CMS 3D CMS Logo

HGCFEElectronics.cc
Go to the documentation of this file.
4 
5 #include "vdt/vdtMath.h"
6 
7 using namespace hgc_digi;
8 
9 //
10 template <class DFr>
12  : fwVersion_{ps.getParameter<uint32_t>("fwVersion")},
13  adcPulse_{},
14  pulseAvgT_{},
15  tdcForToAOnset_fC_{},
16  adcSaturation_fC_{-1.0},
17  adcLSB_fC_{},
18  tdcLSB_fC_{},
19  tdcSaturation_fC_{-1.0},
20  adcThreshold_fC_{},
21  tdcOnset_fC_{},
22  toaLSB_ns_{},
23  tdcResolutionInNs_{1e-9}, // set time resolution very small by default
24  targetMIPvalue_ADC_{},
25  jitterNoise2_ns_{},
26  jitterConstant2_ns_{},
27  noise_fC_{},
28  toaMode_(WEIGHTEDBYE) {
29  edm::LogVerbatim("HGCFE") << "[HGCFEElectronics] running with version " << fwVersion_ << std::endl;
30  if (ps.exists("adcPulse")) {
31  auto temp = ps.getParameter<std::vector<double> >("adcPulse");
32  for (unsigned i = 0; i < temp.size(); ++i) {
33  adcPulse_[i] = (float)temp[i];
34  }
35  // normalize adc pulse
36  for (unsigned i = 0; i < adcPulse_.size(); ++i) {
37  adcPulse_[i] = adcPulse_[i] / adcPulse_[2];
38  }
39  temp = ps.getParameter<std::vector<double> >("pulseAvgT");
40  for (unsigned i = 0; i < temp.size(); ++i) {
41  pulseAvgT_[i] = (float)temp[i];
42  }
43  }
44  if (ps.exists("adcNbits")) {
45  uint32_t adcNbits = ps.getParameter<uint32_t>("adcNbits");
46  adcSaturation_fC_ = ps.getParameter<double>("adcSaturation_fC");
47  adcLSB_fC_ = adcSaturation_fC_ / pow(2., adcNbits);
48  edm::LogVerbatim("HGCFE") << "[HGCFEElectronics] " << adcNbits << " bit ADC defined"
49  << " with LSB=" << adcLSB_fC_ << " saturation to occur @ " << adcSaturation_fC_
50  << std::endl;
51  }
52 
53  if (ps.exists("tdcNbits")) {
54  uint32_t tdcNbits = ps.getParameter<uint32_t>("tdcNbits");
55  tdcSaturation_fC_ = ps.getParameter<double>("tdcSaturation_fC");
56  tdcLSB_fC_ = tdcSaturation_fC_ / pow(2., tdcNbits);
57  // lower tdcSaturation_fC_ by one part in a million
58  // to ensure largest charge converted in bits is 0xfff and not 0x000
59  tdcSaturation_fC_ *= (1. - 1e-6);
60  edm::LogVerbatim("HGCFE") << "[HGCFEElectronics] " << tdcNbits << " bit TDC defined with LSB=" << tdcLSB_fC_
61  << " saturation to occur @ " << tdcSaturation_fC_
62  << " (NB lowered by 1 part in a million)" << std::endl;
63  }
64  if (ps.exists("targetMIPvalue_ADC"))
65  targetMIPvalue_ADC_ = ps.getParameter<uint32_t>("targetMIPvalue_ADC");
66  if (ps.exists("adcThreshold_fC"))
67  adcThreshold_fC_ = ps.getParameter<double>("adcThreshold_fC");
68  if (ps.exists("tdcOnset_fC"))
69  tdcOnset_fC_ = ps.getParameter<double>("tdcOnset_fC");
70  if (ps.exists("tdcForToAOnset_fC")) {
71  auto temp = ps.getParameter<std::vector<double> >("tdcForToAOnset_fC");
72  if (temp.size() == tdcForToAOnset_fC_.size()) {
73  std::copy_n(temp.begin(), temp.size(), tdcForToAOnset_fC_.begin());
74  } else {
75  throw cms::Exception("BadConfiguration") << " HGCFEElectronics wrong size for ToA thresholds ";
76  }
77  }
78  if (ps.exists("toaLSB_ns"))
79  toaLSB_ns_ = ps.getParameter<double>("toaLSB_ns");
80  if (ps.exists("tdcChargeDrainParameterisation")) {
81  for (auto val : ps.getParameter<std::vector<double> >("tdcChargeDrainParameterisation")) {
82  tdcChargeDrainParameterisation_.push_back((float)val);
83  }
84  }
85  if (ps.exists("tdcResolutionInPs"))
86  tdcResolutionInNs_ = ps.getParameter<double>("tdcResolutionInPs") * 1e-3; // convert to ns
87  if (ps.exists("toaMode"))
88  toaMode_ = ps.getParameter<uint32_t>("toaMode");
89 
90  if (ps.exists("jitterNoise_ns")) {
91  auto temp = ps.getParameter<std::vector<double> >("jitterNoise_ns");
92  if (temp.size() == jitterNoise2_ns_.size()) {
93  std::copy_n(temp.begin(), temp.size(), jitterNoise2_ns_.begin());
94  } else {
95  throw cms::Exception("BadConfiguration") << " HGCFEElectronics wrong size for ToA jitterNoise ";
96  }
97  }
98  if (ps.exists("jitterConstant_ns")) {
99  auto temp = ps.getParameter<std::vector<double> >("jitterConstant_ns");
100  if (temp.size() == jitterConstant2_ns_.size()) {
101  std::copy_n(temp.begin(), temp.size(), jitterConstant2_ns_.begin());
102  } else {
103  throw cms::Exception("BadConfiguration") << " HGCFEElectronics wrong size for ToA jitterConstant ";
104  }
105  }
106 }
107 
108 //
109 template <class DFr>
111  DFr& dataFrame, HGCSimHitData& chargeColl, uint32_t thrADC, float lsbADC, uint32_t gainIdx, float maxADC) {
112  bool debug(false);
113 
114 #ifdef EDM_ML_DEBUG
115  for (int it = 0; it < (int)(chargeColl.size()); it++)
116  debug |= (chargeColl[it] > adcThreshold_fC_);
117 #endif
118 
119  if (debug)
120  edm::LogVerbatim("HGCFE") << "[runTrivialShaper]" << std::endl;
121 
122  if (lsbADC < 0)
123  lsbADC = adcLSB_fC_;
124  if (maxADC < 0)
125  // lower adcSaturation_fC_ by one part in a million
126  // to ensure largest charge converted in bits is 0xfff==4095, not 0x1000
127  // no effect on charges loewer than; no impact on cpu time, only done once
128  maxADC = adcSaturation_fC_ * (1 - 1e-6);
129  for (int it = 0; it < (int)(chargeColl.size()); it++) {
130  //brute force saturation, maybe could to better with an exponential like saturation
131  const uint32_t adc = std::floor(std::min(chargeColl[it], maxADC) / lsbADC);
132  HGCSample newSample;
133  newSample.set(adc > thrADC, false, gainIdx, 0, adc);
134  dataFrame.setSample(it, newSample);
135 
136  if (debug)
137  edm::LogVerbatim("HGCFE") << adc << " (" << chargeColl[it] << "/" << adcLSB_fC_ << ") ";
138  }
139 
140  if (debug) {
141  std::ostringstream msg;
142  dataFrame.print(msg);
143  edm::LogVerbatim("HGCFE") << msg.str() << std::endl;
144  }
145 }
146 
147 //
148 template <class DFr>
150  HGCSimHitData& chargeColl,
151  uint32_t thrADC,
152  float lsbADC,
153  uint32_t gainIdx,
154  float maxADC,
156  //convolute with pulse shape to compute new ADCs
157  newCharge.fill(0.f);
158  bool debug(false);
159  for (int it = 0; it < (int)(chargeColl.size()); it++) {
160  const float charge(chargeColl[it]);
161  if (charge == 0.f)
162  continue;
163 
164 #ifdef EDM_ML_DEBUG
165  debug |= (charge > adcThreshold_fC_);
166 #endif
167 
168  if (debug)
169  edm::LogVerbatim("HGCFE") << "\t Redistributing SARS ADC" << charge << " @ " << it;
170 
171  for (int ipulse = -2; ipulse < (int)(adcPulse.size()) - 2; ipulse++) {
172  if (it + ipulse < 0)
173  continue;
174  if (it + ipulse >= (int)(dataFrame.size()))
175  continue;
176  const float chargeLeak = charge * adcPulse[(ipulse + 2)];
177  newCharge[it + ipulse] += chargeLeak;
178 
179  if (debug)
180  edm::LogVerbatim("HGCFE") << " | " << it + ipulse << " " << chargeLeak;
181  }
182 
183  if (debug)
184  edm::LogVerbatim("HGCFE") << std::endl;
185  }
186 
187  for (int it = 0; it < (int)(newCharge.size()); it++) {
188  //brute force saturation, maybe could to better with an exponential like saturation
189  const uint32_t adc = std::floor(std::min(newCharge[it], maxADC) / lsbADC);
190  HGCSample newSample;
191  newSample.set(adc > thrADC, false, gainIdx, 0, adc);
192  dataFrame.setSample(it, newSample);
193 
194  if (debug)
195  edm::LogVerbatim("HGCFE") << adc << " (" << std::min(newCharge[it], maxADC) << "/" << lsbADC << " ) ";
196  }
197 
198  if (debug) {
199  std::ostringstream msg;
200  dataFrame.print(msg);
201  edm::LogVerbatim("HGCFE") << msg.str() << std::endl;
202  }
203 }
204 
205 //
206 template <class DFr>
208  HGCSimHitData& chargeColl,
209  HGCSimHitData& toaColl,
210  CLHEP::HepRandomEngine* engine,
211  uint32_t thrADC,
212  float lsbADC,
213  uint32_t gainIdx,
214  float maxADC,
215  int thickness,
217  busyFlags.fill(false);
218  totFlags.fill(false);
219  toaFlags.fill(false);
220  newCharge.fill(0.f);
221  toaFromToT.fill(0.f);
222 
223 #ifdef EDM_ML_DEBUG
224  constexpr bool debug_state(true);
225 #else
226  constexpr bool debug_state(false);
227 #endif
228 
229  bool debug = debug_state;
230  float timeToA = 0.f;
231 
232  //first look at time
233  //for pileup look only at intime signals
234  //ToA is in central BX if fired -- std::floor(BX/25.)+9;
235  int fireBX = 9;
236  //noise fluctuation on charge is added after ToA computation
237  //do not recheck the ToA firing threshold tdcForToAOnset_fC_[thickness-1] not to bias the efficiency
238  //to be done properly with realistic ToA shaper and jitter for the moment accounted in the smearing
239  if (toaColl[fireBX] != 0.f) {
240  timeToA = toaColl[fireBX];
241  float jitter = getTimeJitter(chargeColl[fireBX], thickness);
242  if (jitter != 0)
243  timeToA = CLHEP::RandGaussQ::shoot(engine, timeToA, jitter);
244  else if (tdcResolutionInNs_ != 0)
245  timeToA = CLHEP::RandGaussQ::shoot(engine, timeToA, tdcResolutionInNs_);
246  if (timeToA >= 0.f && timeToA <= 25.f)
247  toaFlags[fireBX] = true;
248  }
249 
250  //now look at charge
251  //first identify bunches which will trigger ToT
252  //if(debug_state) edm::LogVerbatim("HGCFE") << "[runShaperWithToT]" << std::endl;
253  for (int it = 0; it < (int)(chargeColl.size()); ++it) {
254  debug = debug_state;
255  //if already flagged as busy it can't be re-used to trigger the ToT
256  if (busyFlags[it])
257  continue;
258 
259  //if below TDC onset will be handled by SARS ADC later
260  float charge = chargeColl[it];
261  if (charge < tdcOnset_fC_) {
262  debug = false;
263  continue;
264  }
265 
266  //raise TDC mode for charge computation
267  //ToA anyway fired independently will be sorted out with realistic ToA dedicated shaper
268  float toa = timeToA;
269  totFlags[it] = true;
270 
271  if (debug)
272  edm::LogVerbatim("HGCFE") << "\t q=" << charge << " fC with <toa>=" << toa << " ns, triggers ToT @ " << it
273  << std::endl;
274 
275  //compute total charge to be integrated and integration time
276  //needs a loop as ToT will last as long as there is charge to dissipate
277  int busyBxs(0);
278  float totalCharge(charge), finalToA(toa), integTime(0);
279  while (true) {
280  //compute integration time in ns and # bunches
281  //float newIntegTime(0);
282  int poffset = 0;
283  float charge_offset = 0.f;
284  const float charge_kfC(totalCharge * 1e-3);
285  if (charge_kfC < tdcChargeDrainParameterisation_[3]) {
286  //newIntegTime=tdcChargeDrainParameterisation_[0]*pow(charge_kfC,2)+tdcChargeDrainParameterisation_[1]*charge_kfC+tdcChargeDrainParameterisation_[2];
287  } else if (charge_kfC < tdcChargeDrainParameterisation_[7]) {
288  poffset = 4;
289  charge_offset = tdcChargeDrainParameterisation_[3];
290  //newIntegTime=tdcChargeDrainParameterisation_[4]*pow(charge_kfC-tdcChargeDrainParameterisation_[3],2)+tdcChargeDrainParameterisation_[5]*(charge_kfC-tdcChargeDrainParameterisation_[3])+tdcChargeDrainParameterisation_[6];
291  } else {
292  poffset = 8;
293  charge_offset = tdcChargeDrainParameterisation_[7];
294  //newIntegTime=tdcChargeDrainParameterisation_[8]*pow(charge_kfC-tdcChargeDrainParameterisation_[7],2)+tdcChargeDrainParameterisation_[9]*(charge_kfC-tdcChargeDrainParameterisation_[7])+tdcChargeDrainParameterisation_[10];
295  }
296  const float charge_mod = charge_kfC - charge_offset;
297  const float newIntegTime =
298  ((tdcChargeDrainParameterisation_[poffset] * charge_mod + tdcChargeDrainParameterisation_[poffset + 1]) *
299  charge_mod +
300  tdcChargeDrainParameterisation_[poffset + 2]);
301 
302  const int newBusyBxs = std::floor(newIntegTime / 25.f) + 1;
303 
304  //if no update is needed regarding the number of bunches,
305  //then the ToT integration time has converged
306  integTime = newIntegTime;
307  if (newBusyBxs == busyBxs)
308  break;
309 
310  //update charge integrated during ToT
311  if (debug) {
312  if (busyBxs == 0)
313  edm::LogVerbatim("HGCFE") << "\t Intial busy estimate=" << integTime << " ns = " << newBusyBxs << " bxs"
314  << std::endl;
315  else
316  edm::LogVerbatim("HGCFE") << "\t ...integrated charge overflows initial busy estimate, interating again"
317  << std::endl;
318  }
319 
320  //update number of busy bunches
321  busyBxs = newBusyBxs;
322 
323  //reset charge to be integrated
324  totalCharge = charge;
325  if (toaMode_ == WEIGHTEDBYE)
326  finalToA = toa * charge;
327 
328  //add leakage from previous bunches in SARS ADC mode
329  for (int jt = 0; jt < it; ++jt) {
330  const unsigned int deltaT = (it - jt);
331  if ((deltaT + 2) >= adcPulse.size() || chargeColl[jt] == 0.f || totFlags[jt] || busyFlags[jt])
332  continue;
333 
334  const float leakCharge = chargeColl[jt] * adcPulse[deltaT + 2];
335  totalCharge += leakCharge;
336  if (toaMode_ == WEIGHTEDBYE)
337  finalToA += leakCharge * pulseAvgT_[deltaT + 2];
338 
339  if (debug)
340  edm::LogVerbatim("HGCFE") << "\t\t leaking " << chargeColl[jt] << " fC @ deltaT=-" << deltaT << " -> +"
341  << leakCharge << " with avgT=" << pulseAvgT_[deltaT + 2] << std::endl;
342  }
343 
344  //add contamination from posterior bunches
345  for (int jt = it + 1; jt < it + busyBxs && jt < dataFrame.size(); ++jt) {
346  //this charge will be integrated in TDC mode
347  //disable for SARS ADC
348  busyFlags[jt] = true;
349 
350  const float extraCharge = chargeColl[jt];
351  if (extraCharge == 0.f)
352  continue;
353  if (debug)
354  edm::LogVerbatim("HGCFE") << "\t\t adding " << extraCharge << " fC @ deltaT=+" << (jt - it) << std::endl;
355 
356  totalCharge += extraCharge;
357  if (toaMode_ == WEIGHTEDBYE)
358  finalToA += extraCharge * toaColl[jt];
359  }
360 
361  //finalize ToA contamination
362  if (toaMode_ == WEIGHTEDBYE)
363  finalToA /= totalCharge;
364  }
365  newCharge[it] = (totalCharge - tdcOnset_fC_);
366 
367  if (debug)
368  edm::LogVerbatim("HGCFE") << "\t Final busy estimate=" << integTime << " ns = " << busyBxs << " bxs" << std::endl
369  << "\t Total integrated=" << totalCharge << " fC <toa>=" << toaFromToT[it]
370  << " (raw=" << finalToA << ") ns " << std::endl;
371 
372  //last fC (tdcOnset) are dissipated trough pulse
373  if (it + busyBxs < (int)(newCharge.size())) {
374  const float deltaT2nextBx((busyBxs * 25 - integTime));
375  const float tdcOnsetLeakage(tdcOnset_fC_ * vdt::fast_expf(-deltaT2nextBx / tdcChargeDrainParameterisation_[11]));
376  if (debug)
377  edm::LogVerbatim("HGCFE") << "\t Leaking remainder of TDC onset " << tdcOnset_fC_ << " fC, to be dissipated in "
378  << deltaT2nextBx << " DeltaT/tau=" << deltaT2nextBx << " / "
379  << tdcChargeDrainParameterisation_[11] << " ns, adds " << tdcOnsetLeakage << " fC @ "
380  << it + busyBxs << " bx (first free bx)" << std::endl;
381  newCharge[it + busyBxs] += tdcOnsetLeakage;
382  }
383  }
384 
385  //including the leakage from bunches in SARS ADC when not declared busy or in ToT
386  auto runChargeSharing = [&]() {
387  int ipulse = 0;
388  for (int it = 0; it < (int)(chargeColl.size()); ++it) {
389  //if busy, charge has been already integrated
390  //if(debug) edm::LogVerbatim("HGCFE") << "\t SARS ADC pulse activated @ " << it << " : ";
391  if (!totFlags[it] & !busyFlags[it]) {
392  const int start = std::max(0, 2 - it);
393  const int stop = std::min((int)adcPulse.size(), (int)newCharge.size() - it + 2);
394  for (ipulse = start; ipulse < stop; ++ipulse) {
395  const int itoffset = it + ipulse - 2;
396  //notice that if the channel is already busy,
397  //it has already been affected by the leakage of the SARS ADC
398  //if(totFlags[itoffset] || busyFlags[itoffset]) continue;
399  if (!totFlags[itoffset] & !busyFlags[itoffset]) {
400  newCharge[itoffset] += chargeColl[it] * adcPulse[ipulse];
401  }
402  //if(debug) edm::LogVerbatim("HGCFE") << " | " << itoffset << " " << chargeColl[it]*adcPulse[ipulse] << "( " << chargeColl[it] << "->";
403  //if(debug) edm::LogVerbatim("HGCFE") << newCharge[itoffset] << ") ";
404  }
405  }
406 
407  if (debug)
408  edm::LogVerbatim("HGCFE") << std::endl;
409  }
410  };
411  runChargeSharing();
412 
413  //For the future need to understand how to deal with toa for out of time signals
414  //and for that should keep track of the BX firing the ToA somewhere (also to restore the use of finalToA)
415  /*
416  float finalToA(0.);
417  for(int it=0; it<(int)(newCharge.size()); it++){
418  if(toaFlags[it]){
419  finalToA = toaFromToT[it];
420  //to avoid +=25 for small negative time taken as 0
421  while(finalToA < -1.e-5) finalToA+=25.f;
422  while(finalToA > 25.f) finalToA-=25.f;
423  toaFromToT[it] = finalToA;
424  }
425  }
426  */
427  //timeToA is already in 0-25ns range by construction
428 
429  //set new ADCs and ToA
430  if (debug)
431  edm::LogVerbatim("HGCFE") << "\t final result : ";
432  if (lsbADC < 0)
433  lsbADC = adcLSB_fC_;
434  if (maxADC < 0)
435  maxADC = adcSaturation_fC_;
436  for (int it = 0; it < (int)(newCharge.size()); it++) {
437  if (debug)
438  edm::LogVerbatim("HGCFE") << chargeColl[it] << " -> " << newCharge[it] << " ";
439 
440  HGCSample newSample;
441  if (totFlags[it] || busyFlags[it]) {
442  if (totFlags[it]) {
443  //brute force saturation, maybe could to better with an exponential like saturation
444  const float saturatedCharge(std::min(newCharge[it], tdcSaturation_fC_));
445  //working version for in-time PU and signal
446  newSample.set(
447  true, true, gainIdx, (uint16_t)(timeToA / toaLSB_ns_), (uint16_t)(std::floor(saturatedCharge / tdcLSB_fC_)));
448  if (toaFlags[it])
449  newSample.setToAValid(true);
450  } else {
451  newSample.set(false, true, gainIdx, 0, 0);
452  }
453  } else {
454  //brute force saturation, maybe could to better with an exponential like saturation
455  const uint16_t adc = std::floor(std::min(newCharge[it], maxADC) / lsbADC);
456  //working version for in-time PU and signal
457  newSample.set(adc > thrADC, false, gainIdx, (uint16_t)(timeToA / toaLSB_ns_), adc);
458  if (toaFlags[it])
459  newSample.setToAValid(true);
460  }
461  dataFrame.setSample(it, newSample);
462  }
463 
464  if (debug) {
465  std::ostringstream msg;
466  dataFrame.print(msg);
467  edm::LogVerbatim("HGCFE") << msg.str() << std::endl;
468  }
469 }
470 
471 // cause the compiler to generate the appropriate code
473 template class HGCFEElectronics<HGCEEDataFrame>;
474 template class HGCFEElectronics<HGCBHDataFrame>;
475 template class HGCFEElectronics<HGCalDataFrame>;
HGCFEElectronics::HGCFEElectronics
HGCFEElectronics(const edm::ParameterSet &ps)
CTOR.
Definition: HGCFEElectronics.cc:11
mps_fire.i
i
Definition: mps_fire.py:428
start
Definition: start.py:1
dqmMemoryStats.float
float
Definition: dqmMemoryStats.py:127
f
double f[11][100]
Definition: MuScleFitUtils.cc:78
min
T min(T a, T b)
Definition: MathUtil.h:58
HGCSample::set
void set(bool thr, bool mode, uint16_t gain, uint16_t toa, uint16_t data)
Definition: HGCSample.h:49
mps_check.msg
tuple msg
Definition: mps_check.py:285
HGCFEElectronics::runSimpleShaper
void runSimpleShaper(DFr &dataFrame, hgc::HGCSimHitData &chargeColl, uint32_t thrADC, float lsbADC, uint32_t gainIdx, float maxADC, const hgc_digi::FEADCPulseShape &adcPulse)
applies a shape to each time sample and propagates the tails to the subsequent time samples
Definition: HGCFEElectronics.cc:149
groupFilesInBlocks.temp
list temp
Definition: groupFilesInBlocks.py:142
hgc_digi::FEADCPulseShape
std::array< float, 6 > FEADCPulseShape
Definition: HGCFEElectronics.h:20
hgc_digi
Definition: HGCDigitizerTypes.h:10
ecalLiteDTU::adc
constexpr int adc(sample_type sample)
get the ADC sample (12 bits)
Definition: EcalLiteDTUSample.h:12
HGCSample::setToAValid
void setToAValid(bool toaFired)
Definition: HGCSample.h:47
debug
#define debug
Definition: HDRShower.cc:19
myMath::fast_expf
float fast_expf(float x)
Definition: EcalUncalibRecHitRatioMethodAlgo.h:27
Calorimetry_cff.thickness
thickness
Definition: Calorimetry_cff.py:114
HGCFEElectronics::runTrivialShaper
void runTrivialShaper(DFr &dataFrame, hgc::HGCSimHitData &chargeColl, uint32_t thrADC, float lsbADC, uint32_t gainIdx, float maxADC)
converts charge to digis without pulse shape
Definition: HGCFEElectronics.cc:110
hgc_digi::HGCSimHitData
std::array< HGCSimData_t, nSamples > HGCSimHitData
Definition: HGCDigitizerTypes.h:17
hgcROCParameters_cfi.adcPulse
adcPulse
Definition: hgcROCParameters_cfi.py:10
HGCSample
wrapper for a data word
Definition: HGCSample.h:13
HGCFEElectronics
models the behavior of the front-end electronics
Definition: HGCFEElectronics.h:24
ALCARECOTkAlJpsiMuMu_cff.charge
charge
Definition: ALCARECOTkAlJpsiMuMu_cff.py:47
edm::ParameterSet
Definition: ParameterSet.h:47
SiStripPI::max
Definition: SiStripPayloadInspectorHelper.h:169
HLTEgPhaseIITestSequence_cff.adcNbits
adcNbits
Definition: HLTEgPhaseIITestSequence_cff.py:945
createfilelist.int
int
Definition: createfilelist.py:10
HGCDigiCollections.h
HGCFEElectronics::runShaperWithToT
void runShaperWithToT(DFr &dataFrame, hgc::HGCSimHitData &chargeColl, hgc::HGCSimHitData &toa, CLHEP::HepRandomEngine *engine, uint32_t thrADC, float lsbADC, uint32_t gainIdx, float maxADC, int thickness, const hgc_digi::FEADCPulseShape &adcPulse)
implements pulse shape and switch to time over threshold including deadtime
Definition: HGCFEElectronics.cc:207
heppy_batch.val
val
Definition: heppy_batch.py:351
edm::LogVerbatim
Log< level::Info, true > LogVerbatim
Definition: MessageLogger.h:128
transform.h
Exception
Definition: hltDiff.cc:246
HGCFEElectronics.h
edm::ParameterSet::getParameter
T getParameter(std::string const &) const
Definition: ParameterSet.h:303
HLTEgPhaseIITestSequence_cff.tdcNbits
tdcNbits
Definition: HLTEgPhaseIITestSequence_cff.py:949
funct::pow
Power< A, B >::type pow(const A &a, const B &b)
Definition: Power.h:29
MillePedeFileConverter_cfg.e
e
Definition: MillePedeFileConverter_cfg.py:37