CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
sseBasic3DVector.h
Go to the documentation of this file.
1 #ifndef GeometryVector_newBasic3DVector_h
2 #define GeometryVector_newBasic3DVector_h
3 
10 #include <iosfwd>
11 #include <cmath>
12 
13 namespace detailsBasic3DVector {
14  inline float __attribute__((always_inline)) __attribute__((pure)) eta(float x, float y, float z) {
15  float t(z / std::sqrt(x * x + y * y));
16  return ::asinhf(t);
17  }
18  inline double __attribute__((always_inline)) __attribute__((pure)) eta(double x, double y, double z) {
19  double t(z / std::sqrt(x * x + y * y));
20  return ::asinh(t);
21  }
22  inline long double __attribute__((always_inline)) __attribute__((pure))
23  eta(long double x, long double y, long double z) {
24  long double t(z / std::sqrt(x * x + y * y));
25  return ::asinhl(t);
26  }
27 } // namespace detailsBasic3DVector
28 
29 template <typename T>
30 class Basic3DVector {
31 public:
32  typedef T ScalarType;
37  typedef Spherical Polar; // synonym
38 
44 
46  Basic3DVector(const Basic3DVector& p) : v(p.v) {}
47 
49  template <class U>
51 
53  Basic3DVector(const Basic2DVector<T>& p) : v(p.x(), p.y(), 0) {}
54 
63  template <class OtherPoint>
64  explicit Basic3DVector(const OtherPoint& p) : v(p.x(), p.y(), p.z()) {}
65 
66  // constructor from Vec4
67  template <class U>
69 
71  Basic3DVector(const T& x, const T& y, const T& z, const T& w = 0) : v(x, y, z, w) {}
72 
77  template <typename U>
78  Basic3DVector(const Geom::Theta<U>& theta, const Geom::Phi<U>& phi, const T& r) {
79  Polar p(theta.value(), phi.value(), r);
80  v.o.theX = p.x();
81  v.o.theY = p.y();
82  v.o.theZ = p.z();
83  }
84 
85  MathVector const& mathVector() const { return v; }
86  MathVector& mathVector() { return v; }
87 
88  T operator[](int i) const { return v[i]; }
89  T& operator[](int i) { return v[i]; }
90 
92  T x() const { return v.o.theX; }
93 
95  T y() const { return v.o.theY; }
96 
98  T z() const { return v.o.theZ; }
99 
100  T w() const { return v.o.theW; }
101 
102  Basic2DVector<T> xy() const { return v.xy(); }
103 
104  // equality
105  bool operator==(const Basic3DVector& rh) const { return v == rh.v; }
106 
108  T mag2() const { return ::dot(v, v); }
109 
111  T mag() const { return std::sqrt(mag2()); }
112 
114  T perp2() const { return ::dotxy(v, v); }
115 
117  T perp() const { return std::sqrt(perp2()); }
118 
120  T transverse() const { return perp(); }
121 
126  T barePhi() const { return std::atan2(y(), x()); }
127  Geom::Phi<T> phi() const { return Geom::Phi<T>(barePhi()); }
128 
133  T bareTheta() const { return std::atan2(perp(), z()); }
134  Geom::Theta<T> theta() const { return Geom::Theta<T>(std::atan2(perp(), z())); }
135 
140  // T eta() const { return -log( tan( theta()/2.));}
141  T eta() const { return detailsBasic3DVector::eta(x(), y(), z()); } // correct
142 
146  Basic3DVector unit() const {
147  T my_mag = mag2();
148  return (0 != my_mag) ? (*this) * (T(1) / std::sqrt(my_mag)) : *this;
149  }
150 
153  template <class U>
155  v = v + p.v;
156  return *this;
157  }
161  template <class U>
163  v = v - p.v;
164  return *this;
165  }
166 
168  Basic3DVector operator-() const { return Basic3DVector(-v); }
169 
172  v = t * v;
173  return *this;
174  }
178  //t = T(1)/t;
179  v = v / t;
180  return *this;
181  }
182 
184  T dot(const Basic3DVector& rh) const { return ::dot(v, rh.v); }
185 
191  template <class U>
195  }
196 
198  Basic3DVector cross(const Basic3DVector& lh) const { return ::cross(v, lh.v); }
199 
205  template <class U>
209  }
211 public:
213 } __attribute__((aligned(16)));
215 namespace geometryDetails {
216  std::ostream& print3D(std::ostream& s, double x, double y, double z);
217 }
218 
220 template <class T>
221 inline std::ostream& operator<<(std::ostream& s, const Basic3DVector<T>& v) {
222  return geometryDetails::print3D(s, v.x(), v.y(), v.z());
223 }
226 template <class T>
228  return a.v + b.v;
229 }
230 template <class T>
232  return a.v - b.v;
233 }
234 
235 template <class T, class U>
237  const Basic3DVector<U>& b) {
239  return RT(a).v + RT(b).v;
240 }
241 
242 template <class T, class U>
244  const Basic3DVector<U>& b) {
246  return RT(a).v - RT(b).v;
247 }
250 template <class T>
251 inline T operator*(const Basic3DVector<T>& v1, const Basic3DVector<T>& v2) {
252  return v1.dot(v2);
253 }
254 
256 template <class T, class U>
258  return v1.dot(v2);
259 }
260 
264 template <class T>
266  return v.v * t;
267 }
270 template <class T>
272  return v.v * t;
273 }
274 
275 template <class T, typename S>
277  return static_cast<T>(t) * v;
278 }
279 
280 template <class T, typename S>
282  return static_cast<T>(t) * v;
283 }
288 template <class T>
290  return v.v / t;
291 }
292 
293 template <class T, typename S>
295  // T t = S(1)/s; return v*t;
296  T t = s;
297  return v / t;
298 }
302 
303 // add long double specialization
304 #include "Basic3DVectorLD.h"
305 
306 #endif // GeometryVector_Basic3DVector_h
Basic2DVector< T > xy() const
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
int32_t *__restrict__ iv
T mag() const
The vector magnitude. Equivalent to sqrt(vec.mag2())
T & operator[](int i)
Basic3DVector(const T &x, const T &y, const T &z, const T &w=0)
construct from cartesian coordinates
MatrixMeschach operator+(const MatrixMeschach &mat1, const MatrixMeschach &mat2)
T perp2() const
Squared magnitude of transverse component.
Geom::Theta< T > theta() const
T barePhi() const
Basic3DVector unit() const
MatrixMeschach operator-(const MatrixMeschach &mat1, const MatrixMeschach &mat2)
Basic3DVector cross(const Basic3DVector &lh) const
Vector product, or &quot;cross&quot; product, with a vector of same type.
bool operator==(const Basic3DVector &rh) const
Basic3DVector(const Basic3DVector &p)
Copy constructor from same type. Should not be needed but for gcc bug 12685.
T1 value() const
Explicit access to value in case implicit conversion not OK.
Definition: Phi.h:75
Vec4< align::Scalar > MathVector
PreciseFloatType< T, U >::Type dot(const Basic3DVector< U > &lh) const
Geom::Phi< T > phi() const
mathSSE::Vec4< T > MathVector
bool int lh
Definition: SIMDVec.h:20
Basic3DVector< typename PreciseFloatType< T, U >::Type > cross(const Basic3DVector< U > &lh) const
float float float z
Basic3DVector(mathSSE::Vec4< U > const &iv)
Basic3DVector & operator/=(T t)
Scaling by a scalar value (division)
Basic3DVector(const Geom::Theta< U > &theta, const Geom::Phi< U > &phi, const T &r)
T z() const
Cartesian z coordinate.
T sqrt(T t)
Definition: SSEVec.h:19
float __attribute__((vector_size(8))) cms_float32x2_t
Definition: ExtVec.h:12
Basic3DVector & operator*=(T t)
Scaling by a scalar value (multiplication)
Basic3DVector & operator+=(const Basic3DVector< U > &p)
mathSSE::Vec4< T > v
MathVector const & mathVector() const
T perp() const
Magnitude of transverse component.
Basic3DVector & operator-=(const Basic3DVector< U > &p)
T operator[](int i) const
T1 operator/(const Phi< T1, Range > &a, const Phi< T1, Range > &b)
Division.
Definition: Phi.h:176
T value() const
Explicit access to value in case implicit conversion not OK.
Definition: Theta.h:24
Basic3DVector(const Basic3DVector< U > &p)
Copy constructor and implicit conversion from Basic3DVector of different precision.
Basic3DVector(const Basic2DVector< T > &p)
constructor from 2D vector (X and Y from 2D vector, z set to zero)
Basic3DVector< double > Basic3DVectorD
Geom::Spherical2Cartesian< T > Spherical
double b
Definition: hdecay.h:118
MathVector & mathVector()
Geom::Cylindrical2Cartesian< T > Cylindrical
T dot(const Basic3DVector &v) const
Scalar product, or &quot;dot&quot; product, with a vector of same type.
float __attribute__((always_inline)) __attribute__((pure)) eta(float x
double a
Definition: hdecay.h:119
T transverse() const
Another name for perp()
T bareTheta() const
Basic3DVector< float > Basic3DVectorF
MatrixMeschach operator*(const MatrixMeschach &mat1, const MatrixMeschach &mat2)
std::ostream & print3D(std::ostream &s, double x, double y, double z)
Definition: print.cc:5
Basic3DVector operator-() const
Unary minus, returns a vector with components (-x(),-y(),-z())
long double T
Basic3DVector(const OtherPoint &p)
Definition: Phi.h:52
T mag2() const
The vector magnitude squared. Equivalent to vec.dot(vec)
Basic3DVector cross(const Basic3DVector &v) const
Vector product, or &quot;cross&quot; product, with a vector of same type.
T dot(const Basic3DVector &rh) const
Scalar product, or &quot;dot&quot; product, with a vector of same type.
mathSSE::Vec4< T > VectorType