CMS 3D CMS Logo

HcalHF_S9S1algorithm.cc
Go to the documentation of this file.
8 
9 #include <algorithm> // for "max"
10 #include <cmath>
11 #include <iostream>
12 
14  // Default settings: Energy > 50 GeV, slope = 0, ET = 0
15  std::vector<double> blank;
16  blank.clear();
17  blank.push_back(0);
18  std::vector<double> EnergyDefault;
19  EnergyDefault.clear();
20  EnergyDefault.push_back(50);
21 
22  // Thresholds only need to be computed once, not every event!
23  LongSlopes.clear();
24  ShortSlopes.clear();
25  for (int i = 29; i <= 41; ++i) {
26  LongSlopes.push_back(0);
27  ShortSlopes.push_back(0);
28  }
29  LongEnergyThreshold.clear();
30  LongETThreshold.clear();
31  ShortEnergyThreshold.clear();
32  ShortETThreshold.clear();
33  for (int i = 29; i <= 41; ++i) {
34  LongEnergyThreshold.push_back(EnergyDefault[0]);
35  LongETThreshold.push_back(blank[0]);
36  ShortEnergyThreshold.push_back(EnergyDefault[0]);
37  ShortETThreshold.push_back(blank[0]);
38  }
40  isS8S1_ = false; // S8S1 is almost the same as S9S1
41 }
42 
44  const std::vector<double>& short_Energy,
45  const std::vector<double>& short_ET,
46  const std::vector<double>& long_optimumSlope,
47  const std::vector<double>& long_Energy,
48  const std::vector<double>& long_ET,
50  bool isS8S1)
51 
52 {
53  // Constructor in the case where all parameters are provided by the user
54 
55  // Thresholds only need to be computed once, not every event!
56 
59 
60  while (LongSlopes.size() < 13)
61  LongSlopes.push_back(0); // should be unnecessary, but include this protection to avoid crashes
62  while (ShortSlopes.size() < 13)
63  ShortSlopes.push_back(0);
64 
65  // Get long, short energy thresholds (different threshold for each |ieta|)
66  LongEnergyThreshold.clear();
67  LongETThreshold.clear();
68  ShortEnergyThreshold.clear();
69  ShortETThreshold.clear();
70  LongEnergyThreshold = long_Energy;
71  LongETThreshold = long_ET;
72  ShortEnergyThreshold = short_Energy;
73  ShortETThreshold = short_ET;
74 
76  isS8S1_ = isS8S1;
77 } // HcalHF_S9S1algorithm constructor with parameters
78 
80 
82  HFRecHitCollection& rec,
83  const HcalChannelQuality* myqual,
84  const HcalSeverityLevelComputer* mySeverity)
85 
86 {
87  int ieta = hf.id().ieta(); // get coordinates of rechit being checked
88  int depth = hf.id().depth();
89  int iphi = hf.id().iphi();
90  std::pair<double, double> etas = myqual->topo()->etaRange(HcalForward, abs(ieta));
91  double eta1 = etas.first;
92  double eta2 = etas.second;
93  double fEta = 0.5 * (eta1 + eta2); // calculate eta as average of eta values at ieta boundaries
94  double energy = hf.energy();
95  double ET = energy / fabs(cosh(fEta));
96 
97  // Step 1: Check eta-dependent energy and ET thresholds -- same as PET algorithm
98  double ETthresh = 0, Energythresh = 0; // set ET, energy thresholds
99  if (depth == 1) // set thresholds for long fibers
100  {
101  Energythresh = LongEnergyThreshold[abs(ieta) - 29];
102  ETthresh = LongETThreshold[abs(ieta) - 29];
103  } else if (depth == 2) // short fibers
104  {
105  Energythresh = ShortEnergyThreshold[abs(ieta) - 29];
106  ETthresh = ShortETThreshold[abs(ieta) - 29];
107  }
108  if (energy < Energythresh || ET < ETthresh)
109  return;
110 
111  // Step 1A:
112  // Check that EL<ES when evaluating short fibers (S8S1 check only)
113  if (depth == 2 && abs(ieta) > 29 && isS8S1_) {
114  double EL = 0;
115  // look for long partner
116  HcalDetId neighbor(HcalForward, ieta, iphi, 1);
117  HFRecHitCollection::const_iterator neigh = rec.find(neighbor);
118  if (neigh != rec.end())
119  EL = neigh->energy();
120 
121  if (EL >= energy)
122  return;
123  }
124 
125  // Step 2: Find all neighbors, and calculate S9/S1
126  double S9S1 = 0;
127  int testphi = -99;
128 
129  // Part A: Check fixed iphi, and vary ieta
130  for (int d = 1; d <= 2; ++d) // depth loop
131  {
132  for (int i = ieta - 1; i <= ieta + 1; ++i) // ieta loop
133  {
134  testphi = iphi;
135  // Special case when ieta=39, since ieta=40 only has phi values at 3,7,11,...
136  // phi=3 covers 3,4,5,6
137  if (abs(ieta) == 39 && abs(i) > 39 && testphi % 4 == 1)
138  testphi -= 2;
139  while (testphi < 0)
140  testphi += 72;
141  if (i == ieta)
142  if (d == depth || isS8S1_ == true)
143  continue; // don't add the cell itself; don't count neighbor in same ieta-phi if S8S1 test enabled
144 
145  // Look to see if neighbor is in rechit collection
146  HcalDetId neighbor(HcalForward, i, testphi, d);
147  HFRecHitCollection::const_iterator neigh = rec.find(neighbor);
148  // require that neighbor exists, and that it doesn't have a prior flag already set
149  if (neigh != rec.end()) {
150  const uint32_t chanstat = myqual->getValues(neighbor)->getValue();
151  int SeverityLevel = mySeverity->getSeverityLevel(neighbor, neigh->flags(), chanstat);
153  S9S1 += neigh->energy();
154  }
155  }
156  }
157 
158  // Part B: Fix ieta, and loop over iphi. A bit more tricky, because of iphi wraparound and different segmentation at 40, 41
159 
160  int phiseg = 2; // 10 degree segmentation for most of HF (1 iphi unit = 5 degrees)
161  if (abs(ieta) > 39)
162  phiseg = 4; // 20 degree segmentation for |ieta|>39
163  for (int d = 1; d <= 2; ++d) {
164  for (int i = iphi - phiseg; i <= iphi + phiseg; i += phiseg) {
165  if (i == iphi)
166  continue; // don't add the cell itself, or its depthwise partner (which is already counted above)
167  testphi = i;
168  // Our own modular function, since default produces results -1%72 = -1
169  while (testphi < 0)
170  testphi += 72;
171  while (testphi > 72)
172  testphi -= 72;
173  // Look to see if neighbor is in rechit collection
174  HcalDetId neighbor(HcalForward, ieta, testphi, d);
175  HFRecHitCollection::const_iterator neigh = rec.find(neighbor);
176  if (neigh != rec.end()) {
177  const uint32_t chanstat = myqual->getValues(neighbor)->getValue();
178  int SeverityLevel = mySeverity->getSeverityLevel(neighbor, neigh->flags(), chanstat);
180  S9S1 += neigh->energy();
181  }
182  }
183  }
184 
185  if (abs(ieta) == 40) // add extra cells for 39/40 boundary due to increased phi size at ieta=40.
186  {
187  for (int d = 1; d <= 2; ++d) // add cells from both depths!
188  {
189  HcalDetId neighbor(HcalForward, 39 * abs(ieta) / ieta, (iphi + 2) % 72, d);
190  HFRecHitCollection::const_iterator neigh = rec.find(neighbor);
191  if (neigh != rec.end()) {
192  const uint32_t chanstat = myqual->getValues(neighbor)->getValue();
193  int SeverityLevel = mySeverity->getSeverityLevel(neighbor, neigh->flags(), chanstat);
195  S9S1 += neigh->energy();
196  }
197  }
198  }
199 
200  // So far, S9S1 is the sum of the neighbors; divide to form ratio
201  S9S1 /= energy;
202 
203  // Now compare to threshold
204  double slope = 0;
205  if (depth == 1)
206  slope = LongSlopes[abs(ieta) - 29];
207  else if (depth == 2)
208  slope = ShortSlopes[abs(ieta) - 29];
209  double intercept = 0;
210  if (depth == 1)
211  intercept = LongEnergyThreshold[abs(ieta) - 29];
212  else if (depth == 2)
213  intercept = ShortEnergyThreshold[abs(ieta) - 29];
214 
215  // S9S1 cut has the form [0] + [1]*log[E]; S9S1 value should be above this line
216  double S9S1cut = 0;
217  // Protection in case intercept or energy are ever less than 0. Do we have some other default value of S9S1cut we'd like touse in this case?
218  if (intercept > 0 && energy > 0)
219  S9S1cut = -1. * slope * log(intercept) + slope * log(energy);
220  if (S9S1 < S9S1cut) {
221  // Only set HFS8S1Ratio if S8/S1 ratio test fails
222  if (isS8S1_ == true)
223  hf.setFlagField(1, HcalCaloFlagLabels::HFS8S1Ratio);
224  // *Always* set the HFLongShort bit if either S8S1 or S9S1 fail
225  hf.setFlagField(1, HcalCaloFlagLabels::HFLongShort);
226  }
227  return;
228 } // void HcalHF_S9S1algorithm::HFSetFlagFromS9S1
229 
230 double HcalHF_S9S1algorithm::CalcSlope(int abs_ieta, const std::vector<double>& params) {
231  /* CalcSlope calculates the polynomial [0]+[1]*x + [2]*x^2 + ....,
232  where x is an integer provided by the first argument (int abs_ieta),
233  and [0],[1],[2] is a vector of doubles provided by the second (std::vector<double> params).
234  The output of the polynomial calculation (threshold) is returned by the function.
235  This function should no longer be needed, since we pass slopes for all ietas into the function via the parameter set.
236  */
237  double threshold = 0;
238  for (std::vector<double>::size_type i = 0; i < params.size(); ++i) {
239  threshold += params[i] * pow(static_cast<double>(abs_ieta), (int)i);
240  }
241  return threshold;
242 } // HcalHF_S9S1algorithm::CalcRThreshold(int abs_ieta, std::vector<double> params)
243 
244 double HcalHF_S9S1algorithm::CalcEnergyThreshold(double abs_energy, const std::vector<double>& params) {
245  /* CalcEnergyThreshold calculates the polynomial [0]+[1]*x + [2]*x^2 + ....,
246  where x is an integer provided by the first argument (int abs_ieta),
247  and [0],[1],[2] is a vector of doubles provided by the second (std::vector<double> params).
248  The output of the polynomial calculation (threshold) is returned by the function.
249  */
250  double threshold = 0;
251  for (std::vector<double>::size_type i = 0; i < params.size(); ++i) {
252  threshold += params[i] * pow(abs_energy, (int)i);
253  }
254  return threshold;
255 } //double HcalHF_S9S1algorithm::CalcEnergyThreshold(double abs_energy,std::vector<double> params)
HcalHF_S9S1algorithm::ShortETThreshold
std::vector< double > ShortETThreshold
Definition: HcalHF_S9S1algorithm.h:58
mps_fire.i
i
Definition: mps_fire.py:428
edm::SortedCollection::const_iterator
std::vector< T >::const_iterator const_iterator
Definition: SortedCollection.h:80
MessageLogger.h
HcalHF_S9S1algorithm::ShortEnergyThreshold
std::vector< double > ShortEnergyThreshold
Definition: HcalHF_S9S1algorithm.h:56
HcalHF_S9S1algorithm::HcalHF_S9S1algorithm
HcalHF_S9S1algorithm()
Definition: HcalHF_S9S1algorithm.cc:13
CalibrationSummaryClient_cfi.params
params
Definition: CalibrationSummaryClient_cfi.py:14
HcalHF_S9S1algorithm::HcalAcceptSeverityLevel_
int HcalAcceptSeverityLevel_
Definition: HcalHF_S9S1algorithm.h:59
HcalCaloFlagLabels::HFS8S1Ratio
Definition: HcalCaloFlagLabels.h:40
HcalHF_S9S1algorithm::HFSetFlagFromS9S1
void HFSetFlagFromS9S1(HFRecHit &hf, HFRecHitCollection &rec, const HcalChannelQuality *myqual, const HcalSeverityLevelComputer *mySeverity)
Definition: HcalHF_S9S1algorithm.cc:81
edm::SortedCollection
Definition: SortedCollection.h:49
HcalHF_S9S1algorithm::LongSlopes
std::vector< double > LongSlopes
Definition: HcalHF_S9S1algorithm.h:53
HLT_FULL_cff.isS8S1
isS8S1
Definition: HLT_FULL_cff.py:8467
HcalChannelQuality
Definition: HcalChannelQuality.h:17
HcalCondObjectContainer::getValues
const Item * getValues(DetId fId, bool throwOnFail=true) const
Definition: HcalCondObjectContainer.h:159
LEDCalibrationChannels.iphi
iphi
Definition: LEDCalibrationChannels.py:64
HLT_FULL_cff.long_optimumSlope
long_optimumSlope
Definition: HLT_FULL_cff.py:8466
photonIsolationHIProducer_cfi.hf
hf
Definition: photonIsolationHIProducer_cfi.py:9
trigger::size_type
uint16_t size_type
Definition: TriggerTypeDefs.h:18
HFRecHit
Definition: HFRecHit.h:11
HcalHF_S9S1algorithm::ShortSlopes
std::vector< double > ShortSlopes
Definition: HcalHF_S9S1algorithm.h:54
EnergyCorrector.etas
etas
Definition: EnergyCorrector.py:45
HLT_FULL_cff.eta2
eta2
Definition: HLT_FULL_cff.py:9542
HcalSeverityLevelComputer
Definition: HcalSeverityLevelComputer.h:24
HcalHF_S9S1algorithm::LongEnergyThreshold
std::vector< double > LongEnergyThreshold
Definition: HcalHF_S9S1algorithm.h:55
HCALHighEnergyHPDFilter_cfi.energy
energy
Definition: HCALHighEnergyHPDFilter_cfi.py:5
LEDCalibrationChannels.depth
depth
Definition: LEDCalibrationChannels.py:65
ET
#define ET
Definition: GenericBenchmark.cc:27
HcalSeverityLevelComputerRcd.h
HLT_FULL_cff.eta1
eta1
Definition: HLT_FULL_cff.py:9541
HcalSeverityLevelComputer::getSeverityLevel
int getSeverityLevel(const DetId &myid, const uint32_t &myflag, const uint32_t &mystatus) const
Definition: HcalSeverityLevelComputer.cc:304
HcalChannelStatus::getValue
uint32_t getValue() const
Definition: HcalChannelStatus.h:60
HcalHF_S9S1algorithm.h
LEDCalibrationChannels.ieta
ieta
Definition: LEDCalibrationChannels.py:63
HLT_FULL_cff.HcalAcceptSeverityLevel
HcalAcceptSeverityLevel
Definition: HLT_FULL_cff.py:8459
HcalHF_S9S1algorithm::CalcSlope
double CalcSlope(int abs_ieta, const std::vector< double > &params)
Definition: HcalHF_S9S1algorithm.cc:230
HcalCaloFlagLabels.h
edm::SortedCollection::end
const_iterator end() const
Definition: SortedCollection.h:267
HcalCondObjectContainerBase::topo
const HcalTopology * topo() const
Definition: HcalCondObjectContainer.h:22
HcalHF_S9S1algorithm::CalcEnergyThreshold
double CalcEnergyThreshold(double abs_energy, const std::vector< double > &params)
Definition: HcalHF_S9S1algorithm.cc:244
HcalDetId
Definition: HcalDetId.h:12
EcalSeverityLevel::SeverityLevel
SeverityLevel
Definition: EcalSeverityLevel.h:18
HcalChannelQuality.h
HcalForward
Definition: HcalAssistant.h:36
edm::SortedCollection::find
iterator find(key_type k)
Definition: SortedCollection.h:240
HcalTopology.h
HcalHF_S9S1algorithm::LongETThreshold
std::vector< double > LongETThreshold
Definition: HcalHF_S9S1algorithm.h:57
HLT_FULL_cff.short_optimumSlope
short_optimumSlope
Definition: HLT_FULL_cff.py:8470
HcalTopology::etaRange
std::pair< double, double > etaRange(HcalSubdetector subdet, int ieta) const
Definition: HcalTopology.cc:1125
HcalSeverityLevelComputer.h
HcalCaloFlagLabels::HFLongShort
Definition: HcalCaloFlagLabels.h:37
dqm-mbProfile.log
log
Definition: dqm-mbProfile.py:17
funct::pow
Power< A, B >::type pow(const A &a, const B &b)
Definition: Power.h:29
ztail.d
d
Definition: ztail.py:151
funct::abs
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
HcalHF_S9S1algorithm::~HcalHF_S9S1algorithm
~HcalHF_S9S1algorithm()
Definition: HcalHF_S9S1algorithm.cc:79
slope
static const double slope[3]
Definition: CastorTimeSlew.cc:6
remoteMonitoring_LED_IterMethod_cfg.threshold
threshold
Definition: remoteMonitoring_LED_IterMethod_cfg.py:430
HcalHF_S9S1algorithm::isS8S1_
bool isS8S1_
Definition: HcalHF_S9S1algorithm.h:60