CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
MTDRingForwardDoubleLayer.cc
Go to the documentation of this file.
1 //#define EDM_ML_DEBUG
2 
15 
17 
18 #include <algorithm>
19 #include <iostream>
20 #include <vector>
21 
22 using namespace std;
23 
24 MTDRingForwardDoubleLayer::MTDRingForwardDoubleLayer(const vector<const ForwardDetRing*>& frontRings,
25  const vector<const ForwardDetRing*>& backRings)
27  theFrontLayer(frontRings),
28  theBackLayer(backRings),
29  theRings(frontRings), // add back later
30  theComponents(),
31  theBasicComponents() {
32  theRings.insert(theRings.end(), backRings.begin(), backRings.end());
33  theComponents = std::vector<const GeometricSearchDet*>(theRings.begin(), theRings.end());
34 
35  // Cache chamber pointers (the basic components_)
36  // and find extension in R and Z
37  for (vector<const ForwardDetRing*>::const_iterator it = theRings.begin(); it != theRings.end(); it++) {
38  vector<const GeomDet*> tmp2 = (*it)->basicComponents();
39  theBasicComponents.insert(theBasicComponents.end(), tmp2.begin(), tmp2.end());
40  }
41 
42  setSurface(computeSurface());
43 
44  LogTrace("MTDDetLayers") << "Constructing MTDRingForwardDoubleLayer: " << basicComponents().size() << " Dets "
45  << theRings.size() << " Rings "
46  << " Z: " << specificSurface().position().z() << " R1: " << specificSurface().innerRadius()
47  << " R2: " << specificSurface().outerRadius();
48 
49  selfTest();
50 }
51 
53  const BoundDisk& frontDisk = theFrontLayer.specificSurface();
54  const BoundDisk& backDisk = theBackLayer.specificSurface();
55 
56  float rmin = min(frontDisk.innerRadius(), backDisk.innerRadius());
57  float rmax = max(frontDisk.outerRadius(), backDisk.outerRadius());
58  float zmin = frontDisk.position().z();
59  float halfThickness = frontDisk.bounds().thickness() / 2.;
60  zmin = (zmin > 0) ? zmin - halfThickness : zmin + halfThickness;
61  float zmax = backDisk.position().z();
62  halfThickness = backDisk.bounds().thickness() / 2.;
63  zmax = (zmax > 0) ? zmax + halfThickness : zmax - halfThickness;
64  float zPos = (zmax + zmin) / 2.;
65  PositionType pos(0., 0., zPos);
67 
68  return new BoundDisk(pos, rot, new SimpleDiskBounds(rmin, rmax, zmin - zPos, zmax - zPos));
69 }
70 
72  return tsos.globalPosition().basicVector().dot(tsos.globalMomentum().basicVector()) > 0;
73 }
74 
75 std::pair<bool, TrajectoryStateOnSurface> MTDRingForwardDoubleLayer::compatible(
76  const TrajectoryStateOnSurface& startingState, const Propagator& prop, const MeasurementEstimator& est) const {
77  // mostly copied from ForwardDetLayer, except propagates to closest surface,
78  // not to center
79 
80  bool insideOut = isInsideOut(startingState);
81  const MTDRingForwardLayer& closerLayer = (insideOut) ? theFrontLayer : theBackLayer;
82  LogTrace("MTDDetLayers") << "MTDRingForwardDoubleLayer::compatible is assuming inside-out direction: " << insideOut;
83 
84  TrajectoryStateOnSurface myState = prop.propagate(startingState, closerLayer.specificSurface());
85  if (!myState.isValid())
86  return make_pair(false, myState);
87 
88  // take into account the thickness of the layer
89  float deltaR = surface().bounds().thickness() / 2. * fabs(tan(myState.localDirection().theta()));
90 
91  // take into account the error on the predicted state
92  const float nSigma = 3.;
93  if (myState.hasError()) {
94  LocalError err = myState.localError().positionError();
95  // ignore correlation for the moment...
96  deltaR += nSigma * sqrt(err.xx() + err.yy());
97  }
98 
99  float zPos = (zmax() + zmin()) / 2.;
100  SimpleDiskBounds tmp(rmin() - deltaR, rmax() + deltaR, zmin() - zPos, zmax() - zPos);
101 
102  return make_pair(tmp.inside(myState.localPosition()), myState);
103 }
104 
105 vector<GeometricSearchDet::DetWithState> MTDRingForwardDoubleLayer::compatibleDets(
106  const TrajectoryStateOnSurface& startingState, const Propagator& prop, const MeasurementEstimator& est) const {
107  vector<DetWithState> result;
108  pair<bool, TrajectoryStateOnSurface> compat = compatible(startingState, prop, est);
109 
110  if (!compat.first) {
111  LogTrace("MTDDetLayers") << " MTDRingForwardDoubleLayer::compatibleDets: not compatible"
112  << " (should not have been selected!)";
113  return result;
114  }
115 
116  TrajectoryStateOnSurface& tsos = compat.second;
117 
118  // standard implementation of compatibleDets() for class which have
119  // groupedCompatibleDets implemented.
120  // This code should be moved in a common place intead of being
121  // copied many times.
122  vector<DetGroup> vectorGroups = groupedCompatibleDets(tsos, prop, est);
123  for (const auto& thisDG : vectorGroups) {
124  for (const auto& thisDGE : thisDG) {
125  result.emplace_back(DetWithState(thisDGE.det(), thisDGE.trajectoryState()));
126  }
127  }
128  return result;
129 }
130 
132  const Propagator& prop,
133  const MeasurementEstimator& est) const {
134  vector<GeometricSearchDet::DetWithState> detWithStates1, detWithStates2;
135 
136  LogTrace("MTDDetLayers") << "groupedCompatibleDets are currently given always in inside-out order";
137  // this should be fixed either in RecoMTD/MeasurementDet/MTDDetLayerMeasurements or
138  // RecoMTD/DetLayers/MTDRingForwardDoubleLayer
139 
140  detWithStates1 = theFrontLayer.compatibleDets(startingState, prop, est);
141  detWithStates2 = theBackLayer.compatibleDets(startingState, prop, est);
142 
143  vector<DetGroup> result;
144  if (!detWithStates1.empty())
145  result.push_back(DetGroup(detWithStates1));
146  if (!detWithStates2.empty())
147  result.push_back(DetGroup(detWithStates2));
148  LogTrace("MTDDetLayers") << "DoubleLayer Compatible dets: " << result.size();
149  return result;
150 }
151 
153  // approximate
154  bool result = false;
155  double r = gp.perp();
156  const std::vector<const ForwardDetRing*>& backRings = theBackLayer.rings();
157  if (backRings.size() > 1) {
158  const MTDDetRing* innerRing = dynamic_cast<const MTDDetRing*>(backRings[0]);
159  const MTDDetRing* outerRing = dynamic_cast<const MTDDetRing*>(backRings[1]);
160  assert(innerRing && outerRing);
161  float crackInner = innerRing->specificSurface().outerRadius();
162  float crackOuter = outerRing->specificSurface().innerRadius();
163  LogTrace("MTDDetLayers") << "In a crack:" << crackInner << " " << r << " " << crackOuter;
164  if (r > crackInner && r < crackOuter)
165  return true;
166  }
167  // non-overlapping rings
168  return result;
169 }
170 
172  const std::vector<const GeomDet*>& frontDets = theFrontLayer.basicComponents();
173  const std::vector<const GeomDet*>& backDets = theBackLayer.basicComponents();
174 
175  for (int iring = 0; iring <= ETLDetId::kETLv1maxRing; iring++) {
176  float frontz(0.);
177  float backz(1e3f);
178  for (const auto& thisFront : frontDets) {
179  if (static_cast<ETLDetId>(thisFront->geographicalId().rawId()).mtdRR() == iring) {
180  float tmpz(std::abs(thisFront->surface().position().z()));
181  if (tmpz > frontz) {
182  frontz = tmpz;
183  }
184  }
185  }
186  for (const auto& thisBack : backDets) {
187  if (static_cast<ETLDetId>(thisBack->geographicalId().rawId()).mtdRR() == iring) {
188  float tmpz(std::abs(thisBack->surface().position().z()));
189  if (tmpz < backz) {
190  backz = tmpz;
191  }
192  }
193  }
194  assert(frontz < backz);
195  }
196 }
TkRotation< Scalar > RotationType
Definition: Definitions.h:27
float xx() const
Definition: LocalError.h:22
virtual const std::vector< const ForwardDetRing * > & rings() const
Return the vector of rings.
const std::vector< const GeomDet * > & basicComponents() const override
T perp() const
Definition: PV3DBase.h:69
MTDRingForwardDoubleLayer(const std::vector< const ForwardDetRing * > &frontRings, const std::vector< const ForwardDetRing * > &backRings)
Constructor, takes ownership of pointers.
const std::vector< const GeomDet * > & basicComponents() const override
LocalVector localDirection() const
std::pair< bool, TrajectoryStateOnSurface > compatible(const TrajectoryStateOnSurface &, const Propagator &, const MeasurementEstimator &) const override
GlobalPoint globalPosition() const
BoundDisk * computeSurface() override
std::vector< const ForwardDetRing * > theRings
assert(be >=bs)
std::vector< DetWithState > compatibleDets(const TrajectoryStateOnSurface &startingState, const Propagator &prop, const MeasurementEstimator &est) const override
LocalError positionError() const
#define LogTrace(id)
tuple result
Definition: mps_fire.py:311
Geom::Theta< T > theta() const
Definition: PV3DBase.h:72
Point3DBase< Scalar, GlobalTag > PositionType
Definition: Definitions.h:28
std::vector< DetGroup > groupedCompatibleDets(const TrajectoryStateOnSurface &startingState, const Propagator &prop, const MeasurementEstimator &est) const override
bool isCrack(const GlobalPoint &gp) const
std::pair< const GeomDet *, TrajectoryStateOnSurface > DetWithState
float yy() const
Definition: LocalError.h:24
bool inside(const Local3DPoint &p) const override
Determine if the point is inside the bounds.
T sqrt(T t)
Definition: SSEVec.h:19
std::vector< const GeomDet * > theBasicComponents
Tan< T >::type tan(const T &t)
Definition: Tan.h:22
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
static constexpr int kETLv1maxRing
Definition: ETLDetId.h:28
const LocalTrajectoryError & localError() const
bool isInsideOut(const TrajectoryStateOnSurface &tsos) const
Disk BoundDisk
Definition: BoundDisk.h:54
TrajectoryStateOnSurface propagate(STA const &state, SUR const &surface) const
Definition: Propagator.h:50
GlobalVector globalMomentum() const
std::vector< const GeometricSearchDet * > theComponents
std::vector< DetWithState > compatibleDets(const TrajectoryStateOnSurface &startingState, const Propagator &prop, const MeasurementEstimator &est) const override
tmp
align.sh
Definition: createJobs.py:716
const BasicVectorType & basicVector() const
Definition: PV3DBase.h:53
const BoundDisk & specificSurface() const
Return the ring surface as a BoundDisk.
T dot(const Basic3DVector &rh) const
Scalar product, or &quot;dot&quot; product, with a vector of same type.