto& chH_cand = dynamic_cast<const CandidateCastType&>(pfCands.at(index_chH));
2169 
2170  get(dnn::pfCand_chHad_valid) = sp.scale(valid_chH, dnn::pfCand_chHad_valid - PFchH_index_offset);
2171  get(dnn::pfCand_chHad_rel_pt) =
2172  sp.scale(chH_cand.polarP4().pt() / tau.polarP4().pt(), dnn::pfCand_chHad_rel_pt - PFchH_index_offset);
2173  get(dnn::pfCand_chHad_deta) =
2174  sp.scale(chH_cand.polarP4().eta() - tau.polarP4().eta(), dnn::pfCand_chHad_deta - PFchH_index_offset);
2175  get(dnn::pfCand_chHad_dphi) =
2176  sp.scale(dPhi(tau.polarP4(), chH_cand.polarP4()), dnn::pfCand_chHad_dphi - PFchH_index_offset);
2177  get(dnn::pfCand_chHad_leadChargedHadrCand) =
2178  sp.scale(&chH_cand == dynamic_cast<const CandidateCastType*>(tau.leadChargedHadrCand().get()),
2179  dnn::pfCand_chHad_leadChargedHadrCand - PFchH_index_offset);
2180  get(dnn::pfCand_chHad_pvAssociationQuality) = sp.scale<int>(
2181  candFunc::getPvAssocationQuality(chH_cand), dnn::pfCand_chHad_pvAssociationQuality - PFchH_index_offset);
2182  get(dnn::pfCand_chHad_fromPV) =
2183  sp.scale<int>(candFunc::getFromPV(chH_cand), dnn::pfCand_chHad_fromPV - PFchH_index_offset);
2184  const float default_chH_pw_inner = 0.7614090f;
2185  const float default_chH_pw_outer = 0.1974930f;
2186  get(dnn::pfCand_chHad_puppiWeight) = is_inner ? sp.scale(candFunc::getPuppiWeight(chH_cand, default_chH_pw_inner),
2187  dnn::pfCand_chHad_puppiWeight - PFchH_index_offset)
2188  : sp.scale(candFunc::getPuppiWeight(chH_cand, default_chH_pw_outer),
2189  dnn::pfCand_chHad_puppiWeight - PFchH_index_offset);
2190  get(dnn::pfCand_chHad_puppiWeightNoLep) =
2191  is_inner ? sp.scale(candFunc::getPuppiWeightNoLep(chH_cand, default_chH_pw_inner),
2192  dnn::pfCand_chHad_puppiWeightNoLep - PFchH_index_offset)
2193  : sp.scale(candFunc::getPuppiWeightNoLep(chH_cand, default_chH_pw_outer),
2194  dnn::pfCand_chHad_puppiWeightNoLep - PFchH_index_offset);
2195  get(dnn::pfCand_chHad_charge) = sp.scale(chH_cand.charge(), dnn::pfCand_chHad_charge - PFchH_index_offset);
2196  get(dnn::pfCand_chHad_lostInnerHits) =
2197  sp.scale<int>(candFunc::getLostInnerHits(chH_cand, 0), dnn::pfCand_chHad_lostInnerHits - PFchH_index_offset);
2198  get(dnn::pfCand_chHad_numberOfPixelHits) = sp.scale(candFunc::getNumberOfPixelHits(chH_cand, 0),
2199  dnn::pfCand_chHad_numberOfPixelHits - PFchH_index_offset);
2200  get(dnn::pfCand_chHad_vertex_dx) =
2201  sp.scale(chH_cand.vertex().x() - pv.position().x(), dnn::pfCand_chHad_vertex_dx - PFchH_index_offset);
2202  get(dnn::pfCand_chHad_vertex_dy) =
2203  sp.scale(chH_cand.vertex().y() - pv.position().y(), dnn::pfCand_chHad_vertex_dy - PFchH_index_offset);
2204  get(dnn::pfCand_chHad_vertex_dz) =
2205  sp.scale(chH_cand.vertex().z() - pv.position().z(), dnn::pfCand_chHad_vertex_dz - PFchH_index_offset);
2206  get(dnn::pfCand_chHad_vertex_dx_tauFL) =
2207  sp.scale(chH_cand.vertex().x() - pv.position().x() - tau_funcs.getFlightLength(tau, tau_index).x(),
2208  dnn::pfCand_chHad_vertex_dx_tauFL - PFchH_index_offset);
2209  get(dnn::pfCand_chHad_vertex_dy_tauFL) =
2210  sp.scale(chH_cand.vertex().y() - pv.position().y() - tau_funcs.getFlightLength(tau, tau_index).y(),
2211  dnn::pfCand_chHad_vertex_dy_tauFL - PFchH_index_offset);
2212  get(dnn::pfCand_chHad_vertex_dz_tauFL) =
2213  sp.scale(chH_cand.vertex().z() - pv.position().z() - tau_funcs.getFlightLength(tau, tau_index).z(),
2214  dnn::pfCand_chHad_vertex_dz_tauFL - PFchH_index_offset);
2215 
2216  const bool hasTrackDetails = candFunc::getHasTrackDetails(chH_cand);
2217  if (hasTrackDetails) {
2218  get(dnn::pfCand_chHad_hasTrackDetails) =
2219  sp.scale(hasTrackDetails, dnn::pfCand_chHad_hasTrackDetails - PFchH_index_offset);
2220  get(dnn::pfCand_chHad_dxy) =
2221  sp.scale(candFunc::getTauDxy(chH_cand), dnn::pfCand_chHad_dxy - PFchH_index_offset);
2222  get(dnn::pfCand_chHad_dxy_sig) = sp.scale(std::abs(candFunc::getTauDxy(chH_cand)) / chH_cand.dxyError(),
2223  dnn::pfCand_chHad_dxy_sig - PFchH_index_offset);
2224  get(dnn::pfCand_chHad_dz) = sp.scale(candFunc::getTauDz(chH_cand), dnn::pfCand_chHad_dz - PFchH_index_offset);
2225  get(dnn::pfCand_chHad_dz_sig) = sp.scale(std::abs(candFunc::getTauDz(chH_cand)) / chH_cand.dzError(),
2226  dnn::pfCand_chHad_dz_sig - PFchH_index_offset);
2227  get(dnn::pfCand_chHad_track_chi2_ndof) =
2228  candFunc::getPseudoTrack(chH_cand).ndof() > 0
2229  ? sp.scale(candFunc::getPseudoTrack(chH_cand).chi2() / candFunc::getPseudoTrack(chH_cand).ndof(),
2230  dnn::pfCand_chHad_track_chi2_ndof - PFchH_index_offset)
2231  : 0;
2232  get(dnn::pfCand_chHad_track_ndof) =
2233  candFunc::getPseudoTrack(chH_cand).ndof() > 0
2234  ? sp.scale(candFunc::getPseudoTrack(chH_cand).ndof(), dnn::pfCand_chHad_track_ndof - PFchH_index_offset)
2235  : 0;
2236  }
2237  float hcal_fraction = candFunc::getHCalFraction(chH_cand, disable_hcalFraction_workaround_);
2238  get(dnn::pfCand_chHad_hcalFraction) =
2239  sp.scale(hcal_fraction, dnn::pfCand_chHad_hcalFraction - PFchH_index_offset);
2240  get(dnn::pfCand_chHad_rawCaloFraction) =
2241  sp.scale(candFunc::getRawCaloFraction(chH_cand), dnn::pfCand_chHad_rawCaloFraction - PFchH_index_offset);
2242  }
2243  if (valid_nH) {
2244  const sc::ScalingParams& sp = scalingParamsMap_->at(std::make_pair(ft_PFnH, is_inner));
2245  size_t index_nH = cell_map.at(CellObjectType::PfCand_neutralHadron);
2246  const auto& nH_cand = dynamic_cast<const CandidateCastType&>(pfCands.at(index_nH));
2247 
2248  get(dnn::pfCand_nHad_valid) = sp.scale(valid_nH, dnn::pfCand_nHad_valid - PFnH_index_offset);
2249  get(dnn::pfCand_nHad_rel_pt) =
2250  sp.scale(nH_cand.polarP4().pt() / tau.polarP4().pt(), dnn::pfCand_nHad_rel_pt - PFnH_index_offset);
2251  get(dnn::pfCand_nHad_deta) =
2252  sp.scale(nH_cand.polarP4().eta() - tau.polarP4().eta(), dnn::pfCand_nHad_deta - PFnH_index_offset);
2253  get(dnn::pfCand_nHad_dphi) =
2254  sp.scale(dPhi(tau.polarP4(), nH_cand.polarP4()), dnn::pfCand_nHad_dphi - PFnH_index_offset);
2255  get(dnn::pfCand_nHad_puppiWeight) = is_inner ? sp.scale(candFunc::getPuppiWeight(nH_cand, 0.9798355f),
2256  dnn::pfCand_nHad_puppiWeight - PFnH_index_offset)
2257  : sp.scale(candFunc::getPuppiWeight(nH_cand, 0.7813260f),
2258  dnn::pfCand_nHad_puppiWeight - PFnH_index_offset);
2259  get(dnn::pfCand_nHad_puppiWeightNoLep) = is_inner
2260  ? sp.scale(candFunc::getPuppiWeightNoLep(nH_cand, 0.9046796f),
2261  dnn::pfCand_nHad_puppiWeightNoLep - PFnH_index_offset)
2262  : sp.scale(candFunc::getPuppiWeightNoLep(nH_cand, 0.6554860f),
2263  dnn::pfCand_nHad_puppiWeightNoLep - PFnH_index_offset);
2264  float hcal_fraction = candFunc::getHCalFraction(nH_cand, disable_hcalFraction_workaround_);
2265  get(dnn::pfCand_nHad_hcalFraction) = sp.scale(hcal_fraction, dnn::pfCand_nHad_hcalFraction - PFnH_index_offset);
2266  }
2267  }
2268 
2269  static void calculateElectronClusterVars(const pat::Electron* ele, float& elecEe, float& elecEgamma) {
2270  if (ele) {
2271  elecEe = elecEgamma = 0;
2272  auto superCluster = ele->superCluster();
2273  if (superCluster.isNonnull() && superCluster.isAvailable() && superCluster->clusters().isNonnull() &&
2274  superCluster->clusters().isAvailable()) {
2275  for (auto iter = superCluster->clustersBegin(); iter != superCluster->clustersEnd(); ++iter) {
2276  const double energy = (*iter)->energy();
2277  if (iter == superCluster->clustersBegin())
2278  elecEe += energy;
2279  else
2280  elecEgamma += energy;
2281  }
2282  }
2283  } else {
2284  elecEe = elecEgamma = default_value;
2285  }
2286  }
2287 
2288  template <typename CandidateCollection, typename TauCastType>
2289  static void processSignalPFComponents(const TauCastType& tau,
2291  LorentzVectorXYZ& p4_inner,
2292  LorentzVectorXYZ& p4_outer,
2293  float& pt_inner,
2294  float& dEta_inner,
2295  float& dPhi_inner,
2296  float& m_inner,
2297  float& pt_outer,
2298  float& dEta_outer,
2299  float& dPhi_outer,
2300  float& m_outer,
2301  float& n_inner,
2302  float& n_outer) {
2303  p4_inner = LorentzVectorXYZ(0, 0, 0, 0);
2304  p4_outer = LorentzVectorXYZ(0, 0, 0, 0);
2305  n_inner = 0;
2306  n_outer = 0;
2307 
2308  const double innerSigCone_radius = getInnerSignalConeRadius(tau.pt());
2309  for (const auto& cand : candidates) {
2310  const double dR = reco::deltaR(cand->p4(), tau.leadChargedHadrCand()->p4());
2311  const bool isInside_innerSigCone = dR < innerSigCone_radius;
2312  if (isInside_innerSigCone) {
2313  p4_inner += cand->p4();
2314  ++n_inner;
2315  } else {
2316  p4_outer += cand->p4();
2317  ++n_outer;
2318  }
2319  }
2320 
2321  pt_inner = n_inner != 0 ? p4_inner.Pt() : default_value;
2322  dEta_inner = n_inner != 0 ? dEta(p4_inner, tau.p4()) : default_value;
2323  dPhi_inner = n_inner != 0 ? dPhi(p4_inner, tau.p4()) : default_value;
2324  m_inner = n_inner != 0 ? p4_inner.mass() : default_value;
2325 
2326  pt_outer = n_outer != 0 ? p4_outer.Pt() : default_value;
2327  dEta_outer = n_outer != 0 ? dEta(p4_outer, tau.p4()) : default_value;
2328  dPhi_outer = n_outer != 0 ? dPhi(p4_outer, tau.p4()) : default_value;
2329  m_outer = n_outer != 0 ? p4_outer.mass() : default_value;
2330  }
2331 
2332  template <typename CandidateCollection, typename TauCastType>
2333  static void processIsolationPFComponents(const TauCastType& tau,
2335  LorentzVectorXYZ& p4,
2336  float& pt,
2337  float& d_eta,
2338  float& d_phi,
2339  float& m,
2340  float& n) {
2341  p4 = LorentzVectorXYZ(0, 0, 0, 0);
2342  n = 0;
2343 
2344  for (const auto& cand : candidates) {
2345  p4 += cand->p4();
2346  ++n;
2347  }
2348 
2349  pt = n != 0 ? p4.Pt() : default_value;
2350  d_eta = n != 0 ? dEta(p4, tau.p4()) : default_value;
2351  d_phi = n != 0 ? dPhi(p4, tau.p4()) : default_value;
2352  m = n != 0 ? p4.mass() : default_value;
2353  }
2354 
2355  static double getInnerSignalConeRadius(double pt) {
2356  static constexpr double min_pt = 30., min_radius = 0.05, cone_opening_coef = 3.;
2357  // This is equivalent of the original formula (std::max(std::min(0.1, 3.0/pt), 0.05)
2358  return std::max(cone_opening_coef / std::max(pt, min_pt), min_radius);
2359  }
2360 
2361  // Copied from https://github.com/cms-sw/cmssw/blob/CMSSW_9_4_X/RecoTauTag/RecoTau/plugins/PATTauDiscriminationByMVAIsolationRun2.cc#L218
2362  template <typename TauCastType>
2363  static bool calculateGottfriedJacksonAngleDifference(const TauCastType& tau,
2364  const size_t tau_index,
2365  double& gj_diff,
2366  TauFunc tau_funcs) {
2367  if (tau_funcs.getHasSecondaryVertex(tau, tau_index)) {
2368  static constexpr double mTau = 1.77682;
2369  const double mAOne = tau.p4().M();
2370  const double pAOneMag = tau.p();
2371  const double argumentThetaGJmax = (std::pow(mTau, 2) - std::pow(mAOne, 2)) / (2 * mTau * pAOneMag);
2372  const double argumentThetaGJmeasured = tau.p4().Vect().Dot(tau_funcs.getFlightLength(tau, tau_index)) /
2373  (pAOneMag * tau_funcs.getFlightLength(tau, tau_index).R());
2374  if (std::abs(argumentThetaGJmax) <= 1. && std::abs(argumentThetaGJmeasured) <= 1.) {
2375  double thetaGJmax = std::asin(argumentThetaGJmax);
2376  double thetaGJmeasured = std::acos(argumentThetaGJmeasured);
2377  gj_diff = thetaGJmeasured - thetaGJmax;
2378  return true;
2379  }
2380  }
2381  return false;
2382  }
2383 
2384  template <typename TauCastType>
2385  static float calculateGottfriedJacksonAngleDifference(const TauCastType& tau,
2386  const size_t tau_index,
2387  TauFunc tau_funcs) {
2388  double gj_diff;
2389  if (calculateGottfriedJacksonAngleDifference(tau, tau_index, gj_diff, tau_funcs))
2390  return static_cast<float>(gj_diff);
2391  return default_value;
2392  }
2393 
2394  static bool isInEcalCrack(double eta) {
2395  const double abs_eta = std::abs(eta);
2396  return abs_eta > 1.46 && abs_eta < 1.558;
2397  }
2398 
2399  template <typename TauCastType>
2400  static const pat::Electron* findMatchedElectron(const TauCastType& tau,
2401  const std::vector<pat::Electron>* electrons,
2402  double deltaR) {
2403  const double dR2 = deltaR * deltaR;
2404  const pat::Electron* matched_ele = nullptr;
2405  for (const auto& ele : *electrons) {
2406  if (reco::deltaR2(tau.p4(), ele.p4()) < dR2 && (!matched_ele || matched_ele->pt() < ele.pt())) {
2407  matched_ele = &ele;
2408  }
2409  }
2410  return matched_ele;
2411  }
2412 
2413 private:
2422  const unsigned version_;
2423  const unsigned sub_version_;
2424  const int debug_level;
2425  const bool disable_dxy_pca_;
2428  std::unique_ptr<tensorflow::Tensor> tauBlockTensor_;
2429  std::array<std::unique_ptr<tensorflow::Tensor>, 2> eGammaTensor_, muonTensor_, hadronsTensor_, convTensor_,
2431  const std::map<std::pair<deep_tau::Scaling::FeatureT, bool>, deep_tau::Scaling::ScalingParams>* scalingParamsMap_;
2432  const bool save_inputs_;
2433  std::ofstream* json_file_;
2436  std::vector<int> tauInputs_indices_;
2437 
2438  //boolean to check if discriminator indices are already mapped
2439  bool discrIndicesMapped_ = false;
2440  std::map<BasicDiscriminator, size_t> basicDiscrIndexMap_;
2441  std::map<BasicDiscriminator, size_t> basicDiscrdR03IndexMap_;
2442 };
2443 
void createConvFeatures(const TauCastType &tau, const size_t tau_index, const edm::RefToBase< reco::BaseTau > tau_ref, const reco::Vertex &pv, double rho, const std::vector< pat::Electron > *electrons, const std::vector< pat::Muon > *muons, const edm::View< reco::Candidate > &pfCands, const CellGrid &grid, TauFunc tau_funcs, bool is_inner)
Definition: DeepTauId.cc:1470
size
Write out results.
static constexpr float default_value
Definition: DeepTauId.cc:829
constexpr double deltaPhi(double phi1, double phi2)
Definition: deltaPhi.h:26
void createMuonBlockInputs(unsigned idx, const TauCastType &tau, const size_t tau_index, const edm::RefToBase< reco::BaseTau > tau_ref, const reco::Vertex &pv, double rho, const std::vector< pat::Muon > *muons, const edm::View< reco::Candidate > &pfCands, const Cell &cell_map, TauFunc tau_funcs, bool is_inner)
Definition: DeepTauId.cc:1980
static void fillDescriptions(edm::ConfigurationDescriptions &descriptions)
Definition: DeepTauId.cc:873
ROOT::Math::LorentzVector< ROOT::Math::PxPyPzE4D< double > > LorentzVectorXYZ
Definition: DeepTauBase.h:75
unsigned int n_photons_total(const reco::PFTau &tau)
return total number of pf photon candidates with pT>500 MeV, which are associated to signal ...
T getParameter(std::string const &) const
Definition: ParameterSet.h:303
std::array< std::unique_ptr< tensorflow::Tensor >, 2 > hadronsTensor_
Definition: DeepTauId.cc:2429
std::map< BasicDiscriminator, size_t > basicDiscrdR03IndexMap_
Definition: DeepTauId.cc:2441
ParameterDescriptionBase * addOptional(U const &iLabel, T const &value)
static void processIsolationPFComponents(const TauCastType &tau, const CandidateCollection &candidates, LorentzVectorXYZ &p4, float &pt, float &d_eta, float &d_phi, float &m, float &n)
Definition: DeepTauId.cc:2333
static std::unique_ptr< deep_tau::DeepTauCache > initializeGlobalCache(const edm::ParameterSet &cfg)
Definition: DeepTauId.cc:1012
double pt() const final
transverse momentum
static void processSignalPFComponents(const TauCastType &tau, const CandidateCollection &candidates, LorentzVectorXYZ &p4_inner, LorentzVectorXYZ &p4_outer, float &pt_inner, float &dEta_inner, float &dPhi_inner, float &m_inner, float &pt_outer, float &dEta_outer, float &dPhi_outer, float &m_outer, float &n_inner, float &n_outer)
Definition: DeepTauId.cc:2289
float pt_weighted_dr_signal(const reco::PFTau &tau, int dm)
const bool disable_dxy_pca_
Definition: DeepTauId.cc:2425
static float getValueLinear(T value, float min_value, float max_value, bool positive)
Definition: DeepTauId.cc:1027
static const pat::Electron * findMatchedElectron(const TauCastType &tau, const std::vector< pat::Electron > *electrons, double deltaR)
Definition: DeepTauId.cc:2400
constexpr bool isNotFinite(T x)
Definition: isFinite.h:9
void createHadronsBlockInputs(unsigned idx, const TauCastType &tau, const size_t tau_index, const edm::RefToBase< reco::BaseTau > tau_ref, const reco::Vertex &pv, double rho, const edm::View< reco::Candidate > &pfCands, const Cell &cell_map, TauFunc tau_funcs, bool is_inner)
Definition: DeepTauId.cc:2131
void fillGrids(const TauCastType &tau, const Collection &objects, CellGrid &inner_grid, CellGrid &outer_grid)
Definition: DeepTauId.cc:1409
const bool save_inputs_
Definition: DeepTauId.cc:2432
std::array< std::unique_ptr< tensorflow::Tensor >, 2 > zeroOutputTensor_
Definition: DeepTauId.cc:2429
std::map< BasicDiscriminator, size_t > basicDiscrIndexMap_
Definition: DeepTauId.cc:2440
int file_counter_
Definition: DeepTauId.cc:2435
#define DEFINE_FWK_MODULE(type)
Definition: MakerMacros.h:16
const DeepTauCache * cache_
Definition: DeepTauBase.h:135
static double getInnerSignalConeRadius(double pt)
Definition: DeepTauId.cc:2355
std::ofstream * json_file_
Definition: DeepTauId.cc:2433
static bool isAbove(double value, double min)
Definition: DeepTauId.cc:1043
static bool isInEcalCrack(double eta)
Definition: DeepTauId.cc:2394
std::string to_string(const V &value)
Definition: OMSAccess.h:71
void setCellConvFeatures(tensorflow::Tensor &convTensor, const tensorflow::Tensor &features, unsigned batch_idx, int eta_index, int phi_index)
Definition: DeepTauId.cc:1551
const unsigned version_
Definition: DeepTauId.cc:2422
const unsigned sub_version_
Definition: DeepTauId.cc:2423
reco::SuperClusterRef superCluster() const override
override the reco::GsfElectron::superCluster method, to access the internal storage of the superclust...
void countMatches(const reco::Muon &muon, std::vector< int > &numMatchesDT, std::vector< int > &numMatchesCSC, std::vector< int > &numMatchesRPC)
void find(edm::Handle< EcalRecHitCollection > &hits, DetId thisDet, std::vector< EcalRecHitCollection::const_iterator > &hit, bool debug=false)
Definition: FindCaloHit.cc:19
edm::RefProd< PFTauCollection > PFTauRefProd
references to PFTau collection
Definition: PFTauFwd.h:15
assert(be >=bs)
const std::map< ValueQuantityType, double > min_value
ParameterSet const & parameterSet(StableProvenance const &provenance, ProcessHistory const &history)
Definition: Provenance.cc:11
std::map< std::string, Output > OutputCollection
Definition: DeepTauBase.h:91
static const double deltaEta
Definition: CaloConstants.h:8
const std::map< std::pair< deep_tau::Scaling::FeatureT, bool >, deep_tau::Scaling::ScalingParams > * scalingParamsMap_
Definition: DeepTauId.cc:2431
static const OutputCollection & GetOutputs()
Definition: DeepTauId.cc:831
static std::string const input
Definition: EdmProvDump.cc:47
static const std::vector< BasicDiscriminator > requiredBasicDiscriminatorsdR03_
Definition: DeepTauBase.h:139
Definition: HeavyIon.h:7
std::array< std::unique_ptr< tensorflow::Tensor >, 2 > convTensor_
Definition: DeepTauId.cc:2429
DeepTauId(const edm::ParameterSet &cfg, const deep_tau::DeepTauCache *cache)
Definition: DeepTauId.cc:917
const std::map< std::pair< FeatureT, bool >, ScalingParams > scalingParamsMap_v2p5
OutputCollection outputs_
Definition: DeepTauBase.h:134
static const int tauID
Definition: TopGenEvent.h:20
char const * label
std::string output_layer_
Definition: DeepTauId.cc:2421
static constexpr float pi
Definition: DeepTauId.cc:1019
bool is_first_block_
Definition: DeepTauId.cc:2434
static float getValue(T value)
Definition: DeepTauId.cc:1022
CellObjectType
Definition: DeepTauId.cc:690
Definition: Muon.py:1
float pt_weighted_deta_strip(const reco::PFTau &tau, int dm)
std::vector< float > features(const reco::PreId &ecal, const reco::PreId &hcal, double rho, const reco::BeamSpot &spot, noZS::EcalClusterLazyTools &ecalTools)
const std::map< BasicDiscriminator, size_t > matchDiscriminatorIndices(edm::Event &event, edm::EDGetTokenT< reco::TauDiscriminatorContainer > discriminatorContainerToken, std::vector< BasicDiscriminator > requiredDiscr)
Definition: DeepTauId.cc:841
void run(Session *session, const NamedTensorList &inputs, const std::vector< std::string > &outputNames, std::vector< Tensor > *outputs, const thread::ThreadPoolOptions &threadPoolOptions)
Definition: TensorFlow.cc:213
void saveInputs(const tensorflow::Tensor &inputs, const std::string &block_name, int n_inputs, const CellGrid *grid=nullptr)
Definition: DeepTauId.cc:1124
const bool disable_CellIndex_workaround_
Definition: DeepTauId.cc:2427
static float getValueNorm(T value, float mean, float sigma, float n_sigmas_max=5)
Definition: DeepTauId.cc:1037
def pv(vc)
Definition: MetAnalyzer.py:7
std::string input_layer_
Definition: DeepTauId.cc:2421
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
float pt_weighted_dr_iso(const reco::PFTau &tau, int dm)
void createEgammaBlockInputs(unsigned idx, const TauCastType &tau, const size_t tau_index, const edm::RefToBase< reco::BaseTau > tau_ref, const reco::Vertex &pv, double rho, const std::vector< pat::Electron > *electrons, const edm::View< reco::Candidate > &pfCands, const Cell &cell_map, TauFunc tau_funcs, bool is_inner)
Definition: DeepTauId.cc:1707
double f[11][100]
static void globalEndJob(const deep_tau::DeepTauCache *cache_)
Definition: DeepTauId.cc:1016
static const std::vector< BasicDiscriminator > requiredBasicDiscriminators_
Definition: DeepTauBase.h:138
DeepTauBase(const edm::ParameterSet &cfg, const OutputCollection &outputs, const DeepTauCache *cache)
Definition: DeepTauBase.cc:91
Definition: value.py:1
ParameterDescriptionBase * add(U const &iLabel, T const &value)
void checkInputs(const tensorflow::Tensor &inputs, const std::string &block_name, int n_inputs, const CellGrid *grid=nullptr) const
Definition: DeepTauId.cc:1068
tensorflow::Session & getSession(const std::string &name="") const
Definition: DeepTauBase.h:57
const_reference at(size_type pos) const
Analysis-level tau class.
Definition: Tau.h:53
const std::map< std::pair< FeatureT, bool >, ScalingParams > scalingParamsMap_v2p1
#define M_PI
constexpr auto deltaR(const T1 &t1, const T2 &t2) -> decltype(t1.eta())
Definition: deltaR.h:30
tensorflow::Tensor getPredictions(edm::Event &event, edm::Handle< TauCollection > taus) override
Definition: DeepTauId.cc:1185
caConstants::TupleMultiplicity const CAHitNtupletGeneratorKernelsGPU::HitToTuple const cms::cuda::AtomicPairCounter GPUCACell const *__restrict__ cells
tensorflow::Tensor getPartialPredictions(bool is_inner)
Definition: DeepTauId.cc:1445
static bool calculateGottfriedJacksonAngleDifference(const TauCastType &tau, const size_t tau_index, double &gj_diff, TauFunc tau_funcs)
Definition: DeepTauId.cc:2363
edm::EDGetTokenT< edm::AssociationVector< reco::PFTauRefProd, std::vector< reco::PFTauTransverseImpactParameterRef > > > pfTauTransverseImpactParameters_token_
Definition: DeepTauId.cc:2420
constexpr auto deltaR2(const T1 &t1, const T2 &t2) -> decltype(t1.eta())
Definition: deltaR.h:16
edm::ValueMap< SingleTauDiscriminatorContainer > TauDiscriminatorContainer
bool discrIndicesMapped_
Definition: DeepTauId.cc:2439
void createTauBlockInputs(const TauCastType &tau, const size_t &tau_index, const edm::RefToBase< reco::BaseTau > tau_ref, const reco::Vertex &pv, double rho, TauFunc tau_funcs)
Definition: DeepTauId.cc:1562
float pt_weighted_dphi_strip(const reco::PFTau &tau, int dm)
void getPredictionsV2(TauCollection::const_reference &tau, const size_t tau_index, const edm::RefToBase< reco::BaseTau > tau_ref, const std::vector< pat::Electron > *electrons, const std::vector< pat::Muon > *muons, const edm::View< reco::Candidate > &pfCands, const reco::Vertex &pv, double rho, std::vector< tensorflow::Tensor > &pred_vector, TauFunc tau_funcs)
Definition: DeepTauId.cc:1305
float eratio(const reco::PFTau &tau)
return ratio of energy in ECAL over sum of energy in ECAL and HCAL
uint8_t andPrediscriminants_
Definition: DeepTauBase.h:111
static constexpr int RPC
Definition: MuonSubdetId.h:13
Analysis-level electron class.
Definition: Electron.h:51
void add(std::string const &label, ParameterSetDescription const &psetDescription)
caConstants::TupleMultiplicity const CAHitNtupletGeneratorKernelsGPU::HitToTuple const cms::cuda::AtomicPairCounter GPUCACell const *__restrict__ uint32_t const *__restrict__ gpuPixelDoublets::CellNeighborsVector const gpuPixelDoublets::CellTracksVector const GPUCACell::OuterHitOfCell const int32_t nHits
edm::Ref< PFTauTransverseImpactParameterCollection > PFTauTransverseImpactParameterRef
presistent reference to a PFTauTransverseImpactParameter
static const std::map< BasicDiscriminator, std::string > stringFromDiscriminator_
Definition: DeepTauBase.h:137
edm::EDGetTokenT< reco::TauDiscriminatorContainer > basicTauDiscriminators_inputToken_
Definition: DeepTauId.cc:2417
bool operator<(DTCELinkId const &lhs, DTCELinkId const &rhs)
Definition: DTCELinkId.h:70
static float calculateGottfriedJacksonAngleDifference(const TauCastType &tau, const size_t tau_index, TauFunc tau_funcs)
Definition: DeepTauId.cc:2385
static bool calculateElectronClusterVarsV2(const pat::Electron &ele, float &cc_ele_energy, float &cc_gamma_energy, int &cc_n_gamma)
Definition: DeepTauId.cc:1045
Particle reconstructed by the particle flow algorithm.
Definition: PFCandidate.h:41
fixed size matrix
HLT enums.
std::array< std::unique_ptr< tensorflow::Tensor >, 2 > eGammaTensor_
Definition: DeepTauId.cc:2429
const bool disable_hcalFraction_workaround_
Definition: DeepTauId.cc:2426
def cache(function)
Definition: utilities.py:3
edm::EDGetTokenT< reco::TauDiscriminatorContainer > basicTauDiscriminatorsdR03_inputToken_
Definition: DeepTauId.cc:2418
const std::map< ValueQuantityType, double > max_value
std::vector< int > tauInputs_indices_
Definition: DeepTauId.cc:2436
std::pair< typename Association::data_type::first_type, double > match(Reference key, Association association, bool bestMatchByMaxValue)
Generic matching function.
Definition: Utils.h:10
float lead_track_chi2(const reco::PFTau &tau)
return chi2 of the leading track ==> deprecated? <==
const int debug_level
Definition: DeepTauId.cc:2424
std::vector< TauDiscInfo< pat::PATTauDiscriminator > > patPrediscriminants_
Definition: DeepTauBase.h:112
vars
Definition: DeepTauId.cc:30
static constexpr int DT
Definition: MuonSubdetId.h:11
Log< level::Warning, false > LogWarning
std::array< std::unique_ptr< tensorflow::Tensor >, 2 > muonTensor_
Definition: DeepTauId.cc:2429
edm::EDGetTokenT< std::vector< pat::Electron > > electrons_token_
Definition: DeepTauId.cc:2414
edm::EDGetTokenT< std::vector< pat::Muon > > muons_token_
Definition: DeepTauId.cc:2415
T operator[](int i) const
long double T
static constexpr int CSC
Definition: MuonSubdetId.h:12
edm::EDGetTokenT< double > rho_token_
Definition: DeepTauId.cc:2416
static void calculateElectronClusterVars(const pat::Electron *ele, float &elecEe, float &elecEgamma)
Definition: DeepTauId.cc:2269
T const & const_reference
Definition: View.h:82
static const std::string subdets[7]
Definition: TrackUtils.cc:60
edm::EDGetTokenT< CandidateCollection > pfcandToken_
Definition: DeepTauBase.h:130
Analysis-level muon class.
Definition: Muon.h:51
std::vector< TauDiscInfo< reco::PFTauDiscriminator > > recoPrediscriminants_
Definition: DeepTauBase.h:113
void countHits(const reco::Muon &muon, std::vector< int > &numHitsDT, std::vector< int > &numHitsCSC, std::vector< int > &numHitsRPC)
Power< A, B >::type pow(const A &a, const B &b)
Definition: Power.h:29
Definition: event.py:1
constexpr int NumberOfOutputs
Definition: DeepTauId.cc:20
std::unique_ptr< tensorflow::Tensor > tauBlockTensor_
Definition: DeepTauId.cc:2428
edm::EDGetTokenT< reco::VertexCollection > vtxToken_
Definition: DeepTauBase.h:131