CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
List of all members | Public Types | Public Member Functions | Protected Member Functions | Protected Attributes
TMultiDimFet Class Reference

#include <TMultiDimFet.h>

Inheritance diagram for TMultiDimFet:

Public Types

enum  EMDFPolyType { kMonomials, kChebyshev, kLegendre }
 

Public Member Functions

virtual void AddRow (const Double_t *x, Double_t D, Double_t E=0)
 
virtual void AddTestRow (const Double_t *x, Double_t D, Double_t E=0)
 
void Clear (Option_t *option="") override
 
virtual Double_t Eval (const Double_t *x, const Double_t *coeff=nullptr) const
 
virtual void FindParameterization (double precision)
 
Double_t GetChi2 () const
 
const TVectorD * GetCoefficients () const
 
const TMatrixD * GetCorrelationMatrix () const
 
Double_t GetError () const
 
std::vector< Int_t > GetFunctionCodes () const
 
const TMatrixD * GetFunctions () const
 
virtual TList * GetHistograms () const
 
Double_t GetMaxAngle () const
 
Int_t GetMaxFunctions () const
 
std::vector< Int_t > GetMaxPowers () const
 
Double_t GetMaxQuantity () const
 
Int_t GetMaxStudy () const
 
Int_t GetMaxTerms () const
 
const TVectorD * GetMaxVariables () const
 
Double_t GetMeanQuantity () const
 
const TVectorD * GetMeanVariables () const
 
Double_t GetMinAngle () const
 
Double_t GetMinQuantity () const
 
Double_t GetMinRelativeError () const
 
const TVectorD * GetMinVariables () const
 
Int_t GetNCoefficients () const
 
Int_t GetNVariables () const
 
Int_t GetPolyType () const
 
std::vector< Int_t > GetPowerIndex () const
 
Double_t GetPowerLimit () const
 
std::vector< Int_t > GetPowers () const
 
Double_t GetPrecision () const
 
const TVectorD * GetQuantity () const
 
Double_t GetResidualMax () const
 
Int_t GetResidualMaxRow () const
 
Double_t GetResidualMin () const
 
Int_t GetResidualMinRow () const
 
Double_t GetResidualSumSq () const
 
Double_t GetRMS () const
 
Int_t GetSampleSize () const
 
const TVectorD * GetSqError () const
 
Double_t GetSumSqAvgQuantity () const
 
Double_t GetSumSqQuantity () const
 
Double_t GetTestError () const
 
Double_t GetTestPrecision () const
 
const TVectorD * GetTestQuantity () const
 
Int_t GetTestSampleSize () const
 
const TVectorD * GetTestSqError () const
 
const TVectorD * GetTestVariables () const
 
const TVectorD * GetVariables () const
 
Bool_t IsFolder () const override
 
virtual Double_t MakeChi2 (const Double_t *coeff=nullptr)
 
virtual void MakeCode (const char *functionName="MDF", Option_t *option="")
 
virtual void MakeHistograms (Option_t *option="A")
 
virtual void MakeMethod (const Char_t *className="MDF", Option_t *option="")
 
const TMultiDimFetoperator= (const TMultiDimFet &in)
 
void Print (Option_t *option="ps") const override
 
virtual void PrintPolynomialsSpecial (Option_t *option="m") const
 
void ReducePolynomial (double error)
 
void SetMaxAngle (Double_t angle=0)
 
void SetMaxFunctions (Int_t n)
 
void SetMaxPowers (const Int_t *powers)
 
void SetMaxStudy (Int_t n)
 
void SetMaxTerms (Int_t terms)
 
void SetMinAngle (Double_t angle=1)
 
void SetMinRelativeError (Double_t error)
 
void SetPowerLimit (Double_t limit=1e-3)
 
virtual void SetPowers (const Int_t *powers, Int_t terms)
 
 TMultiDimFet ()
 
 TMultiDimFet (Int_t dimension, EMDFPolyType type=kMonomials, Option_t *option="")
 
void ZeroDoubiousCoefficients (double error)
 
 ~TMultiDimFet () override
 

Protected Member Functions

virtual Double_t EvalControl (const Int_t *powers)
 
virtual Double_t EvalFactor (Int_t p, Double_t x) const
 
virtual void MakeCandidates ()
 
virtual void MakeCoefficientErrors ()
 
virtual void MakeCoefficients ()
 
virtual void MakeCorrelation ()
 
virtual Double_t MakeGramSchmidt (Int_t function)
 
virtual void MakeNormalized ()
 
virtual void MakeParameterization ()
 
virtual void MakeRealCode (const char *filename, const char *classname, Option_t *option="")
 
virtual Bool_t Select (const Int_t *iv)
 
virtual Bool_t TestFunction (Double_t squareResidual, Double_t dResidur)
 

Protected Attributes

Double_t fChi2
 Root mean square of fit. More...
 
TVectorD fCoefficients
 Model matrix. More...
 
TVectorD fCoefficientsRMS
 
Double_t fCorrelationCoeff
 Relative precision of test. More...
 
TMatrixD fCorrelationMatrix
 Multi Correlation coefficient. More...
 
Double_t fError
 Exit code of parameterisation. More...
 
std::vector< Int_t > fFunctionCodes
 
TMatrixD fFunctions
 Control parameter. More...
 
Byte_t fHistogramMask
 List of histograms. More...
 
TList * fHistograms
 Multi Correlation coefficient. More...
 
Bool_t fIsUserFunction
 
Bool_t fIsVerbose
 
Double_t fMaxAngle
 Min angle for acepting new function. More...
 
Int_t fMaxFunctions
 Functions evaluated over sample. More...
 
Int_t fMaxFunctionsTimesNVariables
 maximum powers from fit, ex-array More...
 
std::vector< Int_t > fMaxPowers
 Min relative error accepted. More...
 
std::vector< Int_t > fMaxPowersFinal
 Norm of the evaluated functions. More...
 
Double_t fMaxQuantity
 
Double_t fMaxResidual
 Vector of the final residuals. More...
 
Int_t fMaxResidualRow
 Min redsidual value. More...
 
Int_t fMaxStudy
 acceptance code, ex-array More...
 
Int_t fMaxTerms
 Max angle for acepting new function. More...
 
TVectorD fMaxVariables
 mean value of independent variables More...
 
Double_t fMeanQuantity
 Training sample, error in quantity. More...
 
TVectorD fMeanVariables
 
Double_t fMinAngle
 Size of test sample. More...
 
Double_t fMinQuantity
 Max value of dependent quantity. More...
 
Double_t fMinRelativeError
 
Double_t fMinResidual
 Max redsidual value. More...
 
Int_t fMinResidualRow
 Row giving max residual. More...
 
TVectorD fMinVariables
 
Int_t fNCoefficients
 Sum of Square residuals. More...
 
Int_t fNVariables
 Training sample, independent variables. More...
 
TVectorD fOrthCoefficients
 
TMatrixD fOrthCurvatureMatrix
 The model coefficients. More...
 
TVectorD fOrthFunctionNorms
 As above, but orthogonalised. More...
 
TMatrixD fOrthFunctions
 max functions to study More...
 
Int_t fParameterisationCode
 Chi square of fit. More...
 
EMDFPolyType fPolyType
 Bit pattern of hisograms used. More...
 
std::vector< Int_t > fPowerIndex
 
Double_t fPowerLimit
 maximum powers, ex-array More...
 
std::vector< Int_t > fPowers
 
Double_t fPrecision
 Error from test. More...
 
TVectorD fQuantity
 
TVectorD fResiduals
 
Double_t fRMS
 Vector of RMS of coefficients. More...
 
Int_t fSampleSize
 
Bool_t fShowCorrelation
 
TVectorD fSqError
 Training sample, dependent quantity. More...
 
Double_t fSumSqAvgQuantity
 SumSquare of dependent quantity. More...
 
Double_t fSumSqQuantity
 Min value of dependent quantity. More...
 
Double_t fSumSqResidual
 Row giving min residual. More...
 
Double_t fTestCorrelationCoeff
 Correlation matrix. More...
 
Double_t fTestError
 Error from parameterization. More...
 
Double_t fTestPrecision
 Relative precision of param. More...
 
TVectorD fTestQuantity
 Size of training sample. More...
 
Int_t fTestSampleSize
 Test sample, independent variables. More...
 
TVectorD fTestSqError
 Test sample, dependent quantity. More...
 
TVectorD fTestVariables
 Test sample, Error in quantity. More...
 
TVectorD fVariables
 Sum of squares away from mean. More...
 

Detailed Description

Definition at line 36 of file TMultiDimFet.h.

Member Enumeration Documentation

Enumerator
kMonomials 
kChebyshev 
kLegendre 

Definition at line 38 of file TMultiDimFet.h.

Constructor & Destructor Documentation

TMultiDimFet::TMultiDimFet ( )

Definition at line 51 of file TMultiDimFet.cc.

References fHistogramMask, fHistograms, fIsUserFunction, fMaxAngle, fMaxQuantity, fMaxVariables, fMeanQuantity, fMinAngle, fMinQuantity, fMinVariables, fNVariables, fPolyType, fPowerLimit, fSampleSize, fShowCorrelation, fSumSqAvgQuantity, fSumSqQuantity, and kMonomials.

51  {
52  // Empty CTOR. Do not use
53  fMeanQuantity = 0;
54  fMaxQuantity = 0;
55  fMinQuantity = 0;
56  fSumSqQuantity = 0;
58  fPowerLimit = 1;
59 
60  fMaxAngle = 0;
61  fMinAngle = 1;
62 
63  fNVariables = 0;
64  fMaxVariables = 0;
65  fMinVariables = 0;
66  fSampleSize = 0;
67 
68  fMaxAngle = 0;
69  fMinAngle = 0;
70 
72  fShowCorrelation = kFALSE;
73 
74  fIsUserFunction = kFALSE;
75 
76  fHistograms = nullptr;
77  fHistogramMask = 0;
78 
79  //fFitter = nullptr;
80  //fgInstance = nullptr;
81 }
Double_t fMaxQuantity
Definition: TMultiDimFet.h:44
Double_t fSumSqQuantity
Min value of dependent quantity.
Definition: TMultiDimFet.h:46
Double_t fMinAngle
Size of test sample.
Definition: TMultiDimFet.h:63
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
Double_t fSumSqAvgQuantity
SumSquare of dependent quantity.
Definition: TMultiDimFet.h:47
Double_t fMinQuantity
Max value of dependent quantity.
Definition: TMultiDimFet.h:45
EMDFPolyType fPolyType
Bit pattern of hisograms used.
Definition: TMultiDimFet.h:112
Byte_t fHistogramMask
List of histograms.
Definition: TMultiDimFet.h:108
Double_t fMaxAngle
Min angle for acepting new function.
Definition: TMultiDimFet.h:64
Double_t fPowerLimit
maximum powers, ex-array
Definition: TMultiDimFet.h:68
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
Bool_t fShowCorrelation
Definition: TMultiDimFet.h:113
Double_t fMeanQuantity
Training sample, error in quantity.
Definition: TMultiDimFet.h:43
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
TList * fHistograms
Multi Correlation coefficient.
Definition: TMultiDimFet.h:107
Int_t fSampleSize
Definition: TMultiDimFet.h:55
Bool_t fIsUserFunction
Definition: TMultiDimFet.h:114
TMultiDimFet::TMultiDimFet ( Int_t  dimension,
EMDFPolyType  type = kMonomials,
Option_t *  option = "" 
)

Definition at line 159 of file TMultiDimFet.cc.

References pat::helper::ParametrizationHelper::dimension(), fError, fHistogramMask, fHistograms, fIsUserFunction, fIsVerbose, fMaxAngle, fMaxFunctions, fMaxFunctionsTimesNVariables, fMaxPowers, fMaxPowersFinal, fMaxQuantity, fMaxVariables, fMeanQuantity, fMinAngle, fMinQuantity, fMinRelativeError, fMinVariables, fNVariables, fParameterisationCode, fPolyType, fPowerLimit, fPrecision, fSampleSize, fShowCorrelation, fSumSqAvgQuantity, fSumSqQuantity, fTestError, fTestPrecision, fTestSampleSize, and runTheMatrix::opt.

160  : TNamed("multidimfit", "Multi-dimensional fit object"),
163  fVariables(dimension * 100),
167  // Constructor
168  // Second argument is the type of polynomials to use in
169  // parameterisation, one of:
170  // TMultiDimFet::kMonomials
171  // TMultiDimFet::kChebyshev
172  // TMultiDimFet::kLegendre
173  //
174  // Options:
175  // K Compute (k)correlation matrix
176  // V Be verbose
177  //
178  // Default is no options.
179  //
180 
181  //fgInstance = this;
182 
183  fMeanQuantity = 0;
184  fMaxQuantity = 0;
185  fMinQuantity = 0;
186  fSumSqQuantity = 0;
187  fSumSqAvgQuantity = 0;
188  fPowerLimit = 1;
189 
190  fMaxAngle = 0;
191  fMinAngle = 1;
192 
194  fMaxVariables = 0;
196  fMinVariables = 0;
197  fSampleSize = 0;
198  fTestSampleSize = 0;
199  fMinRelativeError = 0.01;
200  fError = 0;
201  fTestError = 0;
202  fPrecision = 0;
203  fTestPrecision = 0;
205 
206  fPolyType = type;
207  fShowCorrelation = kFALSE;
208  fIsVerbose = kFALSE;
209 
210  TString opt = option;
211  opt.ToLower();
212 
213  if (opt.Contains("k"))
214  fShowCorrelation = kTRUE;
215  if (opt.Contains("v"))
216  fIsVerbose = kTRUE;
217 
218  fIsUserFunction = kFALSE;
219 
220  fHistograms = nullptr;
221  fHistogramMask = 0;
222 
223  fMaxPowers.resize(dimension);
224  fMaxPowersFinal.resize(dimension);
225  //fFitter = nullptr;
226 }
Double_t fMaxQuantity
Definition: TMultiDimFet.h:44
Double_t fSumSqQuantity
Min value of dependent quantity.
Definition: TMultiDimFet.h:46
Double_t fMinAngle
Size of test sample.
Definition: TMultiDimFet.h:63
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
Int_t fTestSampleSize
Test sample, independent variables.
Definition: TMultiDimFet.h:61
Double_t fSumSqAvgQuantity
SumSquare of dependent quantity.
Definition: TMultiDimFet.h:47
Double_t fMinQuantity
Max value of dependent quantity.
Definition: TMultiDimFet.h:45
Int_t fParameterisationCode
Chi square of fit.
Definition: TMultiDimFet.h:97
EMDFPolyType fPolyType
Bit pattern of hisograms used.
Definition: TMultiDimFet.h:112
Byte_t fHistogramMask
List of histograms.
Definition: TMultiDimFet.h:108
Double_t fMaxAngle
Min angle for acepting new function.
Definition: TMultiDimFet.h:64
Double_t fPowerLimit
maximum powers, ex-array
Definition: TMultiDimFet.h:68
Double_t fPrecision
Error from test.
Definition: TMultiDimFet.h:101
Double_t fTestError
Error from parameterization.
Definition: TMultiDimFet.h:100
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
Bool_t fIsVerbose
Definition: TMultiDimFet.h:115
Bool_t fShowCorrelation
Definition: TMultiDimFet.h:113
TVectorD fQuantity
Definition: TMultiDimFet.h:41
Double_t fMinRelativeError
Definition: TMultiDimFet.h:66
Double_t fMeanQuantity
Training sample, error in quantity.
Definition: TMultiDimFet.h:43
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
Double_t fTestPrecision
Relative precision of param.
Definition: TMultiDimFet.h:102
TList * fHistograms
Multi Correlation coefficient.
Definition: TMultiDimFet.h:107
TVectorD fVariables
Sum of squares away from mean.
Definition: TMultiDimFet.h:49
Int_t fMaxFunctions
Functions evaluated over sample.
Definition: TMultiDimFet.h:71
Int_t fSampleSize
Definition: TMultiDimFet.h:55
Bool_t fIsUserFunction
Definition: TMultiDimFet.h:114
Double_t fError
Exit code of parameterisation.
Definition: TMultiDimFet.h:99
Int_t fMaxFunctionsTimesNVariables
maximum powers from fit, ex-array
Definition: TMultiDimFet.h:79
TVectorD fSqError
Training sample, dependent quantity.
Definition: TMultiDimFet.h:42
std::vector< Int_t > fMaxPowers
Min relative error accepted.
Definition: TMultiDimFet.h:67
TVectorD fMeanVariables
Definition: TMultiDimFet.h:51
std::vector< Int_t > fMaxPowersFinal
Norm of the evaluated functions.
Definition: TMultiDimFet.h:78
uint32_t dimension(pat::CandKinResolution::Parametrization parametrization)
Returns the number of free parameters in a parametrization (3 or 4)
TMultiDimFet::~TMultiDimFet ( )
override

Definition at line 229 of file TMultiDimFet.cc.

References fHistograms.

229  {
230  if (fHistograms)
231  fHistograms->Clear("nodelete");
232  delete fHistograms;
233 }
TList * fHistograms
Multi Correlation coefficient.
Definition: TMultiDimFet.h:107

Member Function Documentation

void TMultiDimFet::AddRow ( const Double_t *  x,
Double_t  D,
Double_t  E = 0 
)
virtual

Definition at line 236 of file TMultiDimFet.cc.

References fMaxQuantity, fMaxVariables, fMeanQuantity, fMeanVariables, fMinQuantity, fMinVariables, fNVariables, fQuantity, fSampleSize, fSqError, fSumSqQuantity, fVariables, mps_fire::i, dqmiolumiharvest::j, and findQualityFiles::size.

Referenced by LHCOpticsApproximator::Train().

236  {
237  // Add a row consisting of fNVariables independent variables, the
238  // known, dependent quantity, and optionally, the square error in
239  // the dependent quantity, to the training sample to be used for the
240  // parameterization.
241  // The mean of the variables and quantity is calculated on the fly,
242  // as outlined in TPrincipal::AddRow.
243  // This sample should be representive of the problem at hand.
244  // Please note, that if no error is given Poisson statistics is
245  // assumed and the square error is set to the value of dependent
246  // quantity. See also the
247  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
248  if (!x)
249  return;
250 
251  if (++fSampleSize == 1) {
252  fMeanQuantity = D;
253  fMaxQuantity = D;
254  fMinQuantity = D;
255  } else {
256  fMeanQuantity *= 1 - 1. / Double_t(fSampleSize);
257  fMeanQuantity += D / Double_t(fSampleSize);
258  fSumSqQuantity += D * D;
259 
260  if (D >= fMaxQuantity)
261  fMaxQuantity = D;
262  if (D <= fMinQuantity)
263  fMinQuantity = D;
264  }
265 
266  // If the vector isn't big enough to hold the new data, then
267  // expand the vector by half it's size.
268  Int_t size = fQuantity.GetNrows();
269  if (fSampleSize > size) {
270  fQuantity.ResizeTo(size + size / 2);
271  fSqError.ResizeTo(size + size / 2);
272  }
273 
274  // Store the value
275  fQuantity(fSampleSize - 1) = D;
276  fSqError(fSampleSize - 1) = (E == 0 ? D : E);
277 
278  // Store data point in internal vector
279  // If the vector isn't big enough to hold the new data, then
280  // expand the vector by half it's size
281  size = fVariables.GetNrows();
282  if (fSampleSize * fNVariables > size)
283  fVariables.ResizeTo(size + size / 2);
284 
285  // Increment the data point counter
286  Int_t i, j;
287  for (i = 0; i < fNVariables; i++) {
288  if (fSampleSize == 1) {
289  fMeanVariables(i) = x[i];
290  fMaxVariables(i) = x[i];
291  fMinVariables(i) = x[i];
292  } else {
293  fMeanVariables(i) *= 1 - 1. / Double_t(fSampleSize);
294  fMeanVariables(i) += x[i] / Double_t(fSampleSize);
295 
296  // Update the maximum value for this component
297  if (x[i] >= fMaxVariables(i))
298  fMaxVariables(i) = x[i];
299 
300  // Update the minimum value for this component
301  if (x[i] <= fMinVariables(i))
302  fMinVariables(i) = x[i];
303  }
304 
305  // Store the data.
306  j = (fSampleSize - 1) * fNVariables + i;
307  fVariables(j) = x[i];
308  }
309 }
Double_t fMaxQuantity
Definition: TMultiDimFet.h:44
Double_t fSumSqQuantity
Min value of dependent quantity.
Definition: TMultiDimFet.h:46
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
Double_t fMinQuantity
Max value of dependent quantity.
Definition: TMultiDimFet.h:45
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
TVectorD fQuantity
Definition: TMultiDimFet.h:41
Double_t fMeanQuantity
Training sample, error in quantity.
Definition: TMultiDimFet.h:43
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
DecomposeProduct< arg, typename Div::arg > D
Definition: Factorize.h:141
TVectorD fVariables
Sum of squares away from mean.
Definition: TMultiDimFet.h:49
Int_t fSampleSize
Definition: TMultiDimFet.h:55
TVectorD fSqError
Training sample, dependent quantity.
Definition: TMultiDimFet.h:42
TVectorD fMeanVariables
Definition: TMultiDimFet.h:51
tuple size
Write out results.
void TMultiDimFet::AddTestRow ( const Double_t *  x,
Double_t  D,
Double_t  E = 0 
)
virtual

Definition at line 312 of file TMultiDimFet.cc.

References fMaxVariables, fMinVariables, fNVariables, fTestQuantity, fTestSampleSize, fTestSqError, fTestVariables, mps_fire::i, dqmiolumiharvest::j, and findQualityFiles::size.

312  {
313  // Add a row consisting of fNVariables independent variables, the
314  // known, dependent quantity, and optionally, the square error in
315  // the dependent quantity, to the test sample to be used for the
316  // test of the parameterization.
317  // This sample needn't be representive of the problem at hand.
318  // Please note, that if no error is given Poisson statistics is
319  // assumed and the square error is set to the value of dependent
320  // quantity. See also the
321  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
322  if (fTestSampleSize++ == 0) {
323  fTestQuantity.ResizeTo(fNVariables);
324  fTestSqError.ResizeTo(fNVariables);
325  fTestVariables.ResizeTo(fNVariables * 100);
326  }
327 
328  // If the vector isn't big enough to hold the new data, then
329  // expand the vector by half it's size.
330  Int_t size = fTestQuantity.GetNrows();
331  if (fTestSampleSize > size) {
332  fTestQuantity.ResizeTo(size + size / 2);
333  fTestSqError.ResizeTo(size + size / 2);
334  }
335 
336  // Store the value
338  fTestSqError(fTestSampleSize - 1) = (E == 0 ? D : E);
339 
340  // Store data point in internal vector
341  // If the vector isn't big enough to hold the new data, then
342  // expand the vector by half it's size
343  size = fTestVariables.GetNrows();
344  if (fTestSampleSize * fNVariables > size)
345  fTestVariables.ResizeTo(size + size / 2);
346 
347  // Increment the data point counter
348  Int_t i, j;
349  for (i = 0; i < fNVariables; i++) {
350  j = fNVariables * (fTestSampleSize - 1) + i;
351  fTestVariables(j) = x[i];
352 
353  if (x[i] > fMaxVariables(i))
354  Warning("AddTestRow", "variable %d (row: %d) too large: %f > %f", i, fTestSampleSize, x[i], fMaxVariables(i));
355  if (x[i] < fMinVariables(i))
356  Warning("AddTestRow", "variable %d (row: %d) too small: %f < %f", i, fTestSampleSize, x[i], fMinVariables(i));
357  }
358 }
TVectorD fTestVariables
Test sample, Error in quantity.
Definition: TMultiDimFet.h:59
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
Int_t fTestSampleSize
Test sample, independent variables.
Definition: TMultiDimFet.h:61
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
TVectorD fTestSqError
Test sample, dependent quantity.
Definition: TMultiDimFet.h:58
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
TVectorD fTestQuantity
Size of training sample.
Definition: TMultiDimFet.h:57
DecomposeProduct< arg, typename Div::arg > D
Definition: Factorize.h:141
tuple size
Write out results.
void TMultiDimFet::Clear ( Option_t *  option = "")
override

Definition at line 361 of file TMultiDimFet.cc.

References fCoefficients, fCoefficientsRMS, fCorrelationMatrix, fError, fFunctions, fHistograms, fIsUserFunction, fMaxAngle, fMaxFunctions, fMaxFunctionsTimesNVariables, fMaxPowers, fMaxPowersFinal, fMaxQuantity, fMaxResidual, fMaxResidualRow, fMaxStudy, fMaxTerms, fMaxVariables, fMeanQuantity, fMeanVariables, fMinAngle, fMinQuantity, fMinRelativeError, fMinResidual, fMinResidualRow, fMinVariables, fNCoefficients, fNVariables, fOrthCoefficients, fOrthCurvatureMatrix, fOrthFunctionNorms, fOrthFunctions, fPolyType, fPowerLimit, fPowers, fPrecision, fQuantity, fResiduals, fRMS, fSampleSize, fShowCorrelation, fSqError, fSumSqAvgQuantity, fSumSqQuantity, fSumSqResidual, fTestError, fTestPrecision, fTestQuantity, fTestSampleSize, fTestSqError, fTestVariables, fVariables, mps_fire::i, dqmiolumiharvest::j, kMonomials, visualization-live-secondInstance_cfg::m, and dqmiodumpmetadata::n.

361  {
362  // Clear internal structures and variables
363  Int_t i, j, n = fNVariables, m = fMaxFunctions;
364 
365  // Training sample, dependent quantity
366  fQuantity.Zero();
367  fSqError.Zero();
368  fMeanQuantity = 0;
369  fMaxQuantity = 0;
370  fMinQuantity = 0;
371  fSumSqQuantity = 0;
372  fSumSqAvgQuantity = 0;
373 
374  // Training sample, independent variables
375  fVariables.Zero();
376  fNVariables = 0;
377  fSampleSize = 0;
378  fMeanVariables.Zero();
379  fMaxVariables.Zero();
380  fMinVariables.Zero();
381 
382  // Test sample
383  fTestQuantity.Zero();
384  fTestSqError.Zero();
385  fTestVariables.Zero();
386  fTestSampleSize = 0;
387 
388  // Functions
389  fFunctions.Zero();
390  fMaxFunctions = 0;
391  fMaxStudy = 0;
393  fOrthFunctions.Zero();
394  fOrthFunctionNorms.Zero();
395 
396  // Control parameters
397  fMinRelativeError = 0;
398  fMinAngle = 0;
399  fMaxAngle = 0;
400  fMaxTerms = 0;
401 
402  // Powers
403  for (i = 0; i < n; i++) {
404  fMaxPowers[i] = 0;
405  fMaxPowersFinal[i] = 0;
406  for (j = 0; j < m; j++)
407  fPowers[i * n + j] = 0;
408  }
409  fPowerLimit = 0;
410 
411  // Residuals
412  fMaxResidual = 0;
413  fMinResidual = 0;
414  fMaxResidualRow = 0;
415  fMinResidualRow = 0;
416  fSumSqResidual = 0;
417 
418  // Fit
419  fNCoefficients = 0;
420  fOrthCoefficients = 0;
422  fRMS = 0;
423  fCorrelationMatrix.Zero();
424  fError = 0;
425  fTestError = 0;
426  fPrecision = 0;
427  fTestPrecision = 0;
428 
429  // Coefficients
430  fCoefficients.Zero();
431  fCoefficientsRMS.Zero();
432  fResiduals.Zero();
433  fHistograms->Clear(option);
434 
435  // Options
437  fShowCorrelation = kFALSE;
438  fIsUserFunction = kFALSE;
439 }
Double_t fMaxQuantity
Definition: TMultiDimFet.h:44
TMatrixD fCorrelationMatrix
Multi Correlation coefficient.
Definition: TMultiDimFet.h:104
Double_t fSumSqQuantity
Min value of dependent quantity.
Definition: TMultiDimFet.h:46
Double_t fMinAngle
Size of test sample.
Definition: TMultiDimFet.h:63
TVectorD fTestVariables
Test sample, Error in quantity.
Definition: TMultiDimFet.h:59
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
Int_t fTestSampleSize
Test sample, independent variables.
Definition: TMultiDimFet.h:61
Double_t fSumSqAvgQuantity
SumSquare of dependent quantity.
Definition: TMultiDimFet.h:47
Double_t fMinQuantity
Max value of dependent quantity.
Definition: TMultiDimFet.h:45
Double_t fMinResidual
Max redsidual value.
Definition: TMultiDimFet.h:85
EMDFPolyType fPolyType
Bit pattern of hisograms used.
Definition: TMultiDimFet.h:112
TMatrixD fFunctions
Control parameter.
Definition: TMultiDimFet.h:70
TMatrixD fOrthFunctions
max functions to study
Definition: TMultiDimFet.h:75
Double_t fMaxAngle
Min angle for acepting new function.
Definition: TMultiDimFet.h:64
std::vector< Int_t > fPowers
Definition: TMultiDimFet.h:80
Double_t fPowerLimit
maximum powers, ex-array
Definition: TMultiDimFet.h:68
Double_t fPrecision
Error from test.
Definition: TMultiDimFet.h:101
TVectorD fCoefficientsRMS
Definition: TMultiDimFet.h:94
Int_t fMaxResidualRow
Min redsidual value.
Definition: TMultiDimFet.h:86
Double_t fTestError
Error from parameterization.
Definition: TMultiDimFet.h:100
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
Bool_t fShowCorrelation
Definition: TMultiDimFet.h:113
Int_t fMinResidualRow
Row giving max residual.
Definition: TMultiDimFet.h:87
TVectorD fTestSqError
Test sample, dependent quantity.
Definition: TMultiDimFet.h:58
TVectorD fQuantity
Definition: TMultiDimFet.h:41
Double_t fMinRelativeError
Definition: TMultiDimFet.h:66
TVectorD fOrthCoefficients
Definition: TMultiDimFet.h:91
Double_t fRMS
Vector of RMS of coefficients.
Definition: TMultiDimFet.h:95
Double_t fMeanQuantity
Training sample, error in quantity.
Definition: TMultiDimFet.h:43
TVectorD fOrthFunctionNorms
As above, but orthogonalised.
Definition: TMultiDimFet.h:76
Double_t fSumSqResidual
Row giving min residual.
Definition: TMultiDimFet.h:88
Double_t fMaxResidual
Vector of the final residuals.
Definition: TMultiDimFet.h:84
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
Double_t fTestPrecision
Relative precision of param.
Definition: TMultiDimFet.h:102
TList * fHistograms
Multi Correlation coefficient.
Definition: TMultiDimFet.h:107
Int_t fMaxTerms
Max angle for acepting new function.
Definition: TMultiDimFet.h:65
TVectorD fTestQuantity
Size of training sample.
Definition: TMultiDimFet.h:57
TVectorD fVariables
Sum of squares away from mean.
Definition: TMultiDimFet.h:49
Int_t fMaxFunctions
Functions evaluated over sample.
Definition: TMultiDimFet.h:71
Int_t fSampleSize
Definition: TMultiDimFet.h:55
Bool_t fIsUserFunction
Definition: TMultiDimFet.h:114
Double_t fError
Exit code of parameterisation.
Definition: TMultiDimFet.h:99
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90
Int_t fMaxFunctionsTimesNVariables
maximum powers from fit, ex-array
Definition: TMultiDimFet.h:79
TVectorD fSqError
Training sample, dependent quantity.
Definition: TMultiDimFet.h:42
TMatrixD fOrthCurvatureMatrix
The model coefficients.
Definition: TMultiDimFet.h:92
TVectorD fResiduals
Definition: TMultiDimFet.h:83
std::vector< Int_t > fMaxPowers
Min relative error accepted.
Definition: TMultiDimFet.h:67
TVectorD fMeanVariables
Definition: TMultiDimFet.h:51
std::vector< Int_t > fMaxPowersFinal
Norm of the evaluated functions.
Definition: TMultiDimFet.h:78
TVectorD fCoefficients
Model matrix.
Definition: TMultiDimFet.h:93
Int_t fMaxStudy
acceptance code, ex-array
Definition: TMultiDimFet.h:73
Double_t TMultiDimFet::Eval ( const Double_t *  x,
const Double_t *  coeff = nullptr 
) const
virtual

Definition at line 442 of file TMultiDimFet.cc.

References EvalFactor(), fCoefficients, fMaxVariables, fMeanQuantity, fMinVariables, fNCoefficients, fNVariables, fPowerIndex, fPowers, mps_fire::i, dqmiolumiharvest::j, AlCaHLTBitMon_ParallelJobs::p, and y.

Referenced by MakeChi2(), LHCOpticsApproximator::PrintCoordinateOpticalFunctions(), LHCOpticsApproximator::Test(), and LHCOpticsApproximator::Transport().

442  {
443  // Evaluate parameterization at point x. Optional argument coeff is
444  // a vector of coefficients for the parameterisation, fNCoefficients
445  // elements long.
446  // int fMaxFunctionsTimesNVariables = fMaxFunctions * fNVariables;
447  Double_t returnValue = fMeanQuantity;
448  Double_t term = 0;
449  Int_t i, j;
450 
451  for (i = 0; i < fNCoefficients; i++) {
452  // Evaluate the ith term in the expansion
453  term = (coeff ? coeff[i] : fCoefficients(i));
454  for (j = 0; j < fNVariables; j++) {
455  // Evaluate the factor (polynomial) in the j-th variable.
456  Int_t p = fPowers[fPowerIndex[i] * fNVariables + j];
457  Double_t y = 1 + 2. / (fMaxVariables(j) - fMinVariables(j)) * (x[j] - fMaxVariables(j));
458  term *= EvalFactor(p, y);
459  }
460  // Add this term to the final result
461  returnValue += term;
462  }
463  return returnValue;
464 }
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
std::vector< Int_t > fPowers
Definition: TMultiDimFet.h:80
virtual Double_t EvalFactor(Int_t p, Double_t x) const
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
std::vector< Int_t > fPowerIndex
Definition: TMultiDimFet.h:81
Double_t fMeanQuantity
Training sample, error in quantity.
Definition: TMultiDimFet.h:43
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90
TVectorD fCoefficients
Model matrix.
Definition: TMultiDimFet.h:93
Double_t TMultiDimFet::EvalControl ( const Int_t *  powers)
protectedvirtual

Definition at line 515 of file TMultiDimFet.cc.

References alignCSCRings::e, geometryDiff::epsilon, fMaxPowers, fNVariables, mps_fire::i, and alignCSCRings::s.

Referenced by MakeCandidates(), and MakeParameterization().

515  {
516  // PRIVATE METHOD:
517  // Calculate the control parameter from the passed powers
518  Double_t s = 0;
519  Double_t epsilon = 1e-6; // a small number
520  for (Int_t i = 0; i < fNVariables; i++) {
521  if (fMaxPowers[i] != 1)
522  s += (epsilon + iv[i] - 1) / (epsilon + fMaxPowers[i] - 1);
523  }
524  return s;
525 }
int32_t *__restrict__ iv
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
std::vector< Int_t > fMaxPowers
Min relative error accepted.
Definition: TMultiDimFet.h:67
Double_t TMultiDimFet::EvalFactor ( Int_t  p,
Double_t  x 
) const
protectedvirtual

Definition at line 528 of file TMultiDimFet.cc.

References fPolyType, mps_fire::i, kChebyshev, kLegendre, AlCaHLTBitMon_ParallelJobs::p, fireworks::p1, fireworks::p2, alignCSCRings::r, and x.

Referenced by Eval(), and MakeGramSchmidt().

528  {
529  // PRIVATE METHOD:
530  // Evaluate function with power p at variable value x
531  Int_t i = 0;
532  Double_t p1 = 1;
533  Double_t p2 = 0;
534  Double_t p3 = 0;
535  Double_t r = 0;
536 
537  switch (p) {
538  case 1:
539  r = 1;
540  break;
541  case 2:
542  r = x;
543  break;
544  default:
545  p2 = x;
546  for (i = 3; i <= p; i++) {
547  p3 = p2 * x;
548  if (fPolyType == kLegendre)
549  p3 = ((2 * i - 3) * p2 * x - (i - 2) * p1) / (i - 1);
550  else if (fPolyType == kChebyshev)
551  p3 = 2 * x * p2 - p1;
552  p1 = p2;
553  p2 = p3;
554  }
555  r = p3;
556  }
557 
558  return r;
559 }
EMDFPolyType fPolyType
Bit pattern of hisograms used.
Definition: TMultiDimFet.h:112
const TString p2
Definition: fwPaths.cc:13
const TString p1
Definition: fwPaths.cc:12
void TMultiDimFet::FindParameterization ( double  precision)
virtual

Definition at line 562 of file TMultiDimFet.cc.

References MakeCandidates(), MakeCoefficients(), MakeNormalized(), MakeParameterization(), and ReducePolynomial().

562  {
563  // Find the parameterization
564  //
565  // Options:
566  // None so far
567  //
568  // For detailed description of what this entails, please refer to the
569  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
570  MakeNormalized();
571  MakeCandidates();
574  ReducePolynomial(precision);
575 }
virtual void MakeParameterization()
virtual void MakeNormalized()
virtual void MakeCandidates()
virtual void MakeCoefficients()
void ReducePolynomial(double error)
Double_t TMultiDimFet::GetChi2 ( ) const
inline

Definition at line 147 of file TMultiDimFet.h.

References fChi2.

147 { return fChi2; }
Double_t fChi2
Root mean square of fit.
Definition: TMultiDimFet.h:96
const TVectorD* TMultiDimFet::GetCoefficients ( ) const
inline

Definition at line 149 of file TMultiDimFet.h.

References fCoefficients.

149 { return &fCoefficients; }
TVectorD fCoefficients
Model matrix.
Definition: TMultiDimFet.h:93
const TMatrixD* TMultiDimFet::GetCorrelationMatrix ( ) const
inline

Definition at line 148 of file TMultiDimFet.h.

References fCorrelationMatrix.

148 { return &fCorrelationMatrix; }
TMatrixD fCorrelationMatrix
Multi Correlation coefficient.
Definition: TMultiDimFet.h:104
Double_t TMultiDimFet::GetError ( ) const
inline

Definition at line 150 of file TMultiDimFet.h.

References fError.

150 { return fError; }
Double_t fError
Exit code of parameterisation.
Definition: TMultiDimFet.h:99
std::vector<Int_t> TMultiDimFet::GetFunctionCodes ( ) const
inline

Definition at line 151 of file TMultiDimFet.h.

References fFunctionCodes.

151 { return fFunctionCodes; }
std::vector< Int_t > fFunctionCodes
Definition: TMultiDimFet.h:72
const TMatrixD* TMultiDimFet::GetFunctions ( ) const
inline

Definition at line 152 of file TMultiDimFet.h.

References fFunctions.

152 { return &fFunctions; }
TMatrixD fFunctions
Control parameter.
Definition: TMultiDimFet.h:70
virtual TList* TMultiDimFet::GetHistograms ( ) const
inlinevirtual

Definition at line 153 of file TMultiDimFet.h.

References fHistograms.

153 { return fHistograms; }
TList * fHistograms
Multi Correlation coefficient.
Definition: TMultiDimFet.h:107
Double_t TMultiDimFet::GetMaxAngle ( ) const
inline

Definition at line 154 of file TMultiDimFet.h.

References fMaxAngle.

154 { return fMaxAngle; }
Double_t fMaxAngle
Min angle for acepting new function.
Definition: TMultiDimFet.h:64
Int_t TMultiDimFet::GetMaxFunctions ( ) const
inline

Definition at line 155 of file TMultiDimFet.h.

References fMaxFunctions.

155 { return fMaxFunctions; }
Int_t fMaxFunctions
Functions evaluated over sample.
Definition: TMultiDimFet.h:71
std::vector<Int_t> TMultiDimFet::GetMaxPowers ( ) const
inline

Definition at line 156 of file TMultiDimFet.h.

References fMaxPowers.

156 { return fMaxPowers; }
std::vector< Int_t > fMaxPowers
Min relative error accepted.
Definition: TMultiDimFet.h:67
Double_t TMultiDimFet::GetMaxQuantity ( ) const
inline

Definition at line 157 of file TMultiDimFet.h.

References fMaxQuantity.

157 { return fMaxQuantity; }
Double_t fMaxQuantity
Definition: TMultiDimFet.h:44
Int_t TMultiDimFet::GetMaxStudy ( ) const
inline

Definition at line 158 of file TMultiDimFet.h.

References fMaxStudy.

158 { return fMaxStudy; }
Int_t fMaxStudy
acceptance code, ex-array
Definition: TMultiDimFet.h:73
Int_t TMultiDimFet::GetMaxTerms ( ) const
inline

Definition at line 159 of file TMultiDimFet.h.

References fMaxTerms.

159 { return fMaxTerms; }
Int_t fMaxTerms
Max angle for acepting new function.
Definition: TMultiDimFet.h:65
const TVectorD* TMultiDimFet::GetMaxVariables ( ) const
inline

Definition at line 160 of file TMultiDimFet.h.

References fMaxVariables.

Referenced by LHCOpticsApproximator::ParameterOutOfRangePenalty(), and LHCOpticsApproximator::PrintInputRange().

160 { return &fMaxVariables; }
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
Double_t TMultiDimFet::GetMeanQuantity ( ) const
inline

Definition at line 161 of file TMultiDimFet.h.

References fMeanQuantity.

161 { return fMeanQuantity; }
Double_t fMeanQuantity
Training sample, error in quantity.
Definition: TMultiDimFet.h:43
const TVectorD* TMultiDimFet::GetMeanVariables ( ) const
inline

Definition at line 162 of file TMultiDimFet.h.

References fMeanVariables.

162 { return &fMeanVariables; }
TVectorD fMeanVariables
Definition: TMultiDimFet.h:51
Double_t TMultiDimFet::GetMinAngle ( ) const
inline

Definition at line 163 of file TMultiDimFet.h.

References fMinAngle.

163 { return fMinAngle; }
Double_t fMinAngle
Size of test sample.
Definition: TMultiDimFet.h:63
Double_t TMultiDimFet::GetMinQuantity ( ) const
inline

Definition at line 164 of file TMultiDimFet.h.

References fMinQuantity.

164 { return fMinQuantity; }
Double_t fMinQuantity
Max value of dependent quantity.
Definition: TMultiDimFet.h:45
Double_t TMultiDimFet::GetMinRelativeError ( ) const
inline

Definition at line 165 of file TMultiDimFet.h.

References fMinRelativeError.

165 { return fMinRelativeError; }
Double_t fMinRelativeError
Definition: TMultiDimFet.h:66
const TVectorD* TMultiDimFet::GetMinVariables ( ) const
inline

Definition at line 166 of file TMultiDimFet.h.

References fMinVariables.

Referenced by LHCOpticsApproximator::ParameterOutOfRangePenalty(), and LHCOpticsApproximator::PrintInputRange().

166 { return &fMinVariables; }
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
Int_t TMultiDimFet::GetNCoefficients ( ) const
inline

Definition at line 168 of file TMultiDimFet.h.

References fNCoefficients.

168 { return fNCoefficients; }
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90
Int_t TMultiDimFet::GetNVariables ( ) const
inline

Definition at line 167 of file TMultiDimFet.h.

References fNVariables.

167 { return fNVariables; }
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
Int_t TMultiDimFet::GetPolyType ( ) const
inline

Definition at line 169 of file TMultiDimFet.h.

References fPolyType.

169 { return fPolyType; }
EMDFPolyType fPolyType
Bit pattern of hisograms used.
Definition: TMultiDimFet.h:112
std::vector<Int_t> TMultiDimFet::GetPowerIndex ( ) const
inline

Definition at line 170 of file TMultiDimFet.h.

References fPowerIndex.

170 { return fPowerIndex; }
std::vector< Int_t > fPowerIndex
Definition: TMultiDimFet.h:81
Double_t TMultiDimFet::GetPowerLimit ( ) const
inline

Definition at line 171 of file TMultiDimFet.h.

References fPowerLimit.

171 { return fPowerLimit; }
Double_t fPowerLimit
maximum powers, ex-array
Definition: TMultiDimFet.h:68
std::vector<Int_t> TMultiDimFet::GetPowers ( ) const
inline

Definition at line 172 of file TMultiDimFet.h.

References fPowers.

172 { return fPowers; }
std::vector< Int_t > fPowers
Definition: TMultiDimFet.h:80
Double_t TMultiDimFet::GetPrecision ( ) const
inline

Definition at line 173 of file TMultiDimFet.h.

References fPrecision.

173 { return fPrecision; }
Double_t fPrecision
Error from test.
Definition: TMultiDimFet.h:101
const TVectorD* TMultiDimFet::GetQuantity ( ) const
inline

Definition at line 174 of file TMultiDimFet.h.

References fQuantity.

174 { return &fQuantity; }
TVectorD fQuantity
Definition: TMultiDimFet.h:41
Double_t TMultiDimFet::GetResidualMax ( ) const
inline

Definition at line 175 of file TMultiDimFet.h.

References fMaxResidual.

175 { return fMaxResidual; }
Double_t fMaxResidual
Vector of the final residuals.
Definition: TMultiDimFet.h:84
Int_t TMultiDimFet::GetResidualMaxRow ( ) const
inline

Definition at line 177 of file TMultiDimFet.h.

References fMaxResidualRow.

177 { return fMaxResidualRow; }
Int_t fMaxResidualRow
Min redsidual value.
Definition: TMultiDimFet.h:86
Double_t TMultiDimFet::GetResidualMin ( ) const
inline

Definition at line 176 of file TMultiDimFet.h.

References fMinResidual.

176 { return fMinResidual; }
Double_t fMinResidual
Max redsidual value.
Definition: TMultiDimFet.h:85
Int_t TMultiDimFet::GetResidualMinRow ( ) const
inline

Definition at line 178 of file TMultiDimFet.h.

References fMinResidualRow.

178 { return fMinResidualRow; }
Int_t fMinResidualRow
Row giving max residual.
Definition: TMultiDimFet.h:87
Double_t TMultiDimFet::GetResidualSumSq ( ) const
inline

Definition at line 179 of file TMultiDimFet.h.

References fSumSqResidual.

179 { return fSumSqResidual; }
Double_t fSumSqResidual
Row giving min residual.
Definition: TMultiDimFet.h:88
Double_t TMultiDimFet::GetRMS ( ) const
inline

Definition at line 180 of file TMultiDimFet.h.

References fRMS.

180 { return fRMS; }
Double_t fRMS
Vector of RMS of coefficients.
Definition: TMultiDimFet.h:95
Int_t TMultiDimFet::GetSampleSize ( ) const
inline

Definition at line 181 of file TMultiDimFet.h.

References fSampleSize.

181 { return fSampleSize; }
Int_t fSampleSize
Definition: TMultiDimFet.h:55
const TVectorD* TMultiDimFet::GetSqError ( ) const
inline

Definition at line 182 of file TMultiDimFet.h.

References fSqError.

182 { return &fSqError; }
TVectorD fSqError
Training sample, dependent quantity.
Definition: TMultiDimFet.h:42
Double_t TMultiDimFet::GetSumSqAvgQuantity ( ) const
inline

Definition at line 183 of file TMultiDimFet.h.

References fSumSqAvgQuantity.

183 { return fSumSqAvgQuantity; }
Double_t fSumSqAvgQuantity
SumSquare of dependent quantity.
Definition: TMultiDimFet.h:47
Double_t TMultiDimFet::GetSumSqQuantity ( ) const
inline

Definition at line 184 of file TMultiDimFet.h.

References fSumSqQuantity.

184 { return fSumSqQuantity; }
Double_t fSumSqQuantity
Min value of dependent quantity.
Definition: TMultiDimFet.h:46
Double_t TMultiDimFet::GetTestError ( ) const
inline

Definition at line 185 of file TMultiDimFet.h.

References fTestError.

185 { return fTestError; }
Double_t fTestError
Error from parameterization.
Definition: TMultiDimFet.h:100
Double_t TMultiDimFet::GetTestPrecision ( ) const
inline

Definition at line 186 of file TMultiDimFet.h.

References fTestPrecision.

186 { return fTestPrecision; }
Double_t fTestPrecision
Relative precision of param.
Definition: TMultiDimFet.h:102
const TVectorD* TMultiDimFet::GetTestQuantity ( ) const
inline

Definition at line 187 of file TMultiDimFet.h.

References fTestQuantity.

187 { return &fTestQuantity; }
TVectorD fTestQuantity
Size of training sample.
Definition: TMultiDimFet.h:57
Int_t TMultiDimFet::GetTestSampleSize ( ) const
inline

Definition at line 188 of file TMultiDimFet.h.

References fTestSampleSize.

188 { return fTestSampleSize; }
Int_t fTestSampleSize
Test sample, independent variables.
Definition: TMultiDimFet.h:61
const TVectorD* TMultiDimFet::GetTestSqError ( ) const
inline

Definition at line 189 of file TMultiDimFet.h.

References fTestSqError.

189 { return &fTestSqError; }
TVectorD fTestSqError
Test sample, dependent quantity.
Definition: TMultiDimFet.h:58
const TVectorD* TMultiDimFet::GetTestVariables ( ) const
inline

Definition at line 190 of file TMultiDimFet.h.

References fTestVariables.

190 { return &fTestVariables; }
TVectorD fTestVariables
Test sample, Error in quantity.
Definition: TMultiDimFet.h:59
const TVectorD* TMultiDimFet::GetVariables ( ) const
inline

Definition at line 191 of file TMultiDimFet.h.

References fVariables.

191 { return &fVariables; }
TVectorD fVariables
Sum of squares away from mean.
Definition: TMultiDimFet.h:49
Bool_t TMultiDimFet::IsFolder ( ) const
inlineoverride

Definition at line 194 of file TMultiDimFet.h.

194 { return kTRUE; }
void TMultiDimFet::MakeCandidates ( )
protectedvirtual

Definition at line 658 of file TMultiDimFet.cc.

References alignCSCRings::e, EvalControl(), fIsUserFunction, fMaxFunctions, fMaxFunctionsTimesNVariables, fMaxPowers, fNVariables, fPowerLimit, fPowers, mps_fire::i, gpuVertexFinder::iv, dqmiolumiharvest::j, isotrackApplyRegressor::k, cmsLHEtoEOSManager::l, alignCSCRings::s, Select(), and x.

Referenced by FindParameterization().

658  {
659  // PRIVATE METHOD:
660  // Create list of candidate functions for the parameterisation. See
661  // also
662  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
663  Int_t i = 0;
664  Int_t j = 0;
665  Int_t k = 0;
666 
667  // The temporary array to store the powers in. We don't need to
668  // initialize this array however.
669  Int_t *powers = new Int_t[fNVariables * fMaxFunctions];
670 
671  // store of `control variables'
672  Double_t *control = new Double_t[fMaxFunctions];
673 
674  // We've better initialize the variables
675  Int_t *iv = new Int_t[fNVariables];
676  for (i = 0; i < fNVariables; i++)
677  iv[i] = 1;
678 
679  if (!fIsUserFunction) {
680  // Number of funcs selected
681  Int_t numberFunctions = 0;
682 
683  // Absolute max number of functions
684  Int_t maxNumberFunctions = 1;
685  for (i = 0; i < fNVariables; i++)
686  maxNumberFunctions *= fMaxPowers[i];
687 
688  while (kTRUE) {
689  // Get the control value for this function
690  Double_t s = EvalControl(iv);
691 
692  if (s <= fPowerLimit) {
693  // Call over-loadable method Select, as to allow the user to
694  // interfere with the selection of functions.
695  if (Select(iv)) {
696  numberFunctions++;
697 
698  // If we've reached the user defined limit of how many
699  // functions we can consider, break out of the loop
700  if (numberFunctions > fMaxFunctions)
701  break;
702 
703  // Store the control value, so we can sort array of powers
704  // later on
705  control[numberFunctions - 1] = Int_t(1.0e+6 * s);
706 
707  // Store the powers in powers array.
708  for (i = 0; i < fNVariables; i++) {
709  j = (numberFunctions - 1) * fNVariables + i;
710  powers[j] = iv[i];
711  }
712  } // if (Select())
713  } // if (s <= fPowerLimit)
714 
715  for (i = 0; i < fNVariables; i++)
716  if (iv[i] < fMaxPowers[i])
717  break;
718 
719  // If all variables have reached their maximum power, then we
720  // break out of the loop
721  if (i == fNVariables) {
722  fMaxFunctions = numberFunctions;
724  break;
725  }
726 
727  // Next power in variable i
728  iv[i]++;
729 
730  for (j = 0; j < i; j++)
731  iv[j] = 1;
732  } // while (kTRUE)
733  } else {
734  // In case the user gave an explicit function
735  for (i = 0; i < fMaxFunctions; i++) {
736  // Copy the powers to working arrays
737  for (j = 0; j < fNVariables; j++) {
738  powers[i * fNVariables + j] = fPowers[i * fNVariables + j];
739  iv[j] = fPowers[i * fNVariables + j];
740  }
741 
742  control[i] = Int_t(1.0e+6 * EvalControl(iv));
743  }
744  }
745 
746  // Now we need to sort the powers according to least `control
747  // variable'
748  Int_t *order = new Int_t[fMaxFunctions];
749  for (i = 0; i < fMaxFunctions; i++)
750  order[i] = i;
751  fPowers.resize(fMaxFunctions * fNVariables);
752 
753  for (i = 0; i < fMaxFunctions; i++) {
754  Double_t x = control[i];
755  Int_t l = order[i];
756  k = i;
757 
758  for (j = i; j < fMaxFunctions; j++) {
759  if (control[j] <= x) {
760  x = control[j];
761  l = order[j];
762  k = j;
763  }
764  }
765 
766  if (k != i) {
767  control[k] = control[i];
768  control[i] = x;
769  order[k] = order[i];
770  order[i] = l;
771  }
772  }
773 
774  for (i = 0; i < fMaxFunctions; i++)
775  for (j = 0; j < fNVariables; j++)
776  fPowers[i * fNVariables + j] = powers[order[i] * fNVariables + j];
777 
778  delete[] control;
779  delete[] powers;
780  delete[] order;
781  delete[] iv;
782 }
int32_t *__restrict__ iv
virtual Double_t EvalControl(const Int_t *powers)
std::vector< Int_t > fPowers
Definition: TMultiDimFet.h:80
Double_t fPowerLimit
maximum powers, ex-array
Definition: TMultiDimFet.h:68
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
virtual Bool_t Select(const Int_t *iv)
Int_t fMaxFunctions
Functions evaluated over sample.
Definition: TMultiDimFet.h:71
Bool_t fIsUserFunction
Definition: TMultiDimFet.h:114
Int_t fMaxFunctionsTimesNVariables
maximum powers from fit, ex-array
Definition: TMultiDimFet.h:79
std::vector< Int_t > fMaxPowers
Min relative error accepted.
Definition: TMultiDimFet.h:67
Double_t TMultiDimFet::MakeChi2 ( const Double_t *  coeff = nullptr)
virtual

Definition at line 784 of file TMultiDimFet.cc.

References alignCSCRings::e, Eval(), validate-o2o-wbm::f, fChi2, fNVariables, fTestQuantity, fTestSampleSize, fTestSqError, fTestVariables, mps_fire::i, dqmiolumiharvest::j, siStripFEDMonitor_P5_cff::Max, and x.

784  {
785  // Calculate Chi square over either the test sample. The optional
786  // argument coeff is a vector of coefficients to use in the
787  // evaluation of the parameterisation. If coeff == 0, then the found
788  // coefficients is used.
789  // Used my MINUIT for fit (see TMultDimFit::Fit)
790  fChi2 = 0;
791  Int_t i, j;
792  Double_t *x = new Double_t[fNVariables];
793  for (i = 0; i < fTestSampleSize; i++) {
794  // Get the stored point
795  for (j = 0; j < fNVariables; j++)
796  x[j] = fTestVariables(i * fNVariables + j);
797 
798  // Evaluate function. Scale to shifted values
799  Double_t f = Eval(x, coeff);
800 
801  // Calculate contribution to Chic square
802  fChi2 += 1. / TMath::Max(fTestSqError(i), 1e-20) * (fTestQuantity(i) - f) * (fTestQuantity(i) - f);
803  }
804 
805  // Clean up
806  delete[] x;
807 
808  return fChi2;
809 }
TVectorD fTestVariables
Test sample, Error in quantity.
Definition: TMultiDimFet.h:59
Int_t fTestSampleSize
Test sample, independent variables.
Definition: TMultiDimFet.h:61
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
Double_t fChi2
Root mean square of fit.
Definition: TMultiDimFet.h:96
TVectorD fTestSqError
Test sample, dependent quantity.
Definition: TMultiDimFet.h:58
TVectorD fTestQuantity
Size of training sample.
Definition: TMultiDimFet.h:57
virtual Double_t Eval(const Double_t *x, const Double_t *coeff=nullptr) const
void TMultiDimFet::MakeCode ( const char *  functionName = "MDF",
Option_t *  option = "" 
)
virtual

Definition at line 812 of file TMultiDimFet.cc.

References MakeRealCode().

812  {
813  // Generate the file <filename> with .C appended if argument doesn't
814  // end in .cxx or .C. The contains the implementation of the
815  // function:
816  //
817  // Double_t <funcname>(Double_t *x)
818  //
819  // which does the same as TMultiDimFet::Eval. Please refer to this
820  // method.
821  //
822  // Further, the static variables:
823  //
824  // Int_t gNVariables
825  // Int_t gNCoefficients
826  // Double_t gDMean
827  // Double_t gXMean[]
828  // Double_t gXMin[]
829  // Double_t gXMax[]
830  // Double_t gCoefficient[]
831  // Int_t gPower[]
832  //
833  // are initialized. The only ROOT header file needed is Rtypes.h
834  //
835  // See TMultiDimFet::MakeRealCode for a list of options
836 
837  TString outName(filename);
838  if (!outName.EndsWith(".C") && !outName.EndsWith(".cxx"))
839  outName += ".C";
840 
841  MakeRealCode(outName.Data(), "", option);
842 }
virtual void MakeRealCode(const char *filename, const char *classname, Option_t *option="")
tuple filename
Definition: lut2db_cfg.py:20
void TMultiDimFet::MakeCoefficientErrors ( )
protectedvirtual

Definition at line 844 of file TMultiDimFet.cc.

References alignCSCRings::e, validate-o2o-wbm::f, fChi2, fCoefficients, fCoefficientsRMS, fFunctions, fNCoefficients, fQuantity, fSampleSize, fSqError, mps_fire::i, dqmiolumiharvest::j, isotrackApplyRegressor::k, and siStripFEDMonitor_P5_cff::Max.

844  {
845  // PRIVATE METHOD:
846  // Compute the errors on the coefficients. For this to be done, the
847  // curvature matrix of the non-orthogonal functions, is computed.
848  Int_t i = 0;
849  Int_t j = 0;
850  Int_t k = 0;
851  TVectorD iF(fSampleSize);
852  TVectorD jF(fSampleSize);
854 
855  TMatrixDSym curvatureMatrix(fNCoefficients);
856 
857  // Build the curvature matrix
858  for (i = 0; i < fNCoefficients; i++) {
859  iF = TMatrixDRow(fFunctions, i);
860  for (j = 0; j <= i; j++) {
861  jF = TMatrixDRow(fFunctions, j);
862  for (k = 0; k < fSampleSize; k++)
863  curvatureMatrix(i, j) += 1 / TMath::Max(fSqError(k), 1e-20) * iF(k) * jF(k);
864  curvatureMatrix(j, i) = curvatureMatrix(i, j);
865  }
866  }
867 
868  // Calculate Chi Square
869  fChi2 = 0;
870  for (i = 0; i < fSampleSize; i++) {
871  Double_t f = 0;
872  for (j = 0; j < fNCoefficients; j++)
873  f += fCoefficients(j) * fFunctions(j, i);
874  fChi2 += 1. / TMath::Max(fSqError(i), 1e-20) * (fQuantity(i) - f) * (fQuantity(i) - f);
875  }
876 
877  // Invert the curvature matrix
878  const TVectorD diag = TMatrixDDiag_const(curvatureMatrix);
879  curvatureMatrix.NormByDiag(diag);
880 
881  TDecompChol chol(curvatureMatrix);
882  if (!chol.Decompose())
883  Error("MakeCoefficientErrors", "curvature matrix is singular");
884  chol.Invert(curvatureMatrix);
885 
886  curvatureMatrix.NormByDiag(diag);
887 
888  for (i = 0; i < fNCoefficients; i++)
889  fCoefficientsRMS(i) = TMath::Sqrt(curvatureMatrix(i, i));
890 }
edm::ErrorSummaryEntry Error
TMatrixD fFunctions
Control parameter.
Definition: TMultiDimFet.h:70
TVectorD fCoefficientsRMS
Definition: TMultiDimFet.h:94
Double_t fChi2
Root mean square of fit.
Definition: TMultiDimFet.h:96
TVectorD fQuantity
Definition: TMultiDimFet.h:41
Int_t fSampleSize
Definition: TMultiDimFet.h:55
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90
TVectorD fSqError
Training sample, dependent quantity.
Definition: TMultiDimFet.h:42
TVectorD fCoefficients
Model matrix.
Definition: TMultiDimFet.h:93
void TMultiDimFet::MakeCoefficients ( )
protectedvirtual

Definition at line 893 of file TMultiDimFet.cc.

References cuy::col, fCoefficients, fCorrelationCoeff, fFunctions, fHistogramMask, fHistograms, HcalObjRepresent::Fill(), fMaxResidual, fMaxResidualRow, fMinResidual, fMinResidualRow, fNCoefficients, fNVariables, fOrthCoefficients, fOrthCurvatureMatrix, fPrecision, fQuantity, fResiduals, fSampleSize, fSumSqAvgQuantity, fSumSqQuantity, fSumSqResidual, fVariables, HIST_RD, HIST_RTRAI, HIST_RX, mps_fire::i, and dqmiolumiharvest::j.

Referenced by FindParameterization().

893  {
894  // PRIVATE METHOD:
895  // Invert the model matrix B, and compute final coefficients. For a
896  // more thorough discussion of what this means, please refer to the
897  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
898  //
899  // First we invert the lower triangle matrix fOrthCurvatureMatrix
900  // and store the inverted matrix in the upper triangle.
901 
902  Int_t i = 0, j = 0;
903  Int_t col = 0, row = 0;
904 
905  // Invert the B matrix
906  for (col = 1; col < fNCoefficients; col++) {
907  for (row = col - 1; row > -1; row--) {
908  fOrthCurvatureMatrix(row, col) = 0;
909  for (i = row; i <= col; i++)
910  fOrthCurvatureMatrix(row, col) -= fOrthCurvatureMatrix(i, row) * fOrthCurvatureMatrix(i, col);
911  }
912  }
913 
914  // Compute the final coefficients
915  fCoefficients.ResizeTo(fNCoefficients);
916 
917  for (i = 0; i < fNCoefficients; i++) {
918  Double_t sum = 0;
919  for (j = i; j < fNCoefficients; j++)
921  fCoefficients(i) = sum;
922  }
923 
924  // Compute the final residuals
925  fResiduals.ResizeTo(fSampleSize);
926  for (i = 0; i < fSampleSize; i++)
927  fResiduals(i) = fQuantity(i);
928 
929  for (i = 0; i < fNCoefficients; i++)
930  for (j = 0; j < fSampleSize; j++)
931  fResiduals(j) -= fCoefficients(i) * fFunctions(i, j);
932 
933  // Compute the max and minimum, and squared sum of the evaluated
934  // residuals
935  fMinResidual = 10e10;
936  fMaxResidual = -10e10;
937  Double_t sqRes = 0;
938  for (i = 0; i < fSampleSize; i++) {
939  sqRes += fResiduals(i) * fResiduals(i);
940  if (fResiduals(i) <= fMinResidual) {
942  fMinResidualRow = i;
943  }
944  if (fResiduals(i) >= fMaxResidual) {
946  fMaxResidualRow = i;
947  }
948  }
949 
951  fPrecision = TMath::Sqrt(sqRes / fSumSqQuantity);
952 
953  // If we use histograms, fill some more
954  if (TESTBIT(fHistogramMask, HIST_RD) || TESTBIT(fHistogramMask, HIST_RTRAI) || TESTBIT(fHistogramMask, HIST_RX)) {
955  for (i = 0; i < fSampleSize; i++) {
956  if (TESTBIT(fHistogramMask, HIST_RD))
957  ((TH2D *)fHistograms->FindObject("res_d"))->Fill(fQuantity(i), fResiduals(i));
958  if (TESTBIT(fHistogramMask, HIST_RTRAI))
959  ((TH1D *)fHistograms->FindObject("res_train"))->Fill(fResiduals(i));
960 
961  if (TESTBIT(fHistogramMask, HIST_RX))
962  for (j = 0; j < fNVariables; j++)
963  ((TH2D *)fHistograms->FindObject(Form("res_x_%d", j)))->Fill(fVariables(i * fNVariables + j), fResiduals(i));
964  }
965  } // If histograms
966 }
Double_t fSumSqQuantity
Min value of dependent quantity.
Definition: TMultiDimFet.h:46
Double_t fSumSqAvgQuantity
SumSquare of dependent quantity.
Definition: TMultiDimFet.h:47
Double_t fMinResidual
Max redsidual value.
Definition: TMultiDimFet.h:85
TMatrixD fFunctions
Control parameter.
Definition: TMultiDimFet.h:70
#define HIST_RD
Definition: TMultiDimFet.cc:32
Byte_t fHistogramMask
List of histograms.
Definition: TMultiDimFet.h:108
Double_t fPrecision
Error from test.
Definition: TMultiDimFet.h:101
#define HIST_RX
Definition: TMultiDimFet.cc:31
Int_t fMaxResidualRow
Min redsidual value.
Definition: TMultiDimFet.h:86
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
Int_t fMinResidualRow
Row giving max residual.
Definition: TMultiDimFet.h:87
TVectorD fQuantity
Definition: TMultiDimFet.h:41
TVectorD fOrthCoefficients
Definition: TMultiDimFet.h:91
void Fill(HcalDetId &id, double val, std::vector< TH2F > &depth)
#define HIST_RTRAI
Definition: TMultiDimFet.cc:33
Double_t fSumSqResidual
Row giving min residual.
Definition: TMultiDimFet.h:88
Double_t fMaxResidual
Vector of the final residuals.
Definition: TMultiDimFet.h:84
TList * fHistograms
Multi Correlation coefficient.
Definition: TMultiDimFet.h:107
TVectorD fVariables
Sum of squares away from mean.
Definition: TMultiDimFet.h:49
Int_t fSampleSize
Definition: TMultiDimFet.h:55
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90
Double_t fCorrelationCoeff
Relative precision of test.
Definition: TMultiDimFet.h:103
TMatrixD fOrthCurvatureMatrix
The model coefficients.
Definition: TMultiDimFet.h:92
TVectorD fResiduals
Definition: TMultiDimFet.h:83
int col
Definition: cuy.py:1009
TVectorD fCoefficients
Model matrix.
Definition: TMultiDimFet.h:93
void TMultiDimFet::MakeCorrelation ( )
protectedvirtual

Definition at line 969 of file TMultiDimFet.cc.

References fCorrelationMatrix, fMeanVariables, fNVariables, fQuantity, fSampleSize, fShowCorrelation, fVariables, mps_fire::i, dqmiolumiharvest::j, isotrackApplyRegressor::k, cmsLHEtoEOSManager::l, and visualization-live-secondInstance_cfg::m.

969  {
970  // PRIVATE METHOD:
971  // Compute the correlation matrix
972  if (!fShowCorrelation)
973  return;
974 
976 
977  Double_t d2 = 0;
978  Double_t ddotXi = 0; // G.Q. needs to be reinitialized in the loop over i fNVariables
979  Double_t xiNorm = 0; // G.Q. needs to be reinitialized in the loop over i fNVariables
980  Double_t xidotXj = 0; // G.Q. needs to be reinitialized in the loop over j fNVariables
981  Double_t xjNorm = 0; // G.Q. needs to be reinitialized in the loop over j fNVariables
982 
983  Int_t i, j, k, l, m; // G.Q. added m variable
984  for (i = 0; i < fSampleSize; i++)
985  d2 += fQuantity(i) * fQuantity(i);
986 
987  for (i = 0; i < fNVariables; i++) {
988  ddotXi = 0.; // G.Q. reinitialisation
989  xiNorm = 0.; // G.Q. reinitialisation
990  for (j = 0; j < fSampleSize; j++) {
991  // Index of sample j of variable i
992  k = j * fNVariables + i;
993  ddotXi += fQuantity(j) * (fVariables(k) - fMeanVariables(i));
994  xiNorm += (fVariables(k) - fMeanVariables(i)) * (fVariables(k) - fMeanVariables(i));
995  }
996  fCorrelationMatrix(i, 0) = ddotXi / TMath::Sqrt(d2 * xiNorm);
997 
998  for (j = 0; j < i; j++) {
999  xidotXj = 0.; // G.Q. reinitialisation
1000  xjNorm = 0.; // G.Q. reinitialisation
1001  for (k = 0; k < fSampleSize; k++) {
1002  // Index of sample j of variable i
1003  // l = j * fNVariables + k; // G.Q.
1004  l = k * fNVariables + j; // G.Q.
1005  m = k * fNVariables + i; // G.Q.
1006  // G.Q. xidotXj += (fVariables(i) - fMeanVariables(i))
1007  // G.Q. * (fVariables(l) - fMeanVariables(j));
1008  xidotXj +=
1009  (fVariables(m) - fMeanVariables(i)) * (fVariables(l) - fMeanVariables(j)); // G.Q. modified index for Xi
1010  xjNorm += (fVariables(l) - fMeanVariables(j)) * (fVariables(l) - fMeanVariables(j));
1011  }
1012  fCorrelationMatrix(i, j + 1) = xidotXj / TMath::Sqrt(xiNorm * xjNorm);
1013  }
1014  }
1015 }
TMatrixD fCorrelationMatrix
Multi Correlation coefficient.
Definition: TMultiDimFet.h:104
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
Bool_t fShowCorrelation
Definition: TMultiDimFet.h:113
TVectorD fQuantity
Definition: TMultiDimFet.h:41
TVectorD fVariables
Sum of squares away from mean.
Definition: TMultiDimFet.h:49
Int_t fSampleSize
Definition: TMultiDimFet.h:55
TVectorD fMeanVariables
Definition: TMultiDimFet.h:51
Double_t TMultiDimFet::MakeGramSchmidt ( Int_t  function)
protectedvirtual

Definition at line 1018 of file TMultiDimFet.cc.

References b, DEGRAD, alignCSCRings::e, EvalFactor(), validate-o2o-wbm::f2, fFunctions, fIsUserFunction, fMinAngle, fNCoefficients, fNVariables, fOrthCoefficients, fOrthCurvatureMatrix, fOrthFunctionNorms, fOrthFunctions, fPowers, fQuantity, fSampleSize, fVariables, dqmiolumiharvest::j, isotrackApplyRegressor::k, AlCaHLTBitMon_ParallelJobs::p, and x.

Referenced by MakeParameterization().

1018  {
1019  // PRIVATE METHOD:
1020  // Make Gram-Schmidt orthogonalisation. The class description gives
1021  // a thorough account of this algorithm, as well as
1022  // references. Please refer to the
1023  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
1024 
1025  // calculate w_i, that is, evaluate the current function at data
1026  // point i
1027  Double_t f2 = 0;
1030  Int_t j = 0;
1031  Int_t k = 0;
1032 
1033  for (j = 0; j < fSampleSize; j++) {
1034  fFunctions(fNCoefficients, j) = 1;
1036  // First, however, we need to calculate f_fNCoefficients
1037  for (k = 0; k < fNVariables; k++) {
1038  Int_t p = fPowers[function * fNVariables + k];
1039  Double_t x = fVariables(j * fNVariables + k);
1040  fFunctions(fNCoefficients, j) *= EvalFactor(p, x);
1041  }
1042 
1043  // Calculate f dot f in f2
1045  // Assign to w_fNCoefficients f_fNCoefficients
1047  }
1048 
1049  // the first column of w is equal to f
1050  for (j = 0; j < fNCoefficients; j++) {
1051  Double_t fdw = 0;
1052  // Calculate (f_fNCoefficients dot w_j) / w_j^2
1053  for (k = 0; k < fSampleSize; k++) {
1054  fdw += fFunctions(fNCoefficients, k) * fOrthFunctions(j, k) / fOrthFunctionNorms(j);
1055  }
1056 
1057  fOrthCurvatureMatrix(fNCoefficients, j) = fdw;
1058  // and subtract it from the current value of w_ij
1059  for (k = 0; k < fSampleSize; k++)
1060  fOrthFunctions(fNCoefficients, k) -= fdw * fOrthFunctions(j, k);
1061  }
1062 
1063  for (j = 0; j < fSampleSize; j++) {
1064  // calculate squared length of w_fNCoefficients
1065  fOrthFunctionNorms(fNCoefficients) += fOrthFunctions(fNCoefficients, j) * fOrthFunctions(fNCoefficients, j);
1066 
1067  // calculate D dot w_fNCoefficients in A
1068  fOrthCoefficients(fNCoefficients) += fQuantity(j) * fOrthFunctions(fNCoefficients, j);
1069  }
1070 
1071  // First test, but only if didn't user specify
1072  if (!fIsUserFunction)
1073  if (TMath::Sqrt(fOrthFunctionNorms(fNCoefficients) / (f2 + 1e-10)) < TMath::Sin(fMinAngle * DEGRAD))
1074  return 0;
1075 
1076  // The result found by this code for the first residual is always
1077  // much less then the one found be MUDIFI. That's because it's
1078  // supposed to be. The cause is the improved precision of Double_t
1079  // over DOUBLE PRECISION!
1080  fOrthCurvatureMatrix(fNCoefficients, fNCoefficients) = 1;
1081  Double_t b = fOrthCoefficients(fNCoefficients);
1082  fOrthCoefficients(fNCoefficients) /= fOrthFunctionNorms(fNCoefficients);
1083 
1084  // Calculate the residual from including this fNCoefficients.
1085  Double_t dResidur = fOrthCoefficients(fNCoefficients) * b;
1086 
1087  return dResidur;
1088 }
Double_t fMinAngle
Size of test sample.
Definition: TMultiDimFet.h:63
TMatrixD fFunctions
Control parameter.
Definition: TMultiDimFet.h:70
TMatrixD fOrthFunctions
max functions to study
Definition: TMultiDimFet.h:75
std::vector< Int_t > fPowers
Definition: TMultiDimFet.h:80
#define DEGRAD
Definition: TMultiDimFet.cc:26
virtual Double_t EvalFactor(Int_t p, Double_t x) const
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
TVectorD fQuantity
Definition: TMultiDimFet.h:41
TVectorD fOrthCoefficients
Definition: TMultiDimFet.h:91
TVectorD fOrthFunctionNorms
As above, but orthogonalised.
Definition: TMultiDimFet.h:76
TVectorD fVariables
Sum of squares away from mean.
Definition: TMultiDimFet.h:49
Int_t fSampleSize
Definition: TMultiDimFet.h:55
double b
Definition: hdecay.h:118
Bool_t fIsUserFunction
Definition: TMultiDimFet.h:114
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90
TMatrixD fOrthCurvatureMatrix
The model coefficients.
Definition: TMultiDimFet.h:92
void TMultiDimFet::MakeHistograms ( Option_t *  option = "A")
virtual

Definition at line 1091 of file TMultiDimFet.cc.

References fHistogramMask, fHistograms, fMaxQuantity, fMaxVariables, fMeanQuantity, fMinQuantity, fMinVariables, fNVariables, HIST_DORIG, HIST_DSHIF, HIST_RD, HIST_RTEST, HIST_RTRAI, HIST_RX, HIST_XNORM, HIST_XORIG, mps_fire::i, and runTheMatrix::opt.

1091  {
1092  // Make histograms of the result of the analysis. This message
1093  // should be sent after having read all data points, but before
1094  // finding the parameterization
1095  //
1096  // Options:
1097  // A All the below
1098  // X Original independent variables
1099  // D Original dependent variables
1100  // N Normalised independent variables
1101  // S Shifted dependent variables
1102  // R1 Residuals versus normalised independent variables
1103  // R2 Residuals versus dependent variable
1104  // R3 Residuals computed on training sample
1105  // R4 Residuals computed on test sample
1106  //
1107  // For a description of these quantities, refer to
1108  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
1109  TString opt(option);
1110  opt.ToLower();
1111 
1112  if (opt.Length() < 1)
1113  return;
1114 
1115  if (!fHistograms)
1116  fHistograms = new TList;
1117 
1118  // Counter variable
1119  Int_t i = 0;
1120 
1121  // Histogram of original variables
1122  if (opt.Contains("x") || opt.Contains("a")) {
1123  SETBIT(fHistogramMask, HIST_XORIG);
1124  for (i = 0; i < fNVariables; i++)
1125  if (!fHistograms->FindObject(Form("x_%d_orig", i)))
1126  fHistograms->Add(
1127  new TH1D(Form("x_%d_orig", i), Form("Original variable # %d", i), 100, fMinVariables(i), fMaxVariables(i)));
1128  }
1129 
1130  // Histogram of original dependent variable
1131  if (opt.Contains("d") || opt.Contains("a")) {
1132  SETBIT(fHistogramMask, HIST_DORIG);
1133  if (!fHistograms->FindObject("d_orig"))
1134  fHistograms->Add(new TH1D("d_orig", "Original Quantity", 100, fMinQuantity, fMaxQuantity));
1135  }
1136 
1137  // Histograms of normalized variables
1138  if (opt.Contains("n") || opt.Contains("a")) {
1139  SETBIT(fHistogramMask, HIST_XNORM);
1140  for (i = 0; i < fNVariables; i++)
1141  if (!fHistograms->FindObject(Form("x_%d_norm", i)))
1142  fHistograms->Add(new TH1D(Form("x_%d_norm", i), Form("Normalized variable # %d", i), 100, -1, 1));
1143  }
1144 
1145  // Histogram of shifted dependent variable
1146  if (opt.Contains("s") || opt.Contains("a")) {
1147  SETBIT(fHistogramMask, HIST_DSHIF);
1148  if (!fHistograms->FindObject("d_shifted"))
1149  fHistograms->Add(
1150  new TH1D("d_shifted", "Shifted Quantity", 100, fMinQuantity - fMeanQuantity, fMaxQuantity - fMeanQuantity));
1151  }
1152 
1153  // Residual from training sample versus independent variables
1154  if (opt.Contains("r1") || opt.Contains("a")) {
1155  SETBIT(fHistogramMask, HIST_RX);
1156  for (i = 0; i < fNVariables; i++)
1157  if (!fHistograms->FindObject(Form("res_x_%d", i)))
1158  fHistograms->Add(new TH2D(Form("res_x_%d", i),
1159  Form("Computed residual versus x_%d", i),
1160  100,
1161  -1,
1162  1,
1163  35,
1166  }
1167 
1168  // Residual from training sample versus. dependent variable
1169  if (opt.Contains("r2") || opt.Contains("a")) {
1170  SETBIT(fHistogramMask, HIST_RD);
1171  if (!fHistograms->FindObject("res_d"))
1172  fHistograms->Add(new TH2D("res_d",
1173  "Computed residuals vs Quantity",
1174  100,
1177  35,
1180  }
1181 
1182  // Residual from training sample
1183  if (opt.Contains("r3") || opt.Contains("a")) {
1184  SETBIT(fHistogramMask, HIST_RTRAI);
1185  if (!fHistograms->FindObject("res_train"))
1186  fHistograms->Add(new TH1D("res_train",
1187  "Computed residuals over training sample",
1188  100,
1191  }
1192  if (opt.Contains("r4") || opt.Contains("a")) {
1193  SETBIT(fHistogramMask, HIST_RTEST);
1194  if (!fHistograms->FindObject("res_test"))
1195  fHistograms->Add(new TH1D("res_test",
1196  "Distribution of residuals from test",
1197  100,
1200  }
1201 }
Double_t fMaxQuantity
Definition: TMultiDimFet.h:44
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
Double_t fMinQuantity
Max value of dependent quantity.
Definition: TMultiDimFet.h:45
#define HIST_RD
Definition: TMultiDimFet.cc:32
Byte_t fHistogramMask
List of histograms.
Definition: TMultiDimFet.h:108
#define HIST_DSHIF
Definition: TMultiDimFet.cc:30
#define HIST_RX
Definition: TMultiDimFet.cc:31
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
Double_t fMeanQuantity
Training sample, error in quantity.
Definition: TMultiDimFet.h:43
#define HIST_RTRAI
Definition: TMultiDimFet.cc:33
#define HIST_XNORM
Definition: TMultiDimFet.cc:29
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
#define HIST_DORIG
Definition: TMultiDimFet.cc:28
TList * fHistograms
Multi Correlation coefficient.
Definition: TMultiDimFet.h:107
#define HIST_XORIG
Definition: TMultiDimFet.cc:27
#define HIST_RTEST
Definition: TMultiDimFet.cc:34
void TMultiDimFet::MakeMethod ( const Char_t *  className = "MDF",
Option_t *  option = "" 
)
virtual

Definition at line 1204 of file TMultiDimFet.cc.

References MakeRealCode().

1204  {
1205  // Generate the file <classname>MDF.cxx which contains the
1206  // implementation of the method:
1207  //
1208  // Double_t <classname>::MDF(Double_t *x)
1209  //
1210  // which does the same as TMultiDimFet::Eval. Please refer to this
1211  // method.
1212  //
1213  // Further, the public static members:
1214  //
1215  // Int_t <classname>::fgNVariables
1216  // Int_t <classname>::fgNCoefficients
1217  // Double_t <classname>::fgDMean
1218  // Double_t <classname>::fgXMean[] //[fgNVariables]
1219  // Double_t <classname>::fgXMin[] //[fgNVariables]
1220  // Double_t <classname>::fgXMax[] //[fgNVariables]
1221  // Double_t <classname>::fgCoefficient[] //[fgNCoeffficents]
1222  // Int_t <classname>::fgPower[] //[fgNCoeffficents*fgNVariables]
1223  //
1224  // are initialized, and assumed to exist. The class declaration is
1225  // assumed to be in <classname>.h and assumed to be provided by the
1226  // user.
1227  //
1228  // See TMultiDimFet::MakeRealCode for a list of options
1229  //
1230  // The minimal class definition is:
1231  //
1232  // class <classname> {
1233  // public:
1234  // Int_t <classname>::fgNVariables; // Number of variables
1235  // Int_t <classname>::fgNCoefficients; // Number of terms
1236  // Double_t <classname>::fgDMean; // Mean from training sample
1237  // Double_t <classname>::fgXMean[]; // Mean from training sample
1238  // Double_t <classname>::fgXMin[]; // Min from training sample
1239  // Double_t <classname>::fgXMax[]; // Max from training sample
1240  // Double_t <classname>::fgCoefficient[]; // Coefficients
1241  // Int_t <classname>::fgPower[]; // Function powers
1242  //
1243  // Double_t Eval(Double_t *x);
1244  // };
1245  //
1246  // Whether the method <classname>::Eval should be static or not, is
1247  // up to the user.
1248 
1249  MakeRealCode(Form("%sMDF.cxx", classname), classname, option);
1250 }
virtual void MakeRealCode(const char *filename, const char *classname, Option_t *option="")
void TMultiDimFet::MakeNormalized ( )
protectedvirtual

Definition at line 1253 of file TMultiDimFet.cc.

References fHistogramMask, fHistograms, HcalObjRepresent::Fill(), fMaxQuantity, fMaxVariables, fMeanQuantity, fMeanVariables, fMinQuantity, fMinVariables, fNVariables, fQuantity, fSampleSize, fSumSqAvgQuantity, fVariables, HIST_DORIG, HIST_DSHIF, HIST_XNORM, HIST_XORIG, mps_fire::i, dqmiolumiharvest::j, isotrackApplyRegressor::k, and sistrip::SpyUtilities::range().

Referenced by FindParameterization().

1253  {
1254  // PRIVATE METHOD:
1255  // Normalize data to the interval [-1;1]. This is needed for the
1256  // classes method to work.
1257 
1258  Int_t i = 0;
1259  Int_t j = 0;
1260  Int_t k = 0;
1261 
1262  for (i = 0; i < fSampleSize; i++) {
1263  if (TESTBIT(fHistogramMask, HIST_DORIG))
1264  ((TH1D *)fHistograms->FindObject("d_orig"))->Fill(fQuantity(i));
1265 
1266  fQuantity(i) -= fMeanQuantity;
1268 
1269  if (TESTBIT(fHistogramMask, HIST_DSHIF))
1270  ((TH1D *)fHistograms->FindObject("d_shifted"))->Fill(fQuantity(i));
1271 
1272  for (j = 0; j < fNVariables; j++) {
1273  Double_t range = 1. / (fMaxVariables(j) - fMinVariables(j));
1274  k = i * fNVariables + j;
1275 
1276  // Fill histograms of original independent variables
1277  if (TESTBIT(fHistogramMask, HIST_XORIG))
1278  ((TH1D *)fHistograms->FindObject(Form("x_%d_orig", j)))->Fill(fVariables(k));
1279 
1280  // Normalise independent variables
1281  fVariables(k) = 1 + 2 * range * (fVariables(k) - fMaxVariables(j));
1282 
1283  // Fill histograms of normalised independent variables
1284  if (TESTBIT(fHistogramMask, HIST_XNORM))
1285  ((TH1D *)fHistograms->FindObject(Form("x_%d_norm", j)))->Fill(fVariables(k));
1286  }
1287  }
1288  // Shift min and max of dependent variable
1291 
1292  // Shift mean of independent variables
1293  for (i = 0; i < fNVariables; i++) {
1294  Double_t range = 1. / (fMaxVariables(i) - fMinVariables(i));
1295  fMeanVariables(i) = 1 + 2 * range * (fMeanVariables(i) - fMaxVariables(i));
1296  }
1297 }
Double_t fMaxQuantity
Definition: TMultiDimFet.h:44
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
Double_t fSumSqAvgQuantity
SumSquare of dependent quantity.
Definition: TMultiDimFet.h:47
Double_t fMinQuantity
Max value of dependent quantity.
Definition: TMultiDimFet.h:45
Byte_t fHistogramMask
List of histograms.
Definition: TMultiDimFet.h:108
#define HIST_DSHIF
Definition: TMultiDimFet.cc:30
const uint16_t range(const Frame &aFrame)
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
TVectorD fQuantity
Definition: TMultiDimFet.h:41
void Fill(HcalDetId &id, double val, std::vector< TH2F > &depth)
Double_t fMeanQuantity
Training sample, error in quantity.
Definition: TMultiDimFet.h:43
#define HIST_XNORM
Definition: TMultiDimFet.cc:29
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
#define HIST_DORIG
Definition: TMultiDimFet.cc:28
TList * fHistograms
Multi Correlation coefficient.
Definition: TMultiDimFet.h:107
TVectorD fVariables
Sum of squares away from mean.
Definition: TMultiDimFet.h:49
Int_t fSampleSize
Definition: TMultiDimFet.h:55
#define HIST_XORIG
Definition: TMultiDimFet.cc:27
TVectorD fMeanVariables
Definition: TMultiDimFet.h:51
void TMultiDimFet::MakeParameterization ( )
protectedvirtual

Definition at line 1300 of file TMultiDimFet.cc.

References alignCSCRings::e, submitPVValidationJobs::err, EvalControl(), fError, fFunctionCodes, fFunctions, fIsUserFunction, fIsVerbose, fMaxAngle, fMaxFunctions, fMaxPowersFinal, fMaxStudy, fMaxTerms, fMinRelativeError, fNCoefficients, fNVariables, fOrthCoefficients, fOrthCurvatureMatrix, fOrthFunctionNorms, fOrthFunctions, fParameterisationCode, fPowerIndex, fPowers, fRMS, fSampleSize, fSumSqAvgQuantity, fSumSqResidual, mps_fire::i, dqmiolumiharvest::j, isotrackApplyRegressor::k, cmsLHEtoEOSManager::l, MakeGramSchmidt(), siStripFEDMonitor_P5_cff::Max, PARAM_MAXSTUDY, PARAM_MAXTERMS, PARAM_RELERR, PARAM_SEVERAL, alignCSCRings::s, and TestFunction().

Referenced by FindParameterization().

1300  {
1301  // PRIVATE METHOD:
1302  // Find the parameterization over the training sample. A full account
1303  // of the algorithm is given in the
1304  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
1305 
1306  Int_t i = -1;
1307  Int_t j = 0;
1308  Int_t k = 0;
1309  Int_t maxPass = 3;
1310  Int_t studied = 0;
1311  Double_t squareResidual = fSumSqAvgQuantity;
1312  fNCoefficients = 0;
1314  fFunctions.ResizeTo(fMaxTerms, fSampleSize);
1316  fOrthFunctionNorms.ResizeTo(fMaxTerms);
1317  fOrthCoefficients.ResizeTo(fMaxTerms);
1319  fFunctions = 1;
1320 
1321  fFunctionCodes.resize(fMaxFunctions);
1322  fPowerIndex.resize(fMaxTerms);
1323  Int_t l;
1324  for (l = 0; l < fMaxFunctions; l++)
1325  fFunctionCodes[l] = 0;
1326  for (l = 0; l < fMaxTerms; l++)
1327  fPowerIndex[l] = 0;
1328 
1329  if (fMaxAngle != 0)
1330  maxPass = 100;
1331  if (fIsUserFunction)
1332  maxPass = 1;
1333 
1334  // Loop over the number of functions we want to study.
1335  // increment inspection counter
1336  while (kTRUE) {
1337  // Reach user defined limit of studies
1338  if (studied++ >= fMaxStudy) {
1340  break;
1341  }
1342 
1343  // Considered all functions several times
1344  if (k >= maxPass) {
1346  break;
1347  }
1348 
1349  // increment function counter
1350  i++;
1351 
1352  // If we've reached the end of the functions, restart pass
1353  if (i == fMaxFunctions) {
1354  if (fMaxAngle != 0)
1355  fMaxAngle += (90 - fMaxAngle) / 2;
1356  i = 0;
1357  studied--;
1358  k++;
1359  continue;
1360  }
1361  if (studied == 1)
1362  fFunctionCodes[i] = 0;
1363  else if (fFunctionCodes[i] >= 2)
1364  continue;
1365 
1366  // Print a happy message
1367  if (fIsVerbose && studied == 1)
1368  edm::LogInfo("TMultiDimFet") << "Coeff SumSqRes Contrib Angle QM Func"
1369  << " Value W^2 Powers"
1370  << "\n";
1371 
1372  // Make the Gram-Schmidt
1373  Double_t dResidur = MakeGramSchmidt(i);
1374 
1375  if (dResidur == 0) {
1376  // This function is no good!
1377  // First test is in MakeGramSchmidt
1378  fFunctionCodes[i] = 1;
1379  continue;
1380  }
1381 
1382  // If user specified function, assume she/he knows what he's doing
1383  if (!fIsUserFunction) {
1384  // Flag this function as considered
1385  fFunctionCodes[i] = 2;
1386 
1387  // Test if this function contributes to the fit
1388  if (!TestFunction(squareResidual, dResidur)) {
1389  fFunctionCodes[i] = 1;
1390  continue;
1391  }
1392  }
1393 
1394  // If we get to here, the function currently considered is
1395  // fNCoefficients, so we increment the counter
1396  // Flag this function as OK, and store and the number in the
1397  // index.
1398  fFunctionCodes[i] = 3;
1400  fNCoefficients++;
1401 
1402  // We add the current contribution to the sum of square of
1403  // residuals;
1404  squareResidual -= dResidur;
1405 
1406  // Calculate control parameter from this function
1407  for (j = 0; j < fNVariables; j++) {
1408  if (fNCoefficients == 1 || fMaxPowersFinal[j] <= fPowers[i * fNVariables + j] - 1)
1409  fMaxPowersFinal[j] = fPowers[i * fNVariables + j] - 1;
1410  }
1411  Double_t s = EvalControl(&fPowers[i * fNVariables]);
1412 
1413  // Print the statistics about this function
1414  if (fIsVerbose) {
1415  edm::LogVerbatim("TMultiDimFet") << std::setw(5) << fNCoefficients << " " << std::setw(10) << std::setprecision(4)
1416  << squareResidual << " " << std::setw(10) << std::setprecision(4) << dResidur
1417  << " " << std::setw(7) << std::setprecision(3) << fMaxAngle << " "
1418  << std::setw(7) << std::setprecision(3) << s << " " << std::setw(5) << i << " "
1419  << std::setw(10) << std::setprecision(4) << fOrthCoefficients(fNCoefficients - 1)
1420  << " " << std::setw(10) << std::setprecision(4)
1421  << fOrthFunctionNorms(fNCoefficients - 1) << " " << std::flush;
1422  for (j = 0; j < fNVariables; j++)
1423  edm::LogInfo("TMultiDimFet") << " " << fPowers[i * fNVariables + j] - 1 << std::flush;
1424  edm::LogInfo("TMultiDimFet") << "\n";
1425  }
1426 
1427  if (fNCoefficients >= fMaxTerms /* && fIsVerbose */) {
1429  break;
1430  }
1431 
1432  Double_t err = TMath::Sqrt(TMath::Max(1e-20, squareResidual) / fSumSqAvgQuantity);
1433  if (err < fMinRelativeError) {
1435  break;
1436  }
1437  }
1438 
1439  fError = TMath::Max(1e-20, squareResidual);
1441  fRMS = TMath::Sqrt(fError / fSampleSize);
1442 }
Log< level::Info, true > LogVerbatim
Double_t fSumSqAvgQuantity
SumSquare of dependent quantity.
Definition: TMultiDimFet.h:47
Int_t fParameterisationCode
Chi square of fit.
Definition: TMultiDimFet.h:97
TMatrixD fFunctions
Control parameter.
Definition: TMultiDimFet.h:70
virtual Double_t EvalControl(const Int_t *powers)
TMatrixD fOrthFunctions
max functions to study
Definition: TMultiDimFet.h:75
Double_t fMaxAngle
Min angle for acepting new function.
Definition: TMultiDimFet.h:64
std::vector< Int_t > fPowers
Definition: TMultiDimFet.h:80
virtual Double_t MakeGramSchmidt(Int_t function)
virtual Bool_t TestFunction(Double_t squareResidual, Double_t dResidur)
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
#define PARAM_SEVERAL
Definition: TMultiDimFet.cc:36
Bool_t fIsVerbose
Definition: TMultiDimFet.h:115
Double_t fMinRelativeError
Definition: TMultiDimFet.h:66
TVectorD fOrthCoefficients
Definition: TMultiDimFet.h:91
Double_t fRMS
Vector of RMS of coefficients.
Definition: TMultiDimFet.h:95
std::vector< Int_t > fPowerIndex
Definition: TMultiDimFet.h:81
TVectorD fOrthFunctionNorms
As above, but orthogonalised.
Definition: TMultiDimFet.h:76
#define PARAM_MAXTERMS
Definition: TMultiDimFet.cc:38
Double_t fSumSqResidual
Row giving min residual.
Definition: TMultiDimFet.h:88
#define PARAM_RELERR
Definition: TMultiDimFet.cc:37
Log< level::Info, false > LogInfo
Int_t fMaxTerms
Max angle for acepting new function.
Definition: TMultiDimFet.h:65
Int_t fMaxFunctions
Functions evaluated over sample.
Definition: TMultiDimFet.h:71
Int_t fSampleSize
Definition: TMultiDimFet.h:55
Bool_t fIsUserFunction
Definition: TMultiDimFet.h:114
Double_t fError
Exit code of parameterisation.
Definition: TMultiDimFet.h:99
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90
std::vector< Int_t > fFunctionCodes
Definition: TMultiDimFet.h:72
#define PARAM_MAXSTUDY
Definition: TMultiDimFet.cc:35
TMatrixD fOrthCurvatureMatrix
The model coefficients.
Definition: TMultiDimFet.h:92
std::vector< Int_t > fMaxPowersFinal
Norm of the evaluated functions.
Definition: TMultiDimFet.h:78
Int_t fMaxStudy
acceptance code, ex-array
Definition: TMultiDimFet.h:73
void TMultiDimFet::MakeRealCode ( const char *  filename,
const char *  classname,
Option_t *  option = "" 
)
protectedvirtual

Definition at line 1445 of file TMultiDimFet.cc.

References fCoefficients, fIsVerbose, fMaxVariables, fMeanQuantity, fMeanVariables, fMinVariables, fNCoefficients, fNVariables, fPolyType, fPowerIndex, fPowers, mps_fire::i, dqmiolumiharvest::j, kChebyshev, kLegendre, submitPVResolutionJobs::out, produceTPGParameters_beamv6_transparency_spikekill_2016_script::outFile, PostProcessorHGCAL_cfi::prefix, and pileupReCalc_HLTpaths::trunc.

Referenced by MakeCode(), and MakeMethod().

1445  {
1446  // PRIVATE METHOD:
1447  // This is the method that actually generates the code for the
1448  // evaluation the parameterization on some point.
1449  // It's called by TMultiDimFet::MakeCode and TMultiDimFet::MakeMethod.
1450  //
1451  // The options are: NONE so far
1452  Int_t i, j;
1453 
1454  Bool_t isMethod = (classname[0] == '\0' ? kFALSE : kTRUE);
1455  const char *prefix = (isMethod ? Form("%s::", classname) : "");
1456  const char *cv_qual = (isMethod ? "" : "static ");
1457 
1458  std::ofstream outFile(filename, std::ios::out | std::ios::trunc);
1459  if (!outFile) {
1460  Error("MakeRealCode", "couldn't open output file '%s'", filename);
1461  return;
1462  }
1463 
1464  if (fIsVerbose)
1465  edm::LogInfo("TMultiDimFet") << "Writing on file \"" << filename << "\" ... " << std::flush;
1466  //
1467  // Write header of file
1468  //
1469  // Emacs mode line ;-)
1470  outFile << "// -*- mode: c++ -*-"
1471  << "\n";
1472  // Info about creator
1473  outFile << "// "
1474  << "\n"
1475  << "// File " << filename << " generated by TMultiDimFet::MakeRealCode"
1476  << "\n";
1477  // Time stamp
1478  TDatime date;
1479  outFile << "// on " << date.AsString() << "\n";
1480  // ROOT version info
1481  outFile << "// ROOT version " << gROOT->GetVersion() << "\n"
1482  << "//"
1483  << "\n";
1484  // General information on the code
1485  outFile << "// This file contains the function "
1486  << "\n"
1487  << "//"
1488  << "\n"
1489  << "// double " << prefix << "MDF(double *x); "
1490  << "\n"
1491  << "//"
1492  << "\n"
1493  << "// For evaluating the parameterization obtained"
1494  << "\n"
1495  << "// from TMultiDimFet and the point x"
1496  << "\n"
1497  << "// "
1498  << "\n"
1499  << "// See TMultiDimFet class documentation for more "
1500  << "information "
1501  << "\n"
1502  << "// "
1503  << "\n";
1504  // Header files
1505  if (isMethod)
1506  // If these are methods, we need the class header
1507  outFile << "#include \"" << classname << ".h\""
1508  << "\n";
1509 
1510  //
1511  // Now for the data
1512  //
1513  outFile << "//"
1514  << "\n"
1515  << "// Static data variables"
1516  << "\n"
1517  << "//"
1518  << "\n";
1519  outFile << cv_qual << "int " << prefix << "gNVariables = " << fNVariables << ";"
1520  << "\n";
1521  outFile << cv_qual << "int " << prefix << "gNCoefficients = " << fNCoefficients << ";"
1522  << "\n";
1523  outFile << cv_qual << "double " << prefix << "gDMean = " << fMeanQuantity << ";"
1524  << "\n";
1525 
1526  // Assignment to mean vector.
1527  outFile << "// Assignment to mean vector."
1528  << "\n";
1529  outFile << cv_qual << "double " << prefix << "gXMean[] = {"
1530  << "\n";
1531  for (i = 0; i < fNVariables; i++)
1532  outFile << (i != 0 ? ", " : " ") << fMeanVariables(i) << std::flush;
1533  outFile << " };"
1534  << "\n"
1535  << "\n";
1536 
1537  // Assignment to minimum vector.
1538  outFile << "// Assignment to minimum vector."
1539  << "\n";
1540  outFile << cv_qual << "double " << prefix << "gXMin[] = {"
1541  << "\n";
1542  for (i = 0; i < fNVariables; i++)
1543  outFile << (i != 0 ? ", " : " ") << fMinVariables(i) << std::flush;
1544  outFile << " };"
1545  << "\n"
1546  << "\n";
1547 
1548  // Assignment to maximum vector.
1549  outFile << "// Assignment to maximum vector."
1550  << "\n";
1551  outFile << cv_qual << "double " << prefix << "gXMax[] = {"
1552  << "\n";
1553  for (i = 0; i < fNVariables; i++)
1554  outFile << (i != 0 ? ", " : " ") << fMaxVariables(i) << std::flush;
1555  outFile << " };"
1556  << "\n"
1557  << "\n";
1558 
1559  // Assignment to coefficients vector.
1560  outFile << "// Assignment to coefficients vector."
1561  << "\n";
1562  outFile << cv_qual << "double " << prefix << "gCoefficient[] = {" << std::flush;
1563  for (i = 0; i < fNCoefficients; i++)
1564  outFile << (i != 0 ? "," : "") << "\n"
1565  << " " << fCoefficients(i) << std::flush;
1566  outFile << "\n"
1567  << " };"
1568  << "\n"
1569  << "\n";
1570 
1571  // Assignment to powers vector.
1572  outFile << "// Assignment to powers vector."
1573  << "\n"
1574  << "// The powers are stored row-wise, that is"
1575  << "\n"
1576  << "// p_ij = " << prefix << "gPower[i * NVariables + j];"
1577  << "\n";
1578  outFile << cv_qual << "int " << prefix << "gPower[] = {" << std::flush;
1579  for (i = 0; i < fNCoefficients; i++) {
1580  for (j = 0; j < fNVariables; j++) {
1581  if (j != 0)
1582  outFile << std::flush << " ";
1583  else
1584  outFile << "\n"
1585  << " ";
1586  outFile << fPowers[fPowerIndex[i] * fNVariables + j]
1587  << (i == fNCoefficients - 1 && j == fNVariables - 1 ? "" : ",") << std::flush;
1588  }
1589  }
1590  outFile << "\n"
1591  << "};"
1592  << "\n"
1593  << "\n";
1594 
1595  //
1596  // Finally we reach the function itself
1597  //
1598  outFile << "// "
1599  << "\n"
1600  << "// The " << (isMethod ? "method " : "function ") << " double " << prefix << "MDF(double *x)"
1601  << "\n"
1602  << "// "
1603  << "\n";
1604  outFile << "double " << prefix << "MDF(double *x) {"
1605  << "\n"
1606  << " double returnValue = " << prefix << "gDMean;"
1607  << "\n"
1608  << " int i = 0, j = 0, k = 0;"
1609  << "\n"
1610  << " for (i = 0; i < " << prefix << "gNCoefficients ; i++) {"
1611  << "\n"
1612  << " // Evaluate the ith term in the expansion"
1613  << "\n"
1614  << " double term = " << prefix << "gCoefficient[i];"
1615  << "\n"
1616  << " for (j = 0; j < " << prefix << "gNVariables; j++) {"
1617  << "\n"
1618  << " // Evaluate the polynomial in the jth variable."
1619  << "\n"
1620  << " int power = " << prefix << "gPower[" << prefix << "gNVariables * i + j]; "
1621  << "\n"
1622  << " double p1 = 1, p2 = 0, p3 = 0, r = 0;"
1623  << "\n"
1624  << " double v = 1 + 2. / (" << prefix << "gXMax[j] - " << prefix << "gXMin[j]) * (x[j] - " << prefix
1625  << "gXMax[j]);"
1626  << "\n"
1627  << " // what is the power to use!"
1628  << "\n"
1629  << " switch(power) {"
1630  << "\n"
1631  << " case 1: r = 1; break; "
1632  << "\n"
1633  << " case 2: r = v; break; "
1634  << "\n"
1635  << " default: "
1636  << "\n"
1637  << " p2 = v; "
1638  << "\n"
1639  << " for (k = 3; k <= power; k++) { "
1640  << "\n"
1641  << " p3 = p2 * v;"
1642  << "\n";
1643  if (fPolyType == kLegendre)
1644  outFile << " p3 = ((2 * i - 3) * p2 * v - (i - 2) * p1)"
1645  << " / (i - 1);"
1646  << "\n";
1647  if (fPolyType == kChebyshev)
1648  outFile << " p3 = 2 * v * p2 - p1; "
1649  << "\n";
1650  outFile << " p1 = p2; p2 = p3; "
1651  << "\n"
1652  << " }"
1653  << "\n"
1654  << " r = p3;"
1655  << "\n"
1656  << " }"
1657  << "\n"
1658  << " // multiply this term by the poly in the jth var"
1659  << "\n"
1660  << " term *= r; "
1661  << "\n"
1662  << " }"
1663  << "\n"
1664  << " // Add this term to the final result"
1665  << "\n"
1666  << " returnValue += term;"
1667  << "\n"
1668  << " }"
1669  << "\n"
1670  << " return returnValue;"
1671  << "\n"
1672  << "}"
1673  << "\n"
1674  << "\n";
1675 
1676  // EOF
1677  outFile << "// EOF for " << filename << "\n";
1678 
1679  // Close the file
1680  outFile.close();
1681 
1682  if (fIsVerbose)
1683  edm::LogInfo("TMultiDimFet") << "done"
1684  << "\n";
1685 }
edm::ErrorSummaryEntry Error
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
EMDFPolyType fPolyType
Bit pattern of hisograms used.
Definition: TMultiDimFet.h:112
std::vector< Int_t > fPowers
Definition: TMultiDimFet.h:80
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
Bool_t fIsVerbose
Definition: TMultiDimFet.h:115
std::vector< Int_t > fPowerIndex
Definition: TMultiDimFet.h:81
Double_t fMeanQuantity
Training sample, error in quantity.
Definition: TMultiDimFet.h:43
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
Log< level::Info, false > LogInfo
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90
tuple filename
Definition: lut2db_cfg.py:20
TVectorD fMeanVariables
Definition: TMultiDimFet.h:51
TVectorD fCoefficients
Model matrix.
Definition: TMultiDimFet.h:93
const TMultiDimFet & TMultiDimFet::operator= ( const TMultiDimFet in)

Max value of dependent quantity

Min value of dependent quantity

SumSquare of dependent quantity

Sum of squares away from mean

Size of training sample

Size of test sample

Min angle for acepting new function

Max angle for acepting new function

Min relative error accepted

[fNVariables] maximum powers

Control parameter

[fMaxFunctions] acceptance code

max functions to study

[fNVariables] maximum powers from fit;

Max redsidual value

Min redsidual value

Row giving max residual

Row giving min residual

Sum of Square residuals

Root mean square of fit

Chi square of fit

Exit code of parameterisation

Error from parameterization

Error from test

Relative precision of param

Relative precision of test

Multi Correlation coefficient

Multi Correlation coefficient

List of histograms

Bit pattern of hisograms used

Definition at line 83 of file TMultiDimFet.cc.

References fChi2, fCoefficients, fCorrelationCoeff, fError, fFunctionCodes, fHistogramMask, fHistograms, fIsUserFunction, fIsVerbose, fMaxAngle, fMaxFunctions, fMaxFunctionsTimesNVariables, fMaxPowers, fMaxPowersFinal, fMaxQuantity, fMaxResidual, fMaxResidualRow, fMaxStudy, fMaxTerms, fMaxVariables, fMeanQuantity, fMinAngle, fMinQuantity, fMinRelativeError, fMinResidual, fMinResidualRow, fMinVariables, fNCoefficients, fNVariables, fParameterisationCode, fPolyType, fPowerIndex, fPowerLimit, fPowers, fPrecision, fRMS, fSampleSize, fShowCorrelation, fSumSqAvgQuantity, fSumSqQuantity, fSumSqResidual, fTestCorrelationCoeff, fTestError, fTestPrecision, fTestSampleSize, and recoMuon::in.

83  {
84  if (this == &in) {
85  return in;
86  }
87 
88  fMeanQuantity = in.fMeanQuantity; // Mean of dependent quantity
89 
90  fMaxQuantity = 0.0;
91  fMinQuantity = 0.0;
92  fSumSqQuantity = 0.0;
93  fSumSqAvgQuantity = 0.0;
94 
95  fNVariables = in.fNVariables; // Number of independent variables
96 
97  fMaxVariables.ResizeTo(in.fMaxVariables.GetLwb(), in.fMaxVariables.GetUpb());
98  fMaxVariables = in.fMaxVariables; // max value of independent variables
99 
100  fMinVariables.ResizeTo(in.fMinVariables.GetLwb(), in.fMinVariables.GetUpb());
101  fMinVariables = in.fMinVariables; // min value of independent variables
102 
103  fSampleSize = 0;
104  fTestSampleSize = 0;
105  fMinAngle = 1;
106  fMaxAngle = 0.0;
107 
108  fMaxTerms = in.fMaxTerms; // Max terms expected in final expr.
109 
110  fMinRelativeError = 0.0;
111 
112  fMaxPowers.clear();
113  fPowerLimit = 1;
114 
115  fMaxFunctions = in.fMaxFunctions; // max number of functions
116 
117  fFunctionCodes.clear();
118  fMaxStudy = 0;
119 
120  fMaxPowersFinal.clear();
121 
122  fMaxFunctionsTimesNVariables = in.fMaxFunctionsTimesNVariables; // fMaxFunctionsTimesNVariables
123  fPowers = in.fPowers;
124 
125  fPowerIndex = in.fPowerIndex; // [fMaxTerms] Index of accepted powers
126 
127  fMaxResidual = 0.0;
128  fMinResidual = 0.0;
129  fMaxResidualRow = 0;
130  fMinResidualRow = 0;
131  fSumSqResidual = 0.0;
132 
133  fNCoefficients = in.fNCoefficients; // Dimension of model coefficients
134 
135  fCoefficients.ResizeTo(in.fCoefficients.GetLwb(), in.fCoefficients.GetUpb());
136  fCoefficients = in.fCoefficients; // Vector of the final coefficients
137 
138  fRMS = 0.0;
139  fChi2 = 0.0;
141  fError = 0.0;
142  fTestError = 0.0;
143  fPrecision = 0.0;
144  fTestPrecision = 0.0;
145  fCorrelationCoeff = 0.0;
146  fTestCorrelationCoeff = 0.0;
147  fHistograms = nullptr;
148  fHistogramMask = 0;
149  //fFitter = nullptr; //! Fit object (MINUIT)
150 
151  fPolyType = in.fPolyType; // Type of polynomials to use
152  fShowCorrelation = in.fShowCorrelation; // print correlation matrix
153  fIsUserFunction = in.fIsUserFunction; // Flag for user defined function
154  fIsVerbose = in.fIsVerbose; //
155  return in;
156 }
Double_t fMaxQuantity
Definition: TMultiDimFet.h:44
Double_t fSumSqQuantity
Min value of dependent quantity.
Definition: TMultiDimFet.h:46
Double_t fMinAngle
Size of test sample.
Definition: TMultiDimFet.h:63
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
Int_t fTestSampleSize
Test sample, independent variables.
Definition: TMultiDimFet.h:61
Double_t fSumSqAvgQuantity
SumSquare of dependent quantity.
Definition: TMultiDimFet.h:47
Double_t fMinQuantity
Max value of dependent quantity.
Definition: TMultiDimFet.h:45
Int_t fParameterisationCode
Chi square of fit.
Definition: TMultiDimFet.h:97
Double_t fMinResidual
Max redsidual value.
Definition: TMultiDimFet.h:85
EMDFPolyType fPolyType
Bit pattern of hisograms used.
Definition: TMultiDimFet.h:112
Double_t fTestCorrelationCoeff
Correlation matrix.
Definition: TMultiDimFet.h:105
Byte_t fHistogramMask
List of histograms.
Definition: TMultiDimFet.h:108
Double_t fMaxAngle
Min angle for acepting new function.
Definition: TMultiDimFet.h:64
std::vector< Int_t > fPowers
Definition: TMultiDimFet.h:80
Double_t fPowerLimit
maximum powers, ex-array
Definition: TMultiDimFet.h:68
Double_t fPrecision
Error from test.
Definition: TMultiDimFet.h:101
Int_t fMaxResidualRow
Min redsidual value.
Definition: TMultiDimFet.h:86
Double_t fTestError
Error from parameterization.
Definition: TMultiDimFet.h:100
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
Double_t fChi2
Root mean square of fit.
Definition: TMultiDimFet.h:96
Bool_t fIsVerbose
Definition: TMultiDimFet.h:115
Bool_t fShowCorrelation
Definition: TMultiDimFet.h:113
Int_t fMinResidualRow
Row giving max residual.
Definition: TMultiDimFet.h:87
Double_t fMinRelativeError
Definition: TMultiDimFet.h:66
Double_t fRMS
Vector of RMS of coefficients.
Definition: TMultiDimFet.h:95
std::vector< Int_t > fPowerIndex
Definition: TMultiDimFet.h:81
Double_t fMeanQuantity
Training sample, error in quantity.
Definition: TMultiDimFet.h:43
Double_t fSumSqResidual
Row giving min residual.
Definition: TMultiDimFet.h:88
Double_t fMaxResidual
Vector of the final residuals.
Definition: TMultiDimFet.h:84
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
Double_t fTestPrecision
Relative precision of param.
Definition: TMultiDimFet.h:102
TList * fHistograms
Multi Correlation coefficient.
Definition: TMultiDimFet.h:107
Int_t fMaxTerms
Max angle for acepting new function.
Definition: TMultiDimFet.h:65
Int_t fMaxFunctions
Functions evaluated over sample.
Definition: TMultiDimFet.h:71
Int_t fSampleSize
Definition: TMultiDimFet.h:55
Bool_t fIsUserFunction
Definition: TMultiDimFet.h:114
Double_t fError
Exit code of parameterisation.
Definition: TMultiDimFet.h:99
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90
Int_t fMaxFunctionsTimesNVariables
maximum powers from fit, ex-array
Definition: TMultiDimFet.h:79
std::vector< Int_t > fFunctionCodes
Definition: TMultiDimFet.h:72
Double_t fCorrelationCoeff
Relative precision of test.
Definition: TMultiDimFet.h:103
std::vector< Int_t > fMaxPowers
Min relative error accepted.
Definition: TMultiDimFet.h:67
std::vector< Int_t > fMaxPowersFinal
Norm of the evaluated functions.
Definition: TMultiDimFet.h:78
TVectorD fCoefficients
Model matrix.
Definition: TMultiDimFet.h:93
Int_t fMaxStudy
acceptance code, ex-array
Definition: TMultiDimFet.h:73
void TMultiDimFet::Print ( Option_t *  option = "ps") const
override

Definition at line 1688 of file TMultiDimFet.cc.

References fChi2, fCoefficients, fCoefficientsRMS, fCorrelationCoeff, fCorrelationMatrix, fError, fFunctionCodes, fMaxAngle, fMaxFunctions, fMaxPowers, fMaxPowersFinal, fMaxQuantity, fMaxResidual, fMaxStudy, fMaxTerms, fMaxVariables, fMeanQuantity, fMeanVariables, fMinAngle, fMinQuantity, fMinRelativeError, fMinResidual, fMinVariables, fNCoefficients, fNVariables, fParameterisationCode, fPolyType, fPowerIndex, fPowerLimit, fPowers, fPrecision, fRMS, fSampleSize, fSumSqQuantity, fSumSqResidual, fTestCorrelationCoeff, fTestError, fTestPrecision, fTestSampleSize, mps_fire::i, dqmiolumiharvest::j, kChebyshev, kLegendre, runTheMatrix::opt, AlCaHLTBitMon_ParallelJobs::p, PARAM_MAXSTUDY, PARAM_MAXTERMS, PARAM_RELERR, and PARAM_SEVERAL.

1688  {
1689  // Print statistics etc.
1690  // Options are
1691  // P Parameters
1692  // S Statistics
1693  // C Coefficients
1694  // R Result of parameterisation
1695  // F Result of fit
1696  // K Correlation Matrix
1697  // M Pretty print formula
1698  //
1699  Int_t i = 0;
1700  Int_t j = 0;
1701 
1702  TString opt(option);
1703  opt.ToLower();
1704 
1705  if (opt.Contains("p")) {
1706  // Print basic parameters for this object
1707  edm::LogInfo("TMultiDimFet") << "User parameters:"
1708  << "\n"
1709  << "----------------"
1710  << "\n"
1711  << " Variables: " << fNVariables << "\n"
1712  << " Data points: " << fSampleSize << "\n"
1713  << " Max Terms: " << fMaxTerms << "\n"
1714  << " Power Limit Parameter: " << fPowerLimit << "\n"
1715  << " Max functions: " << fMaxFunctions << "\n"
1716  << " Max functions to study: " << fMaxStudy << "\n"
1717  << " Max angle (optional): " << fMaxAngle << "\n"
1718  << " Min angle: " << fMinAngle << "\n"
1719  << " Relative Error accepted: " << fMinRelativeError << "\n"
1720  << " Maximum Powers: " << std::flush;
1721  for (i = 0; i < fNVariables; i++)
1722  edm::LogInfo("TMultiDimFet") << " " << fMaxPowers[i] - 1 << std::flush;
1723  edm::LogInfo("TMultiDimFet") << "\n"
1724  << "\n"
1725  << " Parameterisation will be done using " << std::flush;
1726  if (fPolyType == kChebyshev)
1727  edm::LogInfo("TMultiDimFet") << "Chebyshev polynomials"
1728  << "\n";
1729  else if (fPolyType == kLegendre)
1730  edm::LogInfo("TMultiDimFet") << "Legendre polynomials"
1731  << "\n";
1732  else
1733  edm::LogInfo("TMultiDimFet") << "Monomials"
1734  << "\n";
1735  edm::LogInfo("TMultiDimFet") << "\n";
1736  }
1737 
1738  if (opt.Contains("s")) {
1739  // Print statistics for read data
1740  edm::LogInfo("TMultiDimFet") << "Sample statistics:"
1741  << "\n"
1742  << "------------------"
1743  << "\n"
1744  << " D" << std::flush;
1745  for (i = 0; i < fNVariables; i++)
1746  edm::LogInfo("TMultiDimFet") << " " << std::setw(10) << i + 1 << std::flush;
1747  edm::LogInfo("TMultiDimFet") << "\n"
1748  << " Max: " << std::setw(10) << std::setprecision(7) << fMaxQuantity << std::flush;
1749  for (i = 0; i < fNVariables; i++)
1750  edm::LogInfo("TMultiDimFet") << " " << std::setw(10) << std::setprecision(4) << fMaxVariables(i) << std::flush;
1751  edm::LogInfo("TMultiDimFet") << "\n"
1752  << " Min: " << std::setw(10) << std::setprecision(7) << fMinQuantity << std::flush;
1753  for (i = 0; i < fNVariables; i++)
1754  edm::LogInfo("TMultiDimFet") << " " << std::setw(10) << std::setprecision(4) << fMinVariables(i) << std::flush;
1755  edm::LogInfo("TMultiDimFet") << "\n"
1756  << " Mean: " << std::setw(10) << std::setprecision(7) << fMeanQuantity << std::flush;
1757  for (i = 0; i < fNVariables; i++)
1758  edm::LogInfo("TMultiDimFet") << " " << std::setw(10) << std::setprecision(4) << fMeanVariables(i) << std::flush;
1759  edm::LogInfo("TMultiDimFet") << "\n"
1760  << " Function Sum Squares: " << fSumSqQuantity << "\n"
1761  << "\n";
1762  }
1763 
1764  if (opt.Contains("r")) {
1765  edm::LogInfo("TMultiDimFet") << "Results of Parameterisation:"
1766  << "\n"
1767  << "----------------------------"
1768  << "\n"
1769  << " Total reduction of square residuals " << fSumSqResidual << "\n"
1770  << " Relative precision obtained: " << fPrecision << "\n"
1771  << " Error obtained: " << fError << "\n"
1772  << " Multiple correlation coefficient: " << fCorrelationCoeff << "\n"
1773  << " Reduced Chi square over sample: " << fChi2 / (fSampleSize - fNCoefficients)
1774  << "\n"
1775  << " Maximum residual value: " << fMaxResidual << "\n"
1776  << " Minimum residual value: " << fMinResidual << "\n"
1777  << " Estimated root mean square: " << fRMS << "\n"
1778  << " Maximum powers used: " << std::flush;
1779  for (j = 0; j < fNVariables; j++)
1780  edm::LogInfo("TMultiDimFet") << fMaxPowersFinal[j] << " " << std::flush;
1781  edm::LogInfo("TMultiDimFet") << "\n"
1782  << " Function codes of candidate functions."
1783  << "\n"
1784  << " 1: considered,"
1785  << " 2: too little contribution,"
1786  << " 3: accepted." << std::flush;
1787  for (i = 0; i < fMaxFunctions; i++) {
1788  if (i % 60 == 0)
1789  edm::LogInfo("TMultiDimFet") << "\n"
1790  << " " << std::flush;
1791  else if (i % 10 == 0)
1792  edm::LogInfo("TMultiDimFet") << " " << std::flush;
1793  edm::LogInfo("TMultiDimFet") << fFunctionCodes[i];
1794  }
1795  edm::LogInfo("TMultiDimFet") << "\n"
1796  << " Loop over candidates stopped because " << std::flush;
1797  switch (fParameterisationCode) {
1798  case PARAM_MAXSTUDY:
1799  edm::LogInfo("TMultiDimFet") << "max allowed studies reached"
1800  << "\n";
1801  break;
1802  case PARAM_SEVERAL:
1803  edm::LogInfo("TMultiDimFet") << "all candidates considered several times"
1804  << "\n";
1805  break;
1806  case PARAM_RELERR:
1807  edm::LogInfo("TMultiDimFet") << "wanted relative error obtained"
1808  << "\n";
1809  break;
1810  case PARAM_MAXTERMS:
1811  edm::LogInfo("TMultiDimFet") << "max number of terms reached"
1812  << "\n";
1813  break;
1814  default:
1815  edm::LogInfo("TMultiDimFet") << "some unknown reason"
1816  << "\n";
1817  break;
1818  }
1819  edm::LogInfo("TMultiDimFet") << "\n";
1820  }
1821 
1822  if (opt.Contains("f")) {
1823  edm::LogInfo("TMultiDimFet") << "Results of Fit:"
1824  << "\n"
1825  << "---------------"
1826  << "\n"
1827  << " Test sample size: " << fTestSampleSize << "\n"
1828  << " Multiple correlation coefficient: " << fTestCorrelationCoeff << "\n"
1829  << " Relative precision obtained: " << fTestPrecision << "\n"
1830  << " Error obtained: " << fTestError << "\n"
1831  << " Reduced Chi square over sample: " << fChi2 / (fSampleSize - fNCoefficients)
1832  << "\n"
1833  << "\n";
1834  /*
1835  if (fFitter) {
1836  fFitter->PrintResults(1,1);
1837  edm::LogInfo("TMultiDimFet") << "\n";
1838  }
1839 */
1840  }
1841 
1842  if (opt.Contains("c")) {
1843  edm::LogInfo("TMultiDimFet") << "Coefficients:"
1844  << "\n"
1845  << "-------------"
1846  << "\n"
1847  << " # Value Error Powers"
1848  << "\n"
1849  << " ---------------------------------------"
1850  << "\n";
1851  for (i = 0; i < fNCoefficients; i++) {
1852  edm::LogInfo("TMultiDimFet") << " " << std::setw(3) << i << " " << std::setw(12) << fCoefficients(i) << " "
1853  << std::setw(12) << fCoefficientsRMS(i) << " " << std::flush;
1854  for (j = 0; j < fNVariables; j++)
1855  edm::LogInfo("TMultiDimFet") << " " << std::setw(3) << fPowers[fPowerIndex[i] * fNVariables + j] - 1
1856  << std::flush;
1857  edm::LogInfo("TMultiDimFet") << "\n";
1858  }
1859  edm::LogInfo("TMultiDimFet") << "\n";
1860  }
1861  if (opt.Contains("k") && fCorrelationMatrix.IsValid()) {
1862  edm::LogInfo("TMultiDimFet") << "Correlation Matrix:"
1863  << "\n"
1864  << "-------------------";
1865  fCorrelationMatrix.Print();
1866  }
1867 
1868  if (opt.Contains("m")) {
1869  edm::LogInfo("TMultiDimFet") << std::setprecision(25);
1870  edm::LogInfo("TMultiDimFet") << "Parameterization:"
1871  << "\n"
1872  << "-----------------"
1873  << "\n"
1874  << " Normalised variables: "
1875  << "\n";
1876  for (i = 0; i < fNVariables; i++)
1877  edm::LogInfo("TMultiDimFet") << "\ty" << i << "\t:= 1 + 2 * (x" << i << " - " << fMaxVariables(i) << ") / ("
1878  << fMaxVariables(i) << " - " << fMinVariables(i) << ")"
1879  << "\n";
1880  edm::LogInfo("TMultiDimFet") << "\n"
1881  << " f[";
1882  for (i = 0; i < fNVariables; i++) {
1883  edm::LogInfo("TMultiDimFet") << "y" << i;
1884  if (i != fNVariables - 1)
1885  edm::LogInfo("TMultiDimFet") << ", ";
1886  }
1887  edm::LogInfo("TMultiDimFet") << "] := ";
1888  for (Int_t i = 0; i < fNCoefficients; i++) {
1889  if (i != 0)
1890  edm::LogInfo("TMultiDimFet") << " " << (fCoefficients(i) < 0 ? "- " : "+ ") << TMath::Abs(fCoefficients(i));
1891  else
1892  edm::LogInfo("TMultiDimFet") << fCoefficients(i);
1893  for (Int_t j = 0; j < fNVariables; j++) {
1894  Int_t p = fPowers[fPowerIndex[i] * fNVariables + j];
1895  switch (p) {
1896  case 1:
1897  break;
1898  case 2:
1899  edm::LogInfo("TMultiDimFet") << " * y" << j;
1900  break;
1901  default:
1902  switch (fPolyType) {
1903  case kLegendre:
1904  edm::LogInfo("TMultiDimFet") << " * L" << p - 1 << "(y" << j << ")";
1905  break;
1906  case kChebyshev:
1907  edm::LogInfo("TMultiDimFet") << " * C" << p - 1 << "(y" << j << ")";
1908  break;
1909  default:
1910  edm::LogInfo("TMultiDimFet") << " * y" << j << "^" << p - 1;
1911  break;
1912  }
1913  }
1914  }
1915  }
1916  edm::LogInfo("TMultiDimFet") << "\n";
1917  }
1918 }
Double_t fMaxQuantity
Definition: TMultiDimFet.h:44
TMatrixD fCorrelationMatrix
Multi Correlation coefficient.
Definition: TMultiDimFet.h:104
Double_t fSumSqQuantity
Min value of dependent quantity.
Definition: TMultiDimFet.h:46
Double_t fMinAngle
Size of test sample.
Definition: TMultiDimFet.h:63
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
Int_t fTestSampleSize
Test sample, independent variables.
Definition: TMultiDimFet.h:61
Double_t fMinQuantity
Max value of dependent quantity.
Definition: TMultiDimFet.h:45
Int_t fParameterisationCode
Chi square of fit.
Definition: TMultiDimFet.h:97
Double_t fMinResidual
Max redsidual value.
Definition: TMultiDimFet.h:85
EMDFPolyType fPolyType
Bit pattern of hisograms used.
Definition: TMultiDimFet.h:112
Double_t fTestCorrelationCoeff
Correlation matrix.
Definition: TMultiDimFet.h:105
Double_t fMaxAngle
Min angle for acepting new function.
Definition: TMultiDimFet.h:64
std::vector< Int_t > fPowers
Definition: TMultiDimFet.h:80
Double_t fPowerLimit
maximum powers, ex-array
Definition: TMultiDimFet.h:68
Double_t fPrecision
Error from test.
Definition: TMultiDimFet.h:101
TVectorD fCoefficientsRMS
Definition: TMultiDimFet.h:94
Double_t fTestError
Error from parameterization.
Definition: TMultiDimFet.h:100
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
#define PARAM_SEVERAL
Definition: TMultiDimFet.cc:36
Double_t fChi2
Root mean square of fit.
Definition: TMultiDimFet.h:96
Double_t fMinRelativeError
Definition: TMultiDimFet.h:66
Double_t fRMS
Vector of RMS of coefficients.
Definition: TMultiDimFet.h:95
std::vector< Int_t > fPowerIndex
Definition: TMultiDimFet.h:81
Double_t fMeanQuantity
Training sample, error in quantity.
Definition: TMultiDimFet.h:43
#define PARAM_MAXTERMS
Definition: TMultiDimFet.cc:38
Double_t fSumSqResidual
Row giving min residual.
Definition: TMultiDimFet.h:88
#define PARAM_RELERR
Definition: TMultiDimFet.cc:37
Double_t fMaxResidual
Vector of the final residuals.
Definition: TMultiDimFet.h:84
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
Double_t fTestPrecision
Relative precision of param.
Definition: TMultiDimFet.h:102
Log< level::Info, false > LogInfo
Int_t fMaxTerms
Max angle for acepting new function.
Definition: TMultiDimFet.h:65
Int_t fMaxFunctions
Functions evaluated over sample.
Definition: TMultiDimFet.h:71
Int_t fSampleSize
Definition: TMultiDimFet.h:55
Double_t fError
Exit code of parameterisation.
Definition: TMultiDimFet.h:99
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90
std::vector< Int_t > fFunctionCodes
Definition: TMultiDimFet.h:72
#define PARAM_MAXSTUDY
Definition: TMultiDimFet.cc:35
Double_t fCorrelationCoeff
Relative precision of test.
Definition: TMultiDimFet.h:103
std::vector< Int_t > fMaxPowers
Min relative error accepted.
Definition: TMultiDimFet.h:67
TVectorD fMeanVariables
Definition: TMultiDimFet.h:51
std::vector< Int_t > fMaxPowersFinal
Norm of the evaluated functions.
Definition: TMultiDimFet.h:78
TVectorD fCoefficients
Model matrix.
Definition: TMultiDimFet.h:93
Int_t fMaxStudy
acceptance code, ex-array
Definition: TMultiDimFet.h:73
void TMultiDimFet::PrintPolynomialsSpecial ( Option_t *  option = "m") const
virtual

Definition at line 1921 of file TMultiDimFet.cc.

References fCoefficients, fMaxVariables, fMeanQuantity, fMinVariables, fNCoefficients, fNVariables, fPolyType, fPowerIndex, fPowers, mps_fire::i, dqmiolumiharvest::j, kChebyshev, kLegendre, runTheMatrix::opt, and AlCaHLTBitMon_ParallelJobs::p.

1921  {
1922  // M Pretty print formula
1923  //
1924  Int_t i = 0;
1925  // Int_t j = 0;
1926 
1927  TString opt(option);
1928  opt.ToLower();
1929 
1930  if (opt.Contains("m")) {
1931  edm::LogInfo("TMultiDimFet") << std::setprecision(25);
1932  edm::LogInfo("TMultiDimFet") << "Parameterization:"
1933  << "\n"
1934  << "-----------------"
1935  << "\n"
1936  << " Normalised variables: "
1937  << "\n";
1938  for (i = 0; i < fNVariables; i++)
1939  edm::LogInfo("TMultiDimFet") << "\tdouble y" << i << "\t=1+2*(x" << i << "-" << fMaxVariables(i) << ")/("
1940  << fMaxVariables(i) << "-" << fMinVariables(i) << ");"
1941  << "\n";
1942  edm::LogInfo("TMultiDimFet") << "\n"
1943  << " f[";
1944  for (i = 0; i < fNVariables; i++) {
1945  edm::LogInfo("TMultiDimFet") << "y" << i;
1946  if (i != fNVariables - 1)
1947  edm::LogInfo("TMultiDimFet") << ", ";
1948  }
1949  edm::LogInfo("TMultiDimFet") << "] := " << fMeanQuantity << " + ";
1950  for (Int_t i = 0; i < fNCoefficients; i++) {
1951  if (i != 0)
1952  edm::LogInfo("TMultiDimFet") << " " << (fCoefficients(i) < 0 ? "-" : "+") << TMath::Abs(fCoefficients(i));
1953  else
1954  edm::LogInfo("TMultiDimFet") << fCoefficients(i);
1955  for (Int_t j = 0; j < fNVariables; j++) {
1956  Int_t p = fPowers[fPowerIndex[i] * fNVariables + j];
1957  switch (p) {
1958  case 1:
1959  break;
1960  case 2:
1961  edm::LogInfo("TMultiDimFet") << "*y" << j;
1962  break;
1963  default:
1964  switch (fPolyType) {
1965  case kLegendre:
1966  edm::LogInfo("TMultiDimFet") << "*Leg(" << p - 1 << ",y" << j << ")";
1967  break;
1968  case kChebyshev:
1969  edm::LogInfo("TMultiDimFet") << "*C" << p - 1 << "(y" << j << ")";
1970  break;
1971  default:
1972  edm::LogInfo("TMultiDimFet") << "*y" << j << "**" << p - 1;
1973  break;
1974  }
1975  }
1976  }
1977  edm::LogInfo("TMultiDimFet") << "\n";
1978  }
1979  edm::LogInfo("TMultiDimFet") << "\n";
1980  }
1981 }
TVectorD fMinVariables
Definition: TMultiDimFet.h:53
EMDFPolyType fPolyType
Bit pattern of hisograms used.
Definition: TMultiDimFet.h:112
std::vector< Int_t > fPowers
Definition: TMultiDimFet.h:80
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
std::vector< Int_t > fPowerIndex
Definition: TMultiDimFet.h:81
Double_t fMeanQuantity
Training sample, error in quantity.
Definition: TMultiDimFet.h:43
TVectorD fMaxVariables
mean value of independent variables
Definition: TMultiDimFet.h:52
Log< level::Info, false > LogInfo
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90
TVectorD fCoefficients
Model matrix.
Definition: TMultiDimFet.h:93
void TMultiDimFet::ReducePolynomial ( double  error)

Definition at line 466 of file TMultiDimFet.cc.

References ZeroDoubiousCoefficients().

Referenced by FindParameterization().

466  {
467  if (error == 0.0)
468  return;
469  else {
471  }
472 }
void ZeroDoubiousCoefficients(double error)
Bool_t TMultiDimFet::Select ( const Int_t *  iv)
protectedvirtual

Definition at line 1984 of file TMultiDimFet.cc.

Referenced by MakeCandidates().

1984  {
1985  // Selection method. User can override this method for specialized
1986  // selection of acceptable functions in fit. Default is to select
1987  // all. This message is sent during the build-up of the function
1988  // candidates table once for each set of powers in
1989  // variables. Notice, that the argument array contains the powers
1990  // PLUS ONE. For example, to De select the function
1991  // f = x1^2 * x2^4 * x3^5,
1992  // this method should return kFALSE if given the argument
1993  // { 3, 4, 6 }
1994  return kTRUE;
1995 }
void TMultiDimFet::SetMaxAngle ( Double_t  angle = 0)

Definition at line 1998 of file TMultiDimFet.cc.

References fMaxAngle.

Referenced by LHCOpticsApproximator::SetDefaultAproximatorSettings().

1998  {
1999  // Set the max angle (in degrees) between the initial data vector to
2000  // be fitted, and the new candidate function to be included in the
2001  // fit. By default it is 0, which automatically chooses another
2002  // selection criteria. See also
2003  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
2004  if (ang >= 90 || ang < 0) {
2005  Warning("SetMaxAngle", "angle must be in [0,90)");
2006  return;
2007  }
2008 
2009  fMaxAngle = ang;
2010 }
Double_t fMaxAngle
Min angle for acepting new function.
Definition: TMultiDimFet.h:64
void TMultiDimFet::SetMaxFunctions ( Int_t  n)
inline

Definition at line 203 of file TMultiDimFet.h.

References fMaxFunctions, and dqmiodumpmetadata::n.

Referenced by LHCOpticsApproximator::SetDefaultAproximatorSettings().

203 { fMaxFunctions = n; }
Int_t fMaxFunctions
Functions evaluated over sample.
Definition: TMultiDimFet.h:71
void TMultiDimFet::SetMaxPowers ( const Int_t *  powers)

Definition at line 2056 of file TMultiDimFet.cc.

References fMaxPowers, fNVariables, and mps_fire::i.

Referenced by LHCOpticsApproximator::SetDefaultAproximatorSettings().

2056  {
2057  // Set the maximum power to be considered in the fit for each
2058  // variable. See also
2059  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
2060  if (!powers)
2061  return;
2062 
2063  for (Int_t i = 0; i < fNVariables; i++)
2064  fMaxPowers[i] = powers[i] + 1;
2065 }
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
std::vector< Int_t > fMaxPowers
Min relative error accepted.
Definition: TMultiDimFet.h:67
void TMultiDimFet::SetMaxStudy ( Int_t  n)
inline

Definition at line 205 of file TMultiDimFet.h.

References fMaxStudy, and dqmiodumpmetadata::n.

Referenced by LHCOpticsApproximator::SetDefaultAproximatorSettings().

205 { fMaxStudy = n; }
Int_t fMaxStudy
acceptance code, ex-array
Definition: TMultiDimFet.h:73
void TMultiDimFet::SetMaxTerms ( Int_t  terms)
inline

Definition at line 206 of file TMultiDimFet.h.

References fMaxTerms.

Referenced by LHCOpticsApproximator::SetDefaultAproximatorSettings().

206 { fMaxTerms = terms; }
Int_t fMaxTerms
Max angle for acepting new function.
Definition: TMultiDimFet.h:65
void TMultiDimFet::SetMinAngle ( Double_t  angle = 1)

Definition at line 2013 of file TMultiDimFet.cc.

References fMinAngle.

Referenced by LHCOpticsApproximator::SetDefaultAproximatorSettings().

2013  {
2014  // Set the min angle (in degrees) between a new candidate function
2015  // and the subspace spanned by the previously accepted
2016  // functions. See also
2017  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
2018  if (ang > 90 || ang <= 0) {
2019  Warning("SetMinAngle", "angle must be in [0,90)");
2020  return;
2021  }
2022 
2023  fMinAngle = ang;
2024 }
Double_t fMinAngle
Size of test sample.
Definition: TMultiDimFet.h:63
void TMultiDimFet::SetMinRelativeError ( Double_t  error)

Definition at line 2068 of file TMultiDimFet.cc.

References relativeConstraints::error, and fMinRelativeError.

Referenced by LHCOpticsApproximator::SetDefaultAproximatorSettings().

2068  {
2069  // Set the acceptable relative error for when sum of square
2070  // residuals is considered minimized. For a full account, refer to
2071  // the
2072  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
2074 }
Double_t fMinRelativeError
Definition: TMultiDimFet.h:66
void TMultiDimFet::SetPowerLimit ( Double_t  limit = 1e-3)

Definition at line 2047 of file TMultiDimFet.cc.

References fPowerLimit, and MessageLogger_cff::limit.

Referenced by LHCOpticsApproximator::SetDefaultAproximatorSettings().

2047  {
2048  // Set the user parameter for the function selection. The bigger the
2049  // limit, the more functions are used. The meaning of this variable
2050  // is defined in the
2051  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
2052  fPowerLimit = limit;
2053 }
Double_t fPowerLimit
maximum powers, ex-array
Definition: TMultiDimFet.h:68
void TMultiDimFet::SetPowers ( const Int_t *  powers,
Int_t  terms 
)
virtual

Definition at line 2027 of file TMultiDimFet.cc.

References fIsUserFunction, fMaxFunctions, fMaxFunctionsTimesNVariables, fMaxStudy, fMaxTerms, fNVariables, fPowers, mps_fire::i, and dqmiolumiharvest::j.

Referenced by LHCOpticsApproximator::SetTermsManually().

2027  {
2028  // Define a user function. The input array must be of the form
2029  // (p11, ..., p1N, ... ,pL1, ..., pLN)
2030  // Where N is the dimension of the data sample, L is the number of
2031  // terms (given in terms) and the first number, labels the term, the
2032  // second the variable. More information is given in the
2033  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
2034  fIsUserFunction = kTRUE;
2035  fMaxFunctions = terms;
2036  fMaxTerms = terms;
2037  fMaxStudy = terms;
2039  fPowers.resize(fMaxFunctions * fNVariables);
2040  Int_t i, j;
2041  for (i = 0; i < fMaxFunctions; i++)
2042  for (j = 0; j < fNVariables; j++)
2043  fPowers[i * fNVariables + j] = powers[i * fNVariables + j] + 1;
2044 }
std::vector< Int_t > fPowers
Definition: TMultiDimFet.h:80
Int_t fNVariables
Training sample, independent variables.
Definition: TMultiDimFet.h:50
Int_t fMaxTerms
Max angle for acepting new function.
Definition: TMultiDimFet.h:65
Int_t fMaxFunctions
Functions evaluated over sample.
Definition: TMultiDimFet.h:71
Bool_t fIsUserFunction
Definition: TMultiDimFet.h:114
Int_t fMaxFunctionsTimesNVariables
maximum powers from fit, ex-array
Definition: TMultiDimFet.h:79
Int_t fMaxStudy
acceptance code, ex-array
Definition: TMultiDimFet.h:73
Bool_t TMultiDimFet::TestFunction ( Double_t  squareResidual,
Double_t  dResidur 
)
protectedvirtual

Definition at line 2077 of file TMultiDimFet.cc.

References DEGRAD, fMaxAngle, fMaxTerms, fNCoefficients, and fSumSqAvgQuantity.

Referenced by MakeParameterization().

2077  {
2078  // PRIVATE METHOD:
2079  // Test whether the currently considered function contributes to the
2080  // fit. See also
2081  // Begin_Html<a href="#TMultiDimFet:description">class description</a>End_Html
2082 
2083  if (fNCoefficients != 0) {
2084  // Now for the second test:
2085  if (fMaxAngle == 0) {
2086  // If the user hasn't supplied a max angle do the test as,
2087  if (dResidur < squareResidual / (fMaxTerms - fNCoefficients + 1 + 1E-10)) {
2088  return kFALSE;
2089  }
2090  } else {
2091  // If the user has provided a max angle, test if the calculated
2092  // angle is less then the max angle.
2093  if (TMath::Sqrt(dResidur / fSumSqAvgQuantity) < TMath::Cos(fMaxAngle * DEGRAD)) {
2094  return kFALSE;
2095  }
2096  }
2097  }
2098  // If we get here, the function is OK
2099  return kTRUE;
2100 }
Double_t fSumSqAvgQuantity
SumSquare of dependent quantity.
Definition: TMultiDimFet.h:47
Double_t fMaxAngle
Min angle for acepting new function.
Definition: TMultiDimFet.h:64
#define DEGRAD
Definition: TMultiDimFet.cc:26
Int_t fMaxTerms
Max angle for acepting new function.
Definition: TMultiDimFet.h:65
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90
void TMultiDimFet::ZeroDoubiousCoefficients ( double  error)

Definition at line 474 of file TMultiDimFet.cc.

References relativeConstraints::error, fCoefficients, fNCoefficients, fPowerIndex, mps_fire::i, and visualization-live-secondInstance_cfg::m.

Referenced by ReducePolynomial().

474  {
475  typedef std::multimap<double, int> cmt;
476  cmt m;
477 
478  for (int i = 0; i < fNCoefficients; i++) {
479  m.insert(std::pair<double, int>(TMath::Abs(fCoefficients(i)), i));
480  }
481 
482  double del_error_abs = 0;
483  int deleted_terms_count = 0;
484 
485  for (cmt::iterator it = m.begin(); it != m.end() && del_error_abs < error; ++it) {
486  if (TMath::Abs(it->first) + del_error_abs < error) {
487  fCoefficients(it->second) = 0.0;
488  del_error_abs = TMath::Abs(it->first) + del_error_abs;
489  deleted_terms_count++;
490  } else
491  break;
492  }
493 
494  int fNCoefficients_new = fNCoefficients - deleted_terms_count;
495  TVectorD fCoefficients_new(fNCoefficients_new);
496  std::vector<Int_t> fPowerIndex_new;
497 
498  int ind = 0;
499  for (int i = 0; i < fNCoefficients; i++) {
500  if (fCoefficients(i) != 0.0) {
501  fCoefficients_new(ind) = fCoefficients(i);
502  fPowerIndex_new.push_back(fPowerIndex[i]);
503  ind++;
504  }
505  }
506  fNCoefficients = fNCoefficients_new;
507  fCoefficients.ResizeTo(fNCoefficients);
508  fCoefficients = fCoefficients_new;
509  fPowerIndex = fPowerIndex_new;
510  edm::LogInfo("TMultiDimFet") << deleted_terms_count << " terms removed"
511  << "\n";
512 }
std::vector< Int_t > fPowerIndex
Definition: TMultiDimFet.h:81
Log< level::Info, false > LogInfo
Int_t fNCoefficients
Sum of Square residuals.
Definition: TMultiDimFet.h:90
TVectorD fCoefficients
Model matrix.
Definition: TMultiDimFet.h:93

Member Data Documentation

Double_t TMultiDimFet::fChi2
protected

Root mean square of fit.

Definition at line 96 of file TMultiDimFet.h.

Referenced by GetChi2(), MakeChi2(), MakeCoefficientErrors(), operator=(), and Print().

TVectorD TMultiDimFet::fCoefficients
protected
TVectorD TMultiDimFet::fCoefficientsRMS
protected

Definition at line 94 of file TMultiDimFet.h.

Referenced by Clear(), MakeCoefficientErrors(), and Print().

Double_t TMultiDimFet::fCorrelationCoeff
protected

Relative precision of test.

Definition at line 103 of file TMultiDimFet.h.

Referenced by MakeCoefficients(), operator=(), and Print().

TMatrixD TMultiDimFet::fCorrelationMatrix
protected

Multi Correlation coefficient.

Definition at line 104 of file TMultiDimFet.h.

Referenced by Clear(), GetCorrelationMatrix(), MakeCorrelation(), and Print().

Double_t TMultiDimFet::fError
protected

Exit code of parameterisation.

Definition at line 99 of file TMultiDimFet.h.

Referenced by Clear(), GetError(), MakeParameterization(), operator=(), Print(), and TMultiDimFet().

std::vector<Int_t> TMultiDimFet::fFunctionCodes
protected

Definition at line 72 of file TMultiDimFet.h.

Referenced by GetFunctionCodes(), MakeParameterization(), operator=(), and Print().

TMatrixD TMultiDimFet::fFunctions
protected

Control parameter.

Definition at line 70 of file TMultiDimFet.h.

Referenced by Clear(), GetFunctions(), MakeCoefficientErrors(), MakeCoefficients(), MakeGramSchmidt(), and MakeParameterization().

Byte_t TMultiDimFet::fHistogramMask
protected

List of histograms.

Definition at line 108 of file TMultiDimFet.h.

Referenced by MakeCoefficients(), MakeHistograms(), MakeNormalized(), operator=(), and TMultiDimFet().

TList* TMultiDimFet::fHistograms
protected

Multi Correlation coefficient.

Definition at line 107 of file TMultiDimFet.h.

Referenced by Clear(), GetHistograms(), MakeCoefficients(), MakeHistograms(), MakeNormalized(), operator=(), TMultiDimFet(), and ~TMultiDimFet().

Bool_t TMultiDimFet::fIsUserFunction
protected
Bool_t TMultiDimFet::fIsVerbose
protected

Definition at line 115 of file TMultiDimFet.h.

Referenced by MakeParameterization(), MakeRealCode(), operator=(), and TMultiDimFet().

Double_t TMultiDimFet::fMaxAngle
protected

Min angle for acepting new function.

Definition at line 64 of file TMultiDimFet.h.

Referenced by Clear(), GetMaxAngle(), MakeParameterization(), operator=(), Print(), SetMaxAngle(), TestFunction(), and TMultiDimFet().

Int_t TMultiDimFet::fMaxFunctions
protected

Functions evaluated over sample.

Definition at line 71 of file TMultiDimFet.h.

Referenced by Clear(), GetMaxFunctions(), MakeCandidates(), MakeParameterization(), operator=(), Print(), SetMaxFunctions(), SetPowers(), and TMultiDimFet().

Int_t TMultiDimFet::fMaxFunctionsTimesNVariables
protected

maximum powers from fit, ex-array

Definition at line 79 of file TMultiDimFet.h.

Referenced by Clear(), MakeCandidates(), operator=(), SetPowers(), and TMultiDimFet().

std::vector<Int_t> TMultiDimFet::fMaxPowers
protected

Min relative error accepted.

Definition at line 67 of file TMultiDimFet.h.

Referenced by Clear(), EvalControl(), GetMaxPowers(), MakeCandidates(), operator=(), Print(), SetMaxPowers(), and TMultiDimFet().

std::vector<Int_t> TMultiDimFet::fMaxPowersFinal
protected

Norm of the evaluated functions.

Definition at line 78 of file TMultiDimFet.h.

Referenced by Clear(), MakeParameterization(), operator=(), Print(), and TMultiDimFet().

Double_t TMultiDimFet::fMaxQuantity
protected
Double_t TMultiDimFet::fMaxResidual
protected

Vector of the final residuals.

Definition at line 84 of file TMultiDimFet.h.

Referenced by Clear(), GetResidualMax(), MakeCoefficients(), operator=(), and Print().

Int_t TMultiDimFet::fMaxResidualRow
protected

Min redsidual value.

Definition at line 86 of file TMultiDimFet.h.

Referenced by Clear(), GetResidualMaxRow(), MakeCoefficients(), and operator=().

Int_t TMultiDimFet::fMaxStudy
protected

acceptance code, ex-array

Definition at line 73 of file TMultiDimFet.h.

Referenced by Clear(), GetMaxStudy(), MakeParameterization(), operator=(), Print(), SetMaxStudy(), and SetPowers().

Int_t TMultiDimFet::fMaxTerms
protected

Max angle for acepting new function.

Definition at line 65 of file TMultiDimFet.h.

Referenced by Clear(), GetMaxTerms(), MakeParameterization(), operator=(), Print(), SetMaxTerms(), SetPowers(), and TestFunction().

TVectorD TMultiDimFet::fMaxVariables
protected
Double_t TMultiDimFet::fMeanQuantity
protected

Training sample, error in quantity.

Definition at line 43 of file TMultiDimFet.h.

Referenced by AddRow(), Clear(), Eval(), GetMeanQuantity(), MakeHistograms(), MakeNormalized(), MakeRealCode(), operator=(), Print(), PrintPolynomialsSpecial(), and TMultiDimFet().

TVectorD TMultiDimFet::fMeanVariables
protected
Double_t TMultiDimFet::fMinAngle
protected

Size of test sample.

Definition at line 63 of file TMultiDimFet.h.

Referenced by Clear(), GetMinAngle(), MakeGramSchmidt(), operator=(), Print(), SetMinAngle(), and TMultiDimFet().

Double_t TMultiDimFet::fMinQuantity
protected

Max value of dependent quantity.

Definition at line 45 of file TMultiDimFet.h.

Referenced by AddRow(), Clear(), GetMinQuantity(), MakeHistograms(), MakeNormalized(), operator=(), Print(), and TMultiDimFet().

Double_t TMultiDimFet::fMinRelativeError
protected
Double_t TMultiDimFet::fMinResidual
protected

Max redsidual value.

Definition at line 85 of file TMultiDimFet.h.

Referenced by Clear(), GetResidualMin(), MakeCoefficients(), operator=(), and Print().

Int_t TMultiDimFet::fMinResidualRow
protected

Row giving max residual.

Definition at line 87 of file TMultiDimFet.h.

Referenced by Clear(), GetResidualMinRow(), MakeCoefficients(), and operator=().

TVectorD TMultiDimFet::fMinVariables
protected
Int_t TMultiDimFet::fNCoefficients
protected
Int_t TMultiDimFet::fNVariables
protected
TVectorD TMultiDimFet::fOrthCoefficients
protected

Definition at line 91 of file TMultiDimFet.h.

Referenced by Clear(), MakeCoefficients(), MakeGramSchmidt(), and MakeParameterization().

TMatrixD TMultiDimFet::fOrthCurvatureMatrix
protected

The model coefficients.

Definition at line 92 of file TMultiDimFet.h.

Referenced by Clear(), MakeCoefficients(), MakeGramSchmidt(), and MakeParameterization().

TVectorD TMultiDimFet::fOrthFunctionNorms
protected

As above, but orthogonalised.

Definition at line 76 of file TMultiDimFet.h.

Referenced by Clear(), MakeGramSchmidt(), and MakeParameterization().

TMatrixD TMultiDimFet::fOrthFunctions
protected

max functions to study

Definition at line 75 of file TMultiDimFet.h.

Referenced by Clear(), MakeGramSchmidt(), and MakeParameterization().

Int_t TMultiDimFet::fParameterisationCode
protected

Chi square of fit.

Definition at line 97 of file TMultiDimFet.h.

Referenced by MakeParameterization(), operator=(), Print(), and TMultiDimFet().

EMDFPolyType TMultiDimFet::fPolyType
protected

Bit pattern of hisograms used.

Definition at line 112 of file TMultiDimFet.h.

Referenced by Clear(), EvalFactor(), GetPolyType(), MakeRealCode(), operator=(), Print(), PrintPolynomialsSpecial(), and TMultiDimFet().

std::vector<Int_t> TMultiDimFet::fPowerIndex
protected
Double_t TMultiDimFet::fPowerLimit
protected

maximum powers, ex-array

Definition at line 68 of file TMultiDimFet.h.

Referenced by Clear(), GetPowerLimit(), MakeCandidates(), operator=(), Print(), SetPowerLimit(), and TMultiDimFet().

std::vector<Int_t> TMultiDimFet::fPowers
protected
Double_t TMultiDimFet::fPrecision
protected

Error from test.

Definition at line 101 of file TMultiDimFet.h.

Referenced by Clear(), GetPrecision(), MakeCoefficients(), operator=(), Print(), and TMultiDimFet().

TVectorD TMultiDimFet::fQuantity
protected
TVectorD TMultiDimFet::fResiduals
protected

Definition at line 83 of file TMultiDimFet.h.

Referenced by Clear(), and MakeCoefficients().

Double_t TMultiDimFet::fRMS
protected

Vector of RMS of coefficients.

Definition at line 95 of file TMultiDimFet.h.

Referenced by Clear(), GetRMS(), MakeParameterization(), operator=(), and Print().

Int_t TMultiDimFet::fSampleSize
protected
Bool_t TMultiDimFet::fShowCorrelation
protected

Definition at line 113 of file TMultiDimFet.h.

Referenced by Clear(), MakeCorrelation(), operator=(), and TMultiDimFet().

TVectorD TMultiDimFet::fSqError
protected

Training sample, dependent quantity.

Definition at line 42 of file TMultiDimFet.h.

Referenced by AddRow(), Clear(), GetSqError(), and MakeCoefficientErrors().

Double_t TMultiDimFet::fSumSqAvgQuantity
protected

SumSquare of dependent quantity.

Definition at line 47 of file TMultiDimFet.h.

Referenced by Clear(), GetSumSqAvgQuantity(), MakeCoefficients(), MakeNormalized(), MakeParameterization(), operator=(), TestFunction(), and TMultiDimFet().

Double_t TMultiDimFet::fSumSqQuantity
protected

Min value of dependent quantity.

Definition at line 46 of file TMultiDimFet.h.

Referenced by AddRow(), Clear(), GetSumSqQuantity(), MakeCoefficients(), operator=(), Print(), and TMultiDimFet().

Double_t TMultiDimFet::fSumSqResidual
protected

Row giving min residual.

Definition at line 88 of file TMultiDimFet.h.

Referenced by Clear(), GetResidualSumSq(), MakeCoefficients(), MakeParameterization(), operator=(), and Print().

Double_t TMultiDimFet::fTestCorrelationCoeff
protected

Correlation matrix.

Definition at line 105 of file TMultiDimFet.h.

Referenced by operator=(), and Print().

Double_t TMultiDimFet::fTestError
protected

Error from parameterization.

Definition at line 100 of file TMultiDimFet.h.

Referenced by Clear(), GetTestError(), operator=(), Print(), and TMultiDimFet().

Double_t TMultiDimFet::fTestPrecision
protected

Relative precision of param.

Definition at line 102 of file TMultiDimFet.h.

Referenced by Clear(), GetTestPrecision(), operator=(), Print(), and TMultiDimFet().

TVectorD TMultiDimFet::fTestQuantity
protected

Size of training sample.

Definition at line 57 of file TMultiDimFet.h.

Referenced by AddTestRow(), Clear(), GetTestQuantity(), and MakeChi2().

Int_t TMultiDimFet::fTestSampleSize
protected

Test sample, independent variables.

Definition at line 61 of file TMultiDimFet.h.

Referenced by AddTestRow(), Clear(), GetTestSampleSize(), MakeChi2(), operator=(), Print(), and TMultiDimFet().

TVectorD TMultiDimFet::fTestSqError
protected

Test sample, dependent quantity.

Definition at line 58 of file TMultiDimFet.h.

Referenced by AddTestRow(), Clear(), GetTestSqError(), and MakeChi2().

TVectorD TMultiDimFet::fTestVariables
protected

Test sample, Error in quantity.

Definition at line 59 of file TMultiDimFet.h.

Referenced by AddTestRow(), Clear(), GetTestVariables(), and MakeChi2().

TVectorD TMultiDimFet::fVariables
protected

Sum of squares away from mean.

Definition at line 49 of file TMultiDimFet.h.

Referenced by AddRow(), Clear(), GetVariables(), MakeCoefficients(), MakeCorrelation(), MakeGramSchmidt(), and MakeNormalized().