CMS 3D CMS Logo

SimpleLR4.cc
Go to the documentation of this file.
1 
4 
11 
12 #include <vector>
13 #include <set>
14 #include <algorithm>
15 #include <limits>
16 
17 using namespace std;
18 
19 namespace tmtt {
20 
21  SimpleLR4::SimpleLR4(const Settings* settings) : TrackFitGeneric(settings) {
22  // Initialize digitization parameters
25  zMult_ = pow(2., settings_->zBits()) / settings_->zRange();
28 
32 
39 
49 
52 
55  if (digitize_)
57 
58  debug_ = false; // Enable debug printout.
59  };
60 
61  static bool pair_compare(std::pair<const Stub*, float> a, std::pair<const Stub*, float> b) {
62  return (a.second < b.second);
63  }
64 
66  if (debug_)
67  PrintL1trk() << "=============== FITTING SimpleLR TRACK ====================";
68 
70  settings_,
71  l1track3D.iPhiSec(),
72  l1track3D.iEtaReg(),
73  std::abs(l1track3D.qOverPt()),
74  l1track3D.eta());
75 
77 
78  double phiCentreSec0 = -0.5 * phiNonantWidth_ + 0.5 * phiSectorWidth_;
79  phiSectorCentre_ = phiSectorWidth_ * double(l1track3D.iPhiSec()) - phiCentreSec0;
80 
81  if (digitize_)
83 
84  // Inizialise track fit parameters
85  double qOverPt = 0.;
86  double phiT = 0.;
87  double phi0 = 0.;
88  double z0 = 0.;
89  double zT = 0.;
90  double tanLambda = 0.;
91 
92  // Inizialise Sums
93  double SumRPhi = 0.;
94  double SumR = 0.;
95  double SumPhi = 0.;
96  double SumR2 = 0.;
97  double SumRZ = 0.;
98  double SumZ = 0.;
99 
100  unsigned int numStubs = 0;
101  // Calc helix parameters on Rphi Plane (STEP 1)
102  // This loop calculates the sums needed to calculate the numerators and the denominator to compute the helix parameters in the R-Phi plane (q/pT, phiT)
103  for (Stub* stub : l1track3D.stubs()) {
104  numStubs++;
105 
106  if (digitize_) {
107  const DigitalStub* digiStub = stub->digitalStub();
108 
109  SumRPhi = SumRPhi + digiStub->rt_SF_TF() * digiStub->phiS();
110  SumR = SumR + digiStub->rt_SF_TF();
111  SumPhi = SumPhi + digiStub->phiS();
112  SumR2 = SumR2 + digiStub->rt_SF_TF() * digiStub->rt_SF_TF();
113  if (debug_)
114  PrintL1trk() << "Input stub (digi): phiS " << digiStub->iDigi_PhiS() << " rT " << digiStub->iDigi_Rt()
115  << " z " << digiStub->iDigi_Z();
116  } else {
117  float phi = 0;
118  if (l1track3D.iPhiSec() == 0 and stub->phi() > 0) {
119  phi = stub->phi() - 2 * M_PI;
120  } else if (l1track3D.iPhiSec() == settings_->numPhiSectors() and stub->phi() < 0) {
121  phi = stub->phi() + 2 * M_PI;
122  } else {
123  phi = stub->phi();
124  }
125  SumRPhi = SumRPhi + stub->r() * phi;
126  SumR = SumR + stub->r();
127  SumPhi = SumPhi + phi;
128  SumR2 = SumR2 + stub->r() * stub->r();
129  if (debug_)
130  PrintL1trk() << "InputStub (float): phi " << phi << " r " << stub->r() << " z " << stub->z();
131  }
132  }
133 
134  double numeratorPt, digiNumeratorPt;
135  double denominator, digiDenominator;
136  double numeratorPhi, digiNumeratorPhi;
137  double reciprocal, digiReciprocal;
138  double numeratorZ0;
139  double numeratorLambda;
140 
141  digiNumeratorPt = (numStubs * SumRPhi - SumR * SumPhi);
142  digiDenominator = (numStubs * SumR2 - SumR * SumR);
143  digiNumeratorPhi = (SumR2 * SumPhi - SumR * SumRPhi);
144 
145  if (!digitize_) {
146  qOverPt = (numStubs * SumRPhi - SumR * SumPhi) / (numStubs * SumR2 - SumR * SumR);
147  phi0 = (SumR2 * SumPhi - SumR * SumRPhi) / (numStubs * SumR2 - SumR * SumR);
148  } else {
149  digiNumeratorPt /= pow(2., shiftingBitsPt_);
150  digiNumeratorPt = floor(digiNumeratorPt * numeratorPtMult_);
151  numeratorPt = digiNumeratorPt / numeratorPtMult_;
152 
153  digiNumeratorPhi /= pow(2., shiftingBitsPhi_);
154  digiNumeratorPhi = floor(digiNumeratorPhi * numeratorPhiMult_);
155  numeratorPhi = digiNumeratorPhi / numeratorPhiMult_;
156 
157  digiDenominator /= pow(2., shiftingBitsDenRPhi_);
158  digiDenominator = (floor(digiDenominator * denominatorMult_) + 0.5);
159  denominator = digiDenominator / denominatorMult_;
160  digiReciprocal = (pow(2., dividerBitsHelix_) - 1) / (denominator); // To be moved
161  digiReciprocal = floor(digiReciprocal / denominatorMult_);
162  reciprocal = digiReciprocal * denominatorMult_;
163 
164  qOverPt = numeratorPt * reciprocal / pow(2., dividerBitsHelix_ + shiftingBitsDenRPhi_ - shiftingBitsPt_);
165  phiT = numeratorPhi * reciprocal / pow(2., dividerBitsHelix_ + shiftingBitsDenRPhi_ - shiftingBitsPhi_);
166 
167  qOverPt = floor(qOverPt * qOverPtMult_) / (qOverPtMult_);
168  phiT = floor(phiT * phiTMult_) / phiTMult_;
169  }
170 
171  if (debug_) {
172  if (digitize_) {
173  PrintL1trk() << setw(10) << "Input helix (digi): qOverPt = " << qOverPt << " (" << floor(qOverPt * qOverPtMult_)
174  << "), phiT = " << phiT << " (" << floor(phiT * phiTMult_) << ") ";
175  } else {
176  PrintL1trk() << "Input Helix (float): qOverPt = " << qOverPt << " phi0 " << phi0;
177  }
178  }
179 
180  // ================== RESIDUAL CALCULATION ON RPHI ========================
181  std::vector<std::pair<Stub*, double> > vRes;
182  unsigned int psStubs = 0;
183  for (Stub* stub : l1track3D.stubs()) {
184  if (stub->psModule())
185  psStubs++;
186  double ResPhi;
187 
188  if (digitize_) {
189  const DigitalStub* digiStub = stub->digitalStub();
190 
191  ResPhi =
192  digiStub->iDigi_PhiS() * pow(2., shiftingBitsDenRPhi_ - shiftingBitsPt_) -
193  floor(phiT * phiTMult_) *
195  floor(qOverPt * qOverPtMult_) * digiStub->iDigi_Rt();
196 
197  ResPhi = floor(ResPhi) / resMult_;
198  }
199 
200  else {
201  ResPhi = reco::deltaPhi(stub->phi(), phi0 + qOverPt * stub->r());
202  }
203 
204  double Res = std::abs(ResPhi);
205 
206  std::pair<Stub*, double> ResStubPair(stub, Res);
207  vRes.push_back(ResStubPair);
208  if (debug_) {
209  if (stub->assocTP() != nullptr)
210  PrintL1trk() << " Stub rphi residual " << Res << " TP " << stub->assocTP()->index();
211  else
212  PrintL1trk() << " Stub rphi residual " << Res << " TP nullptr";
213  }
214  }
215 
216  double largestResidual = 9999.;
217  // Find largest residuals
218  while (vRes.size() > minStubLayersRed_ and largestResidual > settings_->ResidualCut()) {
219  std::vector<std::pair<Stub*, double> >::iterator maxResIt = max_element(vRes.begin(), vRes.end(), pair_compare);
220  largestResidual = (*maxResIt).second;
221  if (debug_)
222  PrintL1trk() << "Largest Residual " << largestResidual;
223 
224  if (largestResidual > settings_->ResidualCut()) {
225  if ((*maxResIt).first->psModule()) {
226  if (psStubs > 2) {
227  if (debug_)
228  PrintL1trk() << "removing PS residual " << (*maxResIt).second;
229  vRes.erase(maxResIt);
230  psStubs--;
231  } else {
232  if (debug_)
233  PrintL1trk() << "residual " << (*maxResIt).second << " set to -1. ";
234  (*maxResIt).second = -1.;
235  }
236  } else {
237  vRes.erase(maxResIt);
238  if (debug_)
239  PrintL1trk() << "removing residual " << (*maxResIt).second;
240  }
241  }
242  }
243 
244  std::vector<Stub*> fitStubs;
245  fitStubs.reserve(vRes.size());
246  for (std::pair<Stub*, double> ResStubPair : vRes) {
247  fitStubs.push_back(ResStubPair.first);
248  }
249 
250  phiT = 0.;
251  zT = 0.;
252 
253  SumRPhi = 0.;
254  SumR = 0.;
255  SumPhi = 0.;
256  SumR2 = 0.;
257  SumRZ = 0.;
258  SumZ = 0.;
259  double SumR_ps = 0.;
260  double SumR2_ps = 0.;
261 
262  numStubs = 0;
263  psStubs = 0;
264 
265  for (const Stub* stub : fitStubs) {
266  if (stub->psModule())
267  psStubs++;
268 
269  numStubs++;
270  if (digitize_) {
271  const DigitalStub* digiStub = stub->digitalStub();
272  SumRPhi += digiStub->rt_SF_TF() * digiStub->phiS();
273  SumR += digiStub->rt_SF_TF();
274  SumPhi += digiStub->phiS();
275  SumR2 += digiStub->rt_SF_TF() * digiStub->rt_SF_TF();
276  if (stub->psModule()) {
277  SumRZ += digiStub->rt_SF_TF() * digiStub->z();
278  SumZ += digiStub->z();
279  SumR_ps += digiStub->rt_SF_TF();
280  SumR2_ps += digiStub->rt_SF_TF() * digiStub->rt_SF_TF();
281  }
282  if (debug_) {
283  PrintL1trk() << "phiS " << digiStub->iDigi_PhiS() << " rT " << digiStub->iDigi_Rt() << " z "
284  << digiStub->iDigi_Z();
285  }
286  } else {
287  float phi = 0;
288  if (l1track3D.iPhiSec() == 0 and stub->phi() > 0) {
289  phi = stub->phi() - 2 * M_PI;
290  } else if (l1track3D.iPhiSec() == settings_->numPhiSectors() and stub->phi() < 0) {
291  phi = stub->phi() + 2 * M_PI;
292  } else {
293  phi = stub->phi();
294  }
295 
296  SumRPhi += stub->r() * phi;
297  SumR += stub->r();
298  SumPhi += phi;
299  SumR2 += stub->r() * stub->r();
300  if (stub->psModule()) {
301  SumRZ += stub->r() * stub->z();
302  SumZ += stub->z();
303  SumR_ps += stub->r();
304  SumR2_ps += stub->r() * stub->r();
305  }
306  if (debug_)
307  PrintL1trk() << "phi " << phi << " r " << stub->r() << " z " << stub->z();
308  }
309  }
310 
311  numeratorZ0 = (SumR2_ps * SumZ - SumR_ps * SumRZ);
312  numeratorLambda = (psStubs * SumRZ - SumR_ps * SumZ);
313  numeratorPt = (numStubs * SumRPhi - SumR * SumPhi);
314  denominator = (numStubs * SumR2 - SumR * SumR);
315  double denominatorZ = (psStubs * SumR2_ps - SumR_ps * SumR_ps);
316  numeratorPhi = (SumR2 * SumPhi - SumR * SumRPhi);
317  double reciprocalZ;
318  if (!digitize_) {
319  z0 = numeratorZ0 / denominatorZ;
320  tanLambda = numeratorLambda / denominatorZ;
321  qOverPt = (numStubs * SumRPhi - SumR * SumPhi) / (numStubs * SumR2 - SumR * SumR);
322  phi0 = (SumR2 * SumPhi - SumR * SumRPhi) / (numStubs * SumR2 - SumR * SumR);
323  } else {
324  numeratorPt /= pow(2., shiftingBitsPt_);
325  numeratorPt = floor(numeratorPt * numeratorPtMult_) / numeratorPtMult_;
326 
327  numeratorPhi /= pow(2., shiftingBitsPhi_);
328  numeratorPhi = floor(numeratorPhi * numeratorPhiMult_) / numeratorPhiMult_;
329 
330  numeratorLambda /= pow(2., shiftingBitsLambda_);
331  numeratorLambda = floor(numeratorLambda * numeratorLambdaMult_) / numeratorLambdaMult_;
332 
333  numeratorZ0 /= pow(2., shiftingBitsz0_);
334  numeratorZ0 = floor(numeratorZ0 * numeratorZ0Mult_) / numeratorZ0Mult_;
335 
338  reciprocal = (pow(2., dividerBitsHelix_) - 1) / (denominator);
339  reciprocal = floor(reciprocal / denominatorMult_) * denominatorMult_;
340 
341  denominatorZ /= pow(2., shiftingBitsDenRZ_);
342  denominatorZ = (floor(denominatorZ * denominatorMult_) + 0.5) / denominatorMult_;
343  reciprocalZ = (pow(2., dividerBitsHelixZ_) - 1) / (denominatorZ);
344  reciprocalZ = floor(reciprocalZ / denominatorMult_) * denominatorMult_;
345 
346  qOverPt = numeratorPt * reciprocal / pow(2., dividerBitsHelix_ + shiftingBitsDenRPhi_ - shiftingBitsPt_);
347  phiT = numeratorPhi * reciprocal / pow(2., dividerBitsHelix_ + shiftingBitsDenRPhi_ - shiftingBitsPhi_);
348 
349  tanLambda =
350  numeratorLambda * reciprocalZ / pow(2., dividerBitsHelixZ_ + shiftingBitsDenRZ_ - shiftingBitsLambda_);
351  zT = numeratorZ0 * reciprocalZ / pow(2., dividerBitsHelixZ_ + shiftingBitsDenRZ_ - shiftingBitsz0_);
352 
353  phi0 = phiSectorCentre_ + phiT - qOverPt * settings_->chosenRofPhi();
354  z0 = zT - tanLambda * settings_->chosenRofPhi();
355 
356  qOverPt = floor(qOverPt * qOverPtMult_) / qOverPtMult_;
357  phiT = floor(phiT * phiTMult_) / phiTMult_;
358  }
359 
360  if (debug_ and digitize_) {
361  PrintL1trk() << "HT mbin " << int(l1track3D.cellLocationHT().first) - 16 << " cbin "
362  << int(l1track3D.cellLocationHT().second) - 32 << " iPhi " << l1track3D.iPhiSec() << " iEta "
363  << l1track3D.iEtaReg();
364  PrintL1trk() << "Second Helix variables: numeratorPt = " << numeratorPt << ", numeratorPhi = " << numeratorPhi
365  << ", numeratorZ0 = " << numeratorZ0 << " numeratorLambda = " << numeratorLambda
366  << " denominator = " << denominator << " reciprocal = " << reciprocal
367  << " denominatorZ = " << denominatorZ << " reciprocalZ = " << reciprocalZ;
368  PrintL1trk() << setw(10) << "Final Helix parameters: qOverPt = " << qOverPt << " ("
369  << floor(qOverPt * qOverPtMult_) << "), phiT = " << phiT << " (" << floor(phiT * phiTMult_)
370  << "), zT = " << zT << " (" << floor(zT * z0Mult_) << "), tanLambda = " << tanLambda << " ("
371  << floor(tanLambda * tanLambdaMult_) << ")"
372  << " z0 " << z0;
373  } else if (debug_) {
374  PrintL1trk() << setw(10) << "Final Helix parameters: qOverPt = " << qOverPt << ", phi0 = " << phi0
375  << ", z0 = " << z0 << ", tanLambda = " << tanLambda;
376  }
377 
378  double chi2_phi = 0.;
379  double chi2_z = 0.;
380 
381  for (const Stub* stub : fitStubs) {
382  double ResPhi = 0.;
383  double ResZ = 0.;
384  if (digitize_) {
385  const DigitalStub* digiStub = stub->digitalStub();
386  ResPhi = digiStub->phiS() - phiT - qOverPt * digiStub->rt_SF_TF();
387  ResZ = digiStub->z() - zT - tanLambda * digiStub->rt_SF_TF();
388  } else {
389  ResPhi = reco::deltaPhi(stub->phi(), phi0 + qOverPt * stub->r());
390  ResZ = stub->z() - z0 - tanLambda * stub->r();
391  }
392 
393  double RPhiSigma = 0.0002;
394  float RZSigma = stub->sigmaZ() + std::abs(tanLambda) * stub->sigmaR();
395 
396  if (not stub->barrel())
397  RPhiSigma = 0.0004;
398 
399  if (digitize_) {
400  RPhiSigma = floor(RPhiSigma * phiMult_) / phiMult_;
401  }
402 
403  ResPhi /= RPhiSigma;
404  ResZ /= RZSigma;
405 
406  chi2_phi += std::abs(ResPhi * ResPhi);
407  chi2_z += std::abs(ResZ * ResZ);
408  if (debug_) {
409  PrintL1trk() << "Stub ResPhi " << ResPhi * RPhiSigma << " ResSigma " << RPhiSigma << " Res " << ResPhi
410  << " chi2 " << chi2_phi;
411  PrintL1trk() << "Stub ResZ " << ResZ * RZSigma << " ResSigma " << RZSigma << " Res " << ResZ << " chi2 "
412  << chi2_z;
413  }
414  }
415  qOverPt /= invPtToDPhi_;
416 
417  bool accepted = false;
418 
419  //double chi2 = chi2_phi; // Ignore r-z residuals due to poor 2S resolution?
420  double chi2 = chi2_phi + chi2_z;
421  if (digitize_)
422  chi2 = floor(chi2 * chi2Mult_) / chi2Mult_;
423 
424  constexpr unsigned int nHelixPar = 4;
425  float dof = 2 * fitStubs.size() - nHelixPar;
426  float chi2dof = chi2 / dof;
427  if (chi2 < chi2cut_)
428  accepted = true;
429 
430  if (debug_)
431  PrintL1trk() << "qOverPt " << qOverPt << " phiT " << phiT;
432 
433  // This condition can only happen if cfg param TrackFitCheat = True.
434  if (fitStubs.size() < minStubLayersRed_)
435  accepted = false;
436 
437  // Kinematic cuts -- NOT YET IN FIRMWARE!!!
438  constexpr float tolerance = 0.1;
439  if (std::abs(qOverPt) > 1. / (settings_->houghMinPt() - tolerance))
440  accepted = false;
441  if (std::abs(z0) > 20.)
442  accepted = false;
443 
444  if (accepted) {
445  // Create the L1fittedTrack object
446  const unsigned int hitPattern = 0; // FIX: Needs setting
447  L1fittedTrack fitTrk(
448  settings_, &l1track3D, fitStubs, hitPattern, qOverPt, 0., phi0, z0, tanLambda, chi2_phi, chi2_z, nHelixPar);
449 
450  if (settings_->enableDigitize())
451  fitTrk.digitizeTrack("SimpleLR4");
452 
453  if (debug_ and digitize_) {
454  PrintL1trk() << "Digitized parameters ";
455  PrintL1trk() << "HT mbin " << int(l1track3D.cellLocationHT().first) - 16 << " cbin "
456  << int(l1track3D.cellLocationHT().second) - 32 << " iPhi " << l1track3D.iPhiSec() << " iEta "
457  << l1track3D.iEtaReg();
458  PrintL1trk() << setw(10) << "First Helix parameters: qOverPt = " << fitTrk.qOverPt() << " oneOver2r "
459  << fitTrk.digitaltrack()->oneOver2r() << " ("
460  << floor(fitTrk.digitaltrack()->oneOver2r() * qOverPtMult_)
461  << "), phi0 = " << fitTrk.digitaltrack()->phi0() << " (" << fitTrk.digitaltrack()->iDigi_phi0rel()
462  << "), zT = " << zT << " (" << floor(zT * z0Mult_) << "), tanLambda = " << tanLambda << " ("
463  << floor(tanLambda * tanLambdaMult_) << ")";
464  }
465 
466  if (debug_) {
467  PrintL1trk() << "FitTrack helix parameters " << int(fitTrk.cellLocationFit().first) - 16 << ", "
468  << int(fitTrk.cellLocationFit().second) - 32 << " HT parameters "
469  << int(fitTrk.cellLocationHT().first) - 16 << ", " << int(fitTrk.cellLocationHT().second) - 32;
470 
471  if (fitTrk.matchedTP() != nullptr) {
472  PrintL1trk() << "True track: chi2/ndf " << chi2dof;
473  PrintL1trk() << "TP qOverPt " << fitTrk.matchedTP()->qOverPt() << " phi0 " << fitTrk.matchedTP()->phi0();
474  if (!accepted)
475  PrintL1trk() << "Track rejected " << chi2 << " chi2/ndof " << chi2dof;
476  } else {
477  PrintL1trk() << "Fake track!!! " << chi2 << " chi2/ndof " << chi2dof;
478  }
479  PrintL1trk() << "layers in track " << fitTrk.numLayers();
480  }
481 
482  return fitTrk;
483 
484  } else {
485  L1fittedTrack rejectedTrk;
486  return rejectedTrk;
487  }
488  }
489 
490 } // namespace tmtt
unsigned int iEtaReg() const override
Definition: L1track3D.h:175
constexpr double deltaPhi(double phi1, double phi2)
Definition: deltaPhi.h:26
unsigned int slr_oneOver2rBits() const
Definition: Settings.h:351
double invPtToDphi() const
Definition: Settings.h:397
unsigned int shiftingBitsz0_
Definition: SimpleLR4.h:59
unsigned int shiftingBitsPhi_
Definition: SimpleLR4.h:55
unsigned int numLayers() const override
bool enableDigitize() const
Definition: Settings.h:80
L1fittedTrack fit(const L1track3D &l1track3D) override
Definition: SimpleLR4.cc:65
int iDigi_Rt() const
Definition: DigitalStub.h:54
float tanLambdaMult_
Definition: SimpleLR4.h:39
double slr_phi0Range() const
Definition: Settings.h:356
float qOverPt() const override
Definition: L1track3D.h:149
unsigned int numPhiNonants() const
Definition: Settings.h:109
float qOverPtMult_
Definition: SimpleLR4.h:36
float numeratorPhiMult_
Definition: SimpleLR4.h:43
std::pair< unsigned int, unsigned int > cellLocationHT() const override
double slr_chi2cut() const
ChiSquare Cut.
Definition: Settings.h:290
const double tolerance
unsigned int shiftingBitsDenRZ_
Definition: SimpleLR4.h:57
float numeratorLambdaMult_
Definition: SimpleLR4.h:42
double phiSRange() const
Definition: Settings.h:84
float resMult_
Definition: SimpleLR4.h:46
float phi0() const
Definition: TP.h:57
unsigned int ShiftingBitsPt() const
Number of bits to reduce the qOverPt parameter numerator calculation weight.
Definition: Settings.h:282
unsigned int ShiftingBitsZ0() const
Number of bits to reduce the tanLambda parameter calculation weight.
Definition: Settings.h:288
void digitizeTrack(const std::string &fitterName)
const std::vector< Stub * > & stubs() const override
Definition: L1track3D.h:95
std::pair< unsigned int, unsigned int > cellLocationHT() const override
Definition: L1track3D.h:101
unsigned int dividerBitsHelix() const
Number of bits to be used in hardware to compute the division needed to calculate the helix parameter...
Definition: Settings.h:274
unsigned int minStubLayersRed_
Definition: SimpleLR4.h:50
double zRange() const
Definition: Settings.h:88
unsigned int ShiftingBitsDenRZ() const
Number of bits to reduce the RZ helix parameter denominator calculation weight.
Definition: Settings.h:280
unsigned int shiftingBitsLambda_
Definition: SimpleLR4.h:60
unsigned int phiSBits() const
Definition: Settings.h:83
float numeratorZ0Mult_
Definition: SimpleLR4.h:41
unsigned int iPhiSec() const override
Definition: L1track3D.h:174
static bool pair_compare(std::pair< const Stub *, float > a, std::pair< const Stub *, float > b)
Definition: SimpleLR4.cc:61
std::pair< unsigned int, unsigned int > cellLocationFit() const
double slr_z0Range() const
Definition: Settings.h:358
float invPtToDPhi_
Definition: SimpleLR4.h:48
float phiTMult_
Definition: SimpleLR4.h:37
float phiNonantWidth_
Definition: SimpleLR4.h:31
unsigned int zBits() const
Definition: Settings.h:87
unsigned int ShiftingBitsLambda() const
Number of bits to reduce the tanLambda parameter calculation weight.
Definition: Settings.h:286
float qOverPt() const override
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
float denominatorMult_
Definition: SimpleLR4.h:44
float chosenRofPhi_
Definition: SimpleLR4.h:49
int iDigi_Z() const
Definition: DigitalStub.h:56
const Settings * settings_
float phiMult_
Definition: SimpleLR4.h:33
unsigned int slr_chisquaredBits() const
Definition: Settings.h:361
unsigned int dividerBitsHelix_
Definition: SimpleLR4.h:52
unsigned int dividerBitsHelixZ_
Definition: SimpleLR4.h:53
const DigitalTrack * digitaltrack() const
unsigned int ShiftingBitsPhi() const
Number of bits to reduce the PhiT parameter numerator calculation weight.
Definition: Settings.h:284
double chosenRofPhi() const
Definition: Settings.h:112
#define M_PI
float numeratorPtMult_
Definition: SimpleLR4.h:40
double slr_oneOver2rRange() const
Definition: Settings.h:352
unsigned int shiftingBitsPt_
Definition: SimpleLR4.h:58
float phi0() const
Definition: DigitalTrack.h:48
unsigned int slr_tanlambdaBits() const
Definition: Settings.h:359
unsigned int shiftingBitsDenRPhi_
Definition: SimpleLR4.h:56
const TP * matchedTP() const override
=== This is the base class for the linearised chi-squared track fit algorithms.
Definition: Array2D.h:16
double slr_chisquaredRange() const
Definition: Settings.h:362
double ResidualCut() const
Cut on RPhi Residual (radians)
Definition: Settings.h:292
double slr_tanlambdaRange() const
Definition: Settings.h:360
double b
Definition: hdecay.h:118
bool digitizeSLR() const
Definition: Settings.h:272
float qOverPt() const
Definition: TP.h:50
double houghMinPt() const
Definition: Settings.h:135
double phiS() const
Definition: DigitalStub.h:63
float chi2cut_
Definition: SimpleLR4.h:47
float phiSectorWidth_
Definition: SimpleLR4.h:29
int iDigi_PhiS() const
Definition: DigitalStub.h:51
float oneOver2r() const
Definition: DigitalTrack.h:46
double a
Definition: hdecay.h:119
float eta() const
Definition: L1track3D.h:162
double z() const
Definition: DigitalStub.h:69
float chi2Mult_
Definition: SimpleLR4.h:45
unsigned int slr_phi0Bits() const
Definition: Settings.h:355
int iDigi_phi0rel() const
Definition: DigitalTrack.h:33
unsigned int rtBits() const
Definition: Settings.h:85
unsigned int ShiftingBitsDenRPhi() const
Number of bits to reduce the RPhi helix parameter denominator calculation weight. ...
Definition: Settings.h:277
unsigned int numLayerCut(Utility::AlgoStep algo, const Settings *settings, unsigned int iPhiSec, unsigned int iEtaReg, float invPt, float eta=0.)
Definition: Utility.cc:141
unsigned int dividerBitsHelixZ() const
Definition: Settings.h:275
unsigned int numPhiSectors() const
Definition: Settings.h:110
unsigned int slr_z0Bits() const
Definition: Settings.h:357
double rtRange() const
Definition: Settings.h:86
float phiSectorCentre_
Definition: SimpleLR4.h:30
Power< A, B >::type pow(const A &a, const B &b)
Definition: Power.h:29
double rt_SF_TF() const
Definition: DigitalStub.h:68