CMS 3D CMS Logo

List of all members | Public Member Functions | Private Attributes
CMSEmStandardPhysicsXS Class Reference

#include <CMSEmStandardPhysicsXS.h>

Inheritance diagram for CMSEmStandardPhysicsXS:

Public Member Functions

 CMSEmStandardPhysicsXS (G4int ver)
 
void ConstructParticle () override
 
void ConstructProcess () override
 
 ~CMSEmStandardPhysicsXS () override
 

Private Attributes

G4int verbose
 

Detailed Description

Definition at line 7 of file CMSEmStandardPhysicsXS.h.

Constructor & Destructor Documentation

◆ CMSEmStandardPhysicsXS()

CMSEmStandardPhysicsXS::CMSEmStandardPhysicsXS ( G4int  ver)

Definition at line 94 of file CMSEmStandardPhysicsXS.cc.

94  : G4VPhysicsConstructor("CMSEmStandard_emn"), verbose(ver) {
95  G4EmParameters* param = G4EmParameters::Instance();
96  param->SetDefaults();
97  param->SetVerbose(verbose);
98  param->SetApplyCuts(true);
99  param->SetLowestElectronEnergy(100 * eV);
100  param->SetStepFunction(0.8, 1 * CLHEP::mm);
101  param->SetUseMottCorrection(true); // use Mott-correction for e-/e+ msc gs
102  param->SetMscRangeFactor(0.2);
103  param->SetMscStepLimitType(fMinimal);
104  param->SetFluo(true);
105  SetPhysicsType(bElectromagnetic);
106 }

References verbose.

◆ ~CMSEmStandardPhysicsXS()

CMSEmStandardPhysicsXS::~CMSEmStandardPhysicsXS ( )
override

Definition at line 108 of file CMSEmStandardPhysicsXS.cc.

108 {}

Member Function Documentation

◆ ConstructParticle()

void CMSEmStandardPhysicsXS::ConstructParticle ( )
override

Definition at line 110 of file CMSEmStandardPhysicsXS.cc.

110  {
111  // gamma
112  G4Gamma::Gamma();
113 
114  // leptons
116  G4Positron::Positron();
117  G4MuonPlus::MuonPlus();
118  G4MuonMinus::MuonMinus();
119  G4TauMinus::TauMinusDefinition();
120  G4TauPlus::TauPlusDefinition();
121 
122  // mesons
123  G4PionPlus::PionPlusDefinition();
124  G4PionMinus::PionMinusDefinition();
125  G4KaonPlus::KaonPlusDefinition();
126  G4KaonMinus::KaonMinusDefinition();
127  G4DMesonMinus::DMesonMinusDefinition();
128  G4DMesonPlus::DMesonPlusDefinition();
129  G4BMesonMinus::BMesonMinusDefinition();
130  G4BMesonPlus::BMesonPlusDefinition();
131 
132  // barions
133  G4Proton::Proton();
134  G4AntiProton::AntiProton();
135  G4SigmaMinus::SigmaMinusDefinition();
136  G4AntiSigmaMinus::AntiSigmaMinusDefinition();
137  G4SigmaPlus::SigmaPlusDefinition();
138  G4AntiSigmaPlus::AntiSigmaPlusDefinition();
139  G4XiMinus::XiMinusDefinition();
140  G4AntiXiMinus::AntiXiMinusDefinition();
141  G4OmegaMinus::OmegaMinusDefinition();
142  G4AntiOmegaMinus::AntiOmegaMinusDefinition();
143  G4LambdacPlus::LambdacPlusDefinition();
144  G4AntiLambdacPlus::AntiLambdacPlusDefinition();
145  G4XicPlus::XicPlusDefinition();
146  G4AntiXicPlus::AntiXicPlusDefinition();
147 
148  // ions
149  G4Deuteron::Deuteron();
150  G4Triton::Triton();
151  G4He3::He3();
152  G4Alpha::Alpha();
153  G4GenericIon::GenericIonDefinition();
154 }

References VtxSmearedParameters_cfi::Alpha, and nanoDQM_cff::Electron.

◆ ConstructProcess()

void CMSEmStandardPhysicsXS::ConstructProcess ( )
override

Definition at line 156 of file CMSEmStandardPhysicsXS.cc.

156  {
157  if (verbose > 0) {
158  edm::LogVerbatim("PhysicsList") << "### " << GetPhysicsName() << " Construct Processes";
159  }
160 
161  // This EM builder takes default models of Geant4 10 EMV.
162  // Multiple scattering by Urban for all particles
163  // except e+e- below 100 MeV for which the Urban model is used
164 
165  G4PhysicsListHelper* ph = G4PhysicsListHelper::GetPhysicsListHelper();
166  G4LossTableManager* man = G4LossTableManager::Instance();
167 
168  // muon & hadron bremsstrahlung and pair production
169  G4MuBremsstrahlung* mub = nullptr;
170  G4MuPairProduction* mup = nullptr;
171  G4hBremsstrahlung* pib = nullptr;
172  G4hPairProduction* pip = nullptr;
173  G4hBremsstrahlung* kb = nullptr;
174  G4hPairProduction* kp = nullptr;
175  G4hBremsstrahlung* pb = nullptr;
176  G4hPairProduction* pp = nullptr;
177  G4ePairProduction* ee = nullptr;
178 
179  // muon & hadron multiple scattering
180  G4MuMultipleScattering* mumsc = nullptr;
181  G4hMultipleScattering* pimsc = nullptr;
182  G4hMultipleScattering* kmsc = nullptr;
183  G4hMultipleScattering* hmsc = nullptr;
184 
185  // muon and hadron single scattering
186  G4CoulombScattering* muss = nullptr;
187  G4CoulombScattering* piss = nullptr;
188  G4CoulombScattering* kss = nullptr;
189 
190  // high energy limit for e+- scattering models and bremsstrahlung
191  G4double highEnergyLimit = 100 * MeV;
192 
193  G4Region* aRegion = G4RegionStore::GetInstance()->GetRegion("HcalRegion", false);
194  G4Region* bRegion = G4RegionStore::GetInstance()->GetRegion("HGCalRegion", false);
195  if (verbose > 1) {
196  edm::LogVerbatim("PhysicsList") << "CMSEmStandardPhysicsLPM: HcalRegion " << aRegion << "; HGCalRegion " << bRegion;
197  }
198 
199  G4ParticleTable* table = G4ParticleTable::GetParticleTable();
200  EmParticleList emList;
201  for (const auto& particleName : emList.PartNames()) {
202  G4ParticleDefinition* particle = table->FindParticle(particleName);
203 
204  if (particleName == "gamma") {
205  G4PhotoElectricEffect* photo = new G4PhotoElectricEffect();
206  photo->SetEmModel(new G4LivermorePhotoElectricModel());
207 
208  G4ComptonScattering* compt = new G4ComptonScattering();
209  compt->SetEmModel(new G4KleinNishinaModel());
210 
211  if (G4EmParameters::Instance()->GeneralProcessActive()) {
212  G4GammaGeneralProcess* sp = new G4GammaGeneralProcess();
213  sp->AddEmProcess(photo);
214  sp->AddEmProcess(compt);
215  sp->AddEmProcess(new G4GammaConversion());
216  man->SetGammaGeneralProcess(sp);
217  ph->RegisterProcess(sp, particle);
218 
219  } else {
220  ph->RegisterProcess(photo, particle);
221  ph->RegisterProcess(compt, particle);
222  ph->RegisterProcess(new G4GammaConversion(), particle);
223  }
224 
225  } else if (particleName == "e-") {
226  G4eIonisation* eioni = new G4eIonisation();
227 
228  G4eMultipleScattering* msc = new G4eMultipleScattering;
229  G4UrbanMscModel* msc1 = new G4UrbanMscModel();
230  G4WentzelVIModel* msc2 = new G4WentzelVIModel();
231  G4GoudsmitSaundersonMscModel* msc3 = new G4GoudsmitSaundersonMscModel();
232  msc3->SetStepLimitType(fUseSafetyPlus);
233  msc3->SetRangeFactor(0.08);
234  msc3->SetSkin(3.0);
235  msc1->SetHighEnergyLimit(highEnergyLimit);
236  msc2->SetLowEnergyLimit(highEnergyLimit);
237  msc3->SetHighEnergyLimit(highEnergyLimit);
238  msc3->SetLocked(true);
239  msc->SetEmModel(msc1);
240  msc->SetEmModel(msc2);
241  if (aRegion)
242  msc->AddEmModel(-1, msc3, aRegion);
243  if (bRegion)
244  msc->AddEmModel(-1, msc3, bRegion);
245 
246  G4eCoulombScatteringModel* ssm = new G4eCoulombScatteringModel();
247  G4CoulombScattering* ss = new G4CoulombScattering();
248  ss->SetEmModel(ssm);
249  ss->SetMinKinEnergy(highEnergyLimit);
250  ssm->SetLowEnergyLimit(highEnergyLimit);
251  ssm->SetActivationLowEnergyLimit(highEnergyLimit);
252 
253  // bremsstrahlung
254  G4eBremsstrahlung* brem = new G4eBremsstrahlung();
255  G4SeltzerBergerModel* br1 = new G4SeltzerBergerModel();
256  G4eBremsstrahlungRelModel* br2 = new G4eBremsstrahlungRelModel();
257  br1->SetAngularDistribution(new G4Generator2BS());
258  br2->SetAngularDistribution(new G4Generator2BS());
259  brem->SetEmModel(br1);
260  brem->SetEmModel(br2);
261  br1->SetHighEnergyLimit(GeV);
262 
263  if (!ee) {
264  ee = new G4ePairProduction();
265  }
266 
267  ph->RegisterProcess(msc, particle);
268  ph->RegisterProcess(eioni, particle);
269  ph->RegisterProcess(brem, particle);
270  ph->RegisterProcess(ee, particle);
271  ph->RegisterProcess(ss, particle);
272 
273  } else if (particleName == "e+") {
274  G4eIonisation* eioni = new G4eIonisation();
275 
276  G4eMultipleScattering* msc = new G4eMultipleScattering;
277  G4UrbanMscModel* msc1 = new G4UrbanMscModel();
278  G4WentzelVIModel* msc2 = new G4WentzelVIModel();
279  G4GoudsmitSaundersonMscModel* msc3 = new G4GoudsmitSaundersonMscModel();
280  msc3->SetStepLimitType(fUseSafetyPlus);
281  msc3->SetRangeFactor(0.08);
282  msc3->SetSkin(3.0);
283  msc1->SetHighEnergyLimit(highEnergyLimit);
284  msc2->SetLowEnergyLimit(highEnergyLimit);
285  msc3->SetHighEnergyLimit(highEnergyLimit);
286  msc3->SetLocked(true);
287  msc->SetEmModel(msc1);
288  msc->SetEmModel(msc2);
289  if (aRegion)
290  msc->AddEmModel(-1, msc3, aRegion);
291  if (bRegion)
292  msc->AddEmModel(-1, msc3, bRegion);
293 
294  G4eCoulombScatteringModel* ssm = new G4eCoulombScatteringModel();
295  G4CoulombScattering* ss = new G4CoulombScattering();
296  ss->SetEmModel(ssm);
297  ss->SetMinKinEnergy(highEnergyLimit);
298  ssm->SetLowEnergyLimit(highEnergyLimit);
299  ssm->SetActivationLowEnergyLimit(highEnergyLimit);
300 
301  // bremsstrahlung
302  G4eBremsstrahlung* brem = new G4eBremsstrahlung();
303  G4SeltzerBergerModel* br1 = new G4SeltzerBergerModel();
304  G4eBremsstrahlungRelModel* br2 = new G4eBremsstrahlungRelModel();
305  br1->SetAngularDistribution(new G4Generator2BS());
306  br2->SetAngularDistribution(new G4Generator2BS());
307  brem->SetEmModel(br1);
308  brem->SetEmModel(br2);
309  br1->SetHighEnergyLimit(GeV);
310 
311  if (!ee) {
312  ee = new G4ePairProduction();
313  }
314 
315  ph->RegisterProcess(msc, particle);
316  ph->RegisterProcess(eioni, particle);
317  ph->RegisterProcess(brem, particle);
318  ph->RegisterProcess(new G4eplusAnnihilation(), particle);
319  ph->RegisterProcess(ee, particle);
320  ph->RegisterProcess(ss, particle);
321 
322  } else if (particleName == "mu+" || particleName == "mu-") {
323  if (nullptr == mub) {
324  mub = new G4MuBremsstrahlung();
325  mup = new G4MuPairProduction();
326  mumsc = new G4MuMultipleScattering();
327  mumsc->SetEmModel(new G4WentzelVIModel());
328  muss = new G4CoulombScattering();
329  }
330  ph->RegisterProcess(mumsc, particle);
331  ph->RegisterProcess(new G4MuIonisation(), particle);
332  ph->RegisterProcess(mub, particle);
333  ph->RegisterProcess(mup, particle);
334  ph->RegisterProcess(muss, particle);
335 
336  } else if (particleName == "alpha" || particleName == "He3") {
337  ph->RegisterProcess(new G4hMultipleScattering(), particle);
338  ph->RegisterProcess(new G4ionIonisation(), particle);
339 
340  } else if (particleName == "GenericIon") {
341  if (nullptr == hmsc) {
342  hmsc = new G4hMultipleScattering("ionmsc");
343  }
344  ph->RegisterProcess(hmsc, particle);
345  ph->RegisterProcess(new G4ionIonisation(), particle);
346 
347  } else if (particleName == "pi+" || particleName == "pi-") {
348  if (nullptr == pib) {
349  pib = new G4hBremsstrahlung();
350  pip = new G4hPairProduction();
351  pimsc = new G4hMultipleScattering();
352  pimsc->SetEmModel(new G4WentzelVIModel());
353  piss = new G4CoulombScattering();
354  }
355  ph->RegisterProcess(pimsc, particle);
356  ph->RegisterProcess(new G4hIonisation(), particle);
357  ph->RegisterProcess(pib, particle);
358  ph->RegisterProcess(pip, particle);
359  ph->RegisterProcess(piss, particle);
360 
361  } else if (particleName == "kaon+" || particleName == "kaon-") {
362  if (nullptr == kb) {
363  kb = new G4hBremsstrahlung();
364  kp = new G4hPairProduction();
365  kmsc = new G4hMultipleScattering();
366  kmsc->SetEmModel(new G4WentzelVIModel());
367  kss = new G4CoulombScattering();
368  }
369  ph->RegisterProcess(kmsc, particle);
370  ph->RegisterProcess(new G4hIonisation(), particle);
371  ph->RegisterProcess(kb, particle);
372  ph->RegisterProcess(kp, particle);
373  ph->RegisterProcess(kss, particle);
374 
375  } else if (particleName == "proton" || particleName == "anti_proton") {
376  if (nullptr == pb) {
377  pb = new G4hBremsstrahlung();
378  pp = new G4hPairProduction();
379  }
380  G4hMultipleScattering* pmsc = new G4hMultipleScattering();
381  pmsc->SetEmModel(new G4WentzelVIModel());
382  G4hIonisation* hIoni = new G4hIonisation();
383  G4CoulombScattering* pss = new G4CoulombScattering();
384 
385  ph->RegisterProcess(pmsc, particle);
386  ph->RegisterProcess(hIoni, particle);
387  ph->RegisterProcess(pb, particle);
388  ph->RegisterProcess(pp, particle);
389  ph->RegisterProcess(pss, particle);
390 
391  } else if (particle->GetPDGCharge() != 0.0) {
392  if (nullptr == hmsc) {
393  hmsc = new G4hMultipleScattering("ionmsc");
394  }
395  ph->RegisterProcess(hmsc, particle);
396  ph->RegisterProcess(new G4hIonisation(), particle);
397  }
398  }
399  // Deexcitation
400  //
401  G4VAtomDeexcitation* de = new G4UAtomicDeexcitation();
402  G4LossTableManager::Instance()->SetAtomDeexcitation(de);
403 }

References GeV, kp, MeV, HiggsValidation_cfi::particleName, EmParticleList::PartNames(), createTree::pp, contentValuesCheck::ss, TableParser::table, and verbose.

Member Data Documentation

◆ verbose

G4int CMSEmStandardPhysicsXS::verbose
private

Definition at line 16 of file CMSEmStandardPhysicsXS.h.

Referenced by CMSEmStandardPhysicsXS(), and ConstructProcess().

VtxSmearedParameters_cfi.Alpha
Alpha
Definition: VtxSmearedParameters_cfi.py:115
pss
std::pair< ALIstring, ALIstring > pss
Definition: Fit.h:25
MeV
const double MeV
contentValuesCheck.ss
ss
Definition: contentValuesCheck.py:33
CMSEmStandardPhysicsXS::verbose
G4int verbose
Definition: CMSEmStandardPhysicsXS.h:16
HiggsValidation_cfi.particleName
particleName
Definition: HiggsValidation_cfi.py:7
GeV
const double GeV
Definition: MathUtil.h:16
nanoDQM_cff.Electron
Electron
Definition: nanoDQM_cff.py:62
EmParticleList
Definition: EmParticleList.h:10
edm::LogVerbatim
Log< level::Info, true > LogVerbatim
Definition: MessageLogger.h:128
EmParticleList::PartNames
const std::vector< G4String > & PartNames() const
Definition: EmParticleList.cc:52
createTree.pp
pp
Definition: createTree.py:17
TableParser.table
table
Definition: TableParser.py:111
kp
int kp
Definition: CascadeWrapper.h:13