CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
RPCSimAverageNoiseEff.cc
Go to the documentation of this file.
5 
10 
11 #include <cmath>
12 
18 
25 
26 #include <cstring>
27 #include <iostream>
28 #include <fstream>
29 #include <string>
30 #include <vector>
31 #include <cstdlib>
32 #include <utility>
33 #include <map>
34 
35 #include "CLHEP/Random/RandFlat.h"
36 #include "CLHEP/Random/RandPoissonQ.h"
37 
38 using namespace std;
39 
41  aveEff = config.getParameter<double>("averageEfficiency");
42  aveCls = config.getParameter<double>("averageClusterSize");
43  resRPC = config.getParameter<double>("timeResolution");
44  timOff = config.getParameter<double>("timingRPCOffset");
45  dtimCs = config.getParameter<double>("deltatimeAdjacentStrip");
46  resEle = config.getParameter<double>("timeJitter");
47  sspeed = config.getParameter<double>("signalPropagationSpeed");
48  lbGate = config.getParameter<double>("linkGateWidth");
49  rpcdigiprint = config.getParameter<bool>("printOutDigitizer");
50 
51  rate = config.getParameter<double>("Rate");
52  nbxing = config.getParameter<int>("Nbxing");
53  gate = config.getParameter<double>("Gate");
54  frate = config.getParameter<double>("Frate");
55 
56  if (rpcdigiprint) {
57  std::cout << "Average Efficiency = " << aveEff << std::endl;
58  std::cout << "Average Cluster Size = " << aveCls << " strips" << std::endl;
59  std::cout << "RPC Time Resolution = " << resRPC << " ns" << std::endl;
60  std::cout << "RPC Signal formation time = " << timOff << " ns" << std::endl;
61  std::cout << "RPC adjacent strip delay = " << dtimCs << " ns" << std::endl;
62  std::cout << "Electronic Jitter = " << resEle << " ns" << std::endl;
63  std::cout << "Signal propagation time = " << sspeed << " x c" << std::endl;
64  std::cout << "Link Board Gate Width = " << lbGate << " ns" << std::endl;
65  }
66 
67  _rpcSync = new RPCSynchronizer(config);
68 }
69 
71 
72 int RPCSimAverageNoiseEff::getClSize(float posX, CLHEP::HepRandomEngine* engine) {
73  std::map<int, std::vector<double> > clsMap = getRPCSimSetUp()->getClsMap();
74 
75  int cnt = 1;
76  int min = 1;
77  double func = 0.0;
78  std::vector<double> sum_clsize;
79 
80  double rr_cl = CLHEP::RandFlat::shoot(engine);
81  if (0.0 <= posX && posX < 0.2) {
82  func = (clsMap[1])[(clsMap[1]).size() - 1] * (rr_cl);
83  sum_clsize = clsMap[1];
84  }
85  if (0.2 <= posX && posX < 0.4) {
86  func = (clsMap[2])[(clsMap[2]).size() - 1] * (rr_cl);
87  sum_clsize = clsMap[2];
88  }
89  if (0.4 <= posX && posX < 0.6) {
90  func = (clsMap[3])[(clsMap[3]).size() - 1] * (rr_cl);
91  sum_clsize = clsMap[3];
92  }
93  if (0.6 <= posX && posX < 0.8) {
94  func = (clsMap[4])[(clsMap[4]).size() - 1] * (rr_cl);
95  sum_clsize = clsMap[4];
96  }
97  if (0.8 <= posX && posX < 1.0) {
98  func = (clsMap[5])[(clsMap[5]).size() - 1] * (rr_cl);
99  sum_clsize = clsMap[5];
100  }
101 
102  for (vector<double>::iterator iter = sum_clsize.begin(); iter != sum_clsize.end(); ++iter) {
103  cnt++;
104  if (func > (*iter)) {
105  min = cnt;
106  } else if (func < (*iter)) {
107  break;
108  }
109  }
110  return min;
111 }
112 
114  const edm::PSimHitContainer& rpcHits,
115  CLHEP::HepRandomEngine* engine) {
118  theDetectorHitMap.clear();
120 
121  RPCDetId rpcId = roll->id();
122  RPCGeomServ RPCname(rpcId);
123  std::string nameRoll = RPCname.name();
124 
125  const Topology& topology = roll->specs()->topology();
126 
127  for (edm::PSimHitContainer::const_iterator _hit = rpcHits.begin(); _hit != rpcHits.end(); ++_hit) {
128  if (_hit->particleType() == 11)
129  continue;
130 
131  // Here I hould check if the RPC are up side down;
132  const LocalPoint& entr = _hit->entryPoint();
133 
134  int time_hit = _rpcSync->getSimHitBx(&(*_hit), engine);
135  float posX = roll->strip(_hit->localPosition()) - static_cast<int>(roll->strip(_hit->localPosition()));
136 
137  std::vector<float> veff = (getRPCSimSetUp())->getEff(rpcId.rawId());
138 
139  // Effinciecy
140  int centralStrip = topology.channel(entr) + 1;
141  ;
142  float fire = CLHEP::RandFlat::shoot(engine);
143 
144  if (fire < veff[centralStrip - 1]) {
145  int fstrip = centralStrip;
146  int lstrip = centralStrip;
147 
148  // Compute the cluster size
149  //double w = CLHEP::RandFlat::shoot(engine);
150  //if (w < 1.e-10) w=1.e-10;
151  int clsize = this->getClSize(posX, engine);
152 
153  std::vector<int> cls;
154  cls.push_back(centralStrip);
155  if (clsize > 1) {
156  for (int cl = 0; cl < (clsize - 1) / 2; cl++) {
157  if (centralStrip - cl - 1 >= 1) {
158  fstrip = centralStrip - cl - 1;
159  cls.push_back(fstrip);
160  }
161  if (centralStrip + cl + 1 <= roll->nstrips()) {
162  lstrip = centralStrip + cl + 1;
163  cls.push_back(lstrip);
164  }
165  }
166  if (clsize % 2 == 0) {
167  // insert the last strip according to the
168  // simhit position in the central strip
169  double deltaw = roll->centreOfStrip(centralStrip).x() - entr.x();
170  if (deltaw < 0.) {
171  if (lstrip < roll->nstrips()) {
172  lstrip++;
173  cls.push_back(lstrip);
174  }
175  } else {
176  if (fstrip > 1) {
177  fstrip--;
178  cls.push_back(fstrip);
179  }
180  }
181  }
182  }
183 
184  for (std::vector<int>::iterator i = cls.begin(); i != cls.end(); i++) {
185  // Check the timing of the adjacent strip
186  if (*i != centralStrip) {
187  if (CLHEP::RandFlat::shoot(engine) < veff[*i - 1]) {
188  std::pair<int, int> digi(*i, time_hit);
189  strips.insert(digi);
190 
191  theDetectorHitMap.insert(DetectorHitMap::value_type(digi, &(*_hit)));
192  }
193  } else {
194  std::pair<int, int> digi(*i, time_hit);
195  theDetectorHitMap.insert(DetectorHitMap::value_type(digi, &(*_hit)));
196 
197  strips.insert(digi);
198  }
199  }
200  }
201  }
202 }
203 
204 void RPCSimAverageNoiseEff::simulateNoise(const RPCRoll* roll, CLHEP::HepRandomEngine* engine) {
205  RPCDetId rpcId = roll->id();
206 
207  RPCGeomServ RPCname(rpcId);
208  std::string nameRoll = RPCname.name();
209 
210  std::vector<float> vnoise = (getRPCSimSetUp())->getNoise(rpcId.rawId());
211  std::vector<float> veff = (getRPCSimSetUp())->getEff(rpcId.rawId());
212 
213  unsigned int nstrips = roll->nstrips();
214  double area = 0.0;
215 
216  if (rpcId.region() == 0) {
217  const RectangularStripTopology* top_ = dynamic_cast<const RectangularStripTopology*>(&(roll->topology()));
218  float xmin = (top_->localPosition(0.)).x();
219  float xmax = (top_->localPosition((float)roll->nstrips())).x();
220  float striplength = (top_->stripLength());
221  area = striplength * (xmax - xmin);
222  } else {
223  const TrapezoidalStripTopology* top_ = dynamic_cast<const TrapezoidalStripTopology*>(&(roll->topology()));
224  float xmin = (top_->localPosition(0.)).x();
225  float xmax = (top_->localPosition((float)roll->nstrips())).x();
226  float striplength = (top_->stripLength());
227  area = striplength * (xmax - xmin);
228  }
229 
230  for (unsigned int j = 0; j < vnoise.size(); ++j) {
231  if (j >= nstrips)
232  break;
233 
234  // The efficiency of 0% does not imply on the noise rate.
235  // If the strip is masked the noise rate should be 0 Hz/cm^2
236  // if(veff[j] == 0) continue;
237 
238  // double ave = vnoise[j]*nbxing*gate*area*1.0e-9*frate;
239  // The vnoise is the noise rate per strip, so we shout multiply not
240  // by the chamber area,
241  // but the strip area which is area/((float)roll->nstrips()));
242  double ave = vnoise[j] * nbxing * gate * area * 1.0e-9 * frate / ((float)roll->nstrips());
243 
244  CLHEP::RandPoissonQ randPoissonQ(*engine, ave);
245  N_hits = randPoissonQ.fire();
246 
247  for (int i = 0; i < N_hits; i++) {
248  int time_hit = (static_cast<int>(CLHEP::RandFlat::shoot(engine, (nbxing * gate) / gate))) - nbxing / 2;
249  std::pair<int, int> digi(j + 1, time_hit);
250  strips.insert(digi);
251  }
252  }
253 }
float strip(const LocalPoint &lp) const
Definition: RPCRoll.cc:35
std::vector< double > sum_clsize
LocalPoint centreOfStrip(int strip) const
Definition: RPCRoll.cc:26
LocalPoint localPosition(float strip) const override
int getClSize(float posX, CLHEP::HepRandomEngine *)
DetectorHitMap theDetectorHitMap
Definition: RPCSim.h:68
void setRPCSimSetUp(RPCSimSetUp *simsetup)
int nstrips() const
Definition: RPCRoll.cc:24
constexpr uint32_t rawId() const
get the raw id
Definition: DetId.h:57
RPCSimSetUp * getRPCSimSetUp()
Definition: RPCSim.h:45
uint32_t T const *__restrict__ uint32_t const *__restrict__ int32_t int Histo::index_type cudaStream_t Func __host__ __device__ V int Func func
const RPCRollSpecs * specs() const
Definition: RPCRoll.cc:14
int getSimHitBx(const PSimHit *, CLHEP::HepRandomEngine *)
tuple cl
Definition: haddnano.py:49
RPCSimAverageNoiseEff(const edm::ParameterSet &config)
float stripLength() const override
edm::DetSet< RPCDigiSimLink > RPCDigiSimLinks
Definition: RPCSim.h:33
RPCDetId id() const
Definition: RPCRoll.cc:16
virtual std::string name()
Definition: RPCGeomServ.cc:11
std::set< std::pair< int, int > > strips
Definition: RPCSim.h:55
void simulateNoise(const RPCRoll *, CLHEP::HepRandomEngine *) override
void simulate(const RPCRoll *roll, const edm::PSimHitContainer &rpcHits, CLHEP::HepRandomEngine *) override
const std::map< int, std::vector< double > > & getClsMap()
Definition: RPCSimSetUp.cc:450
virtual int channel(const LocalPoint &p) const =0
Definition: RPCSim.h:30
T min(T a, T b)
Definition: MathUtil.h:58
const Topology & topology() const override
Definition: RPCRollSpecs.cc:36
T getParameter(std::string const &) const
Definition: ParameterSet.h:303
tuple config
parse the configuration file
const Topology & topology() const override
Definition: RPCRoll.cc:18
RPCSynchronizer * _rpcSync
void clear()
Definition: DetSet.h:71
tuple cout
Definition: gather_cfg.py:144
std::vector< PSimHit > PSimHitContainer
std::map< int, std::vector< double > > clsMap
float stripLength() const override
det heigth (strip length in the middle)
T x() const
Definition: PV3DBase.h:59
RPCDigiSimLinks theRpcDigiSimLinks
Definition: RPCSim.h:70
LocalPoint localPosition(float strip) const override
int region() const
Region id: 0 for Barrel, +/-1 For +/- Endcap.
Definition: RPCDetId.h:53