2 #include "Math/GenVector/PositionVector3D.h"
11 :
PFTrack(charge), algoType_(algoType), trackId_(trackId), trackRef_(trackRef), STIP_(-99.) {}
14 :
PFTrack(charge), algoType_(algoType), trackId_(-1), STIP_(-99.) {}
22 out <<
"Reco track charge = " << track.
charge() <<
", type = " << track.
algoType()
23 <<
", Pt = " << closestApproach.
momentum().Pt() <<
", P = " << closestApproach.
momentum().P() << std::endl
24 <<
"\tR0 = " << closestApproach.
position().Rho() <<
" Z0 = " << closestApproach.
position().Z() << std::endl
26 <<
"\tnumber of points total = " << track.
trajectoryPoints().size() << std::endl;
reconstructed track used as an input to particle flow
const math::XYZPoint & position() const
cartesian position (x, y, z)
Base class for particle flow input reconstructed tracks and simulated particles.
std::ostream & operator<<(std::ostream &, BeamSpot beam)
Point of closest approach from beam axis (initial point in the case of PFSimParticle) ...
const std::vector< reco::PFTrajectoryPoint > & trajectoryPoints() const
const math::XYZTLorentzVector & momentum() const
4-momenta quadrivector
const reco::PFTrajectoryPoint & trajectoryPoint(unsigned index) const
unsigned int nTrajectoryMeasurements() const
AlgoType_t
different types of fitting algorithms
unsigned int algoType() const
A PFTrack holds several trajectory points, which basically contain the position and momentum of a tra...