CMS 3D CMS Logo

CSCSegAlgoRU.cc
Go to the documentation of this file.
1 
8 #include "CSCSegAlgoRU.h"
9 #include "CSCSegFit.h"
15 #include <algorithm>
16 #include <cmath>
17 #include <iostream>
18 #include <string>
19 
20 CSCSegAlgoRU::CSCSegAlgoRU(const edm::ParameterSet& ps) : CSCSegmentAlgorithm(ps), myName("CSCSegAlgoRU") {
21  doCollisions = ps.getParameter<bool>("doCollisions");
22  enlarge = ps.getParameter<bool>("enlarge");
23  chi2_str_ = ps.getParameter<double>("chi2_str");
24  chi2Norm_2D_ = ps.getParameter<double>("chi2Norm_2D_");
25  dRMax = ps.getParameter<double>("dRMax");
26  dPhiMax = ps.getParameter<double>("dPhiMax");
27  dRIntMax = ps.getParameter<double>("dRIntMax");
28  dPhiIntMax = ps.getParameter<double>("dPhiIntMax");
29  chi2Max = ps.getParameter<double>("chi2Max");
30  wideSeg = ps.getParameter<double>("wideSeg");
31  minLayersApart = ps.getParameter<int>("minLayersApart");
32 
33  LogDebug("CSC") << myName << " has algorithm cuts set to: \n"
34  << "--------------------------------------------------------------------\n"
35  << "dRMax = " << dRMax << '\n'
36  << "dPhiMax = " << dPhiMax << '\n'
37  << "dRIntMax = " << dRIntMax << '\n'
38  << "dPhiIntMax = " << dPhiIntMax << '\n'
39  << "chi2Max = " << chi2Max << '\n'
40  << "wideSeg = " << wideSeg << '\n'
41  << "minLayersApart = " << minLayersApart << std::endl;
42 
43  //reset the thresholds for non-collision data
44  if (!doCollisions) {
45  dRMax = 2.0;
46  dPhiMax = 2 * dPhiMax;
47  dRIntMax = 2 * dRIntMax;
48  dPhiIntMax = 2 * dPhiIntMax;
50  chi2_str_ = 100;
51  chi2Max = 2 * chi2Max;
52  }
53 }
54 
55 std::vector<CSCSegment> CSCSegAlgoRU::buildSegments(const CSCChamber* aChamber,
56  const ChamberHitContainer& urechits) const {
57  ChamberHitContainer rechits = urechits;
58  LayerIndex layerIndex(rechits.size());
59  int recHits_per_layer[6] = {0, 0, 0, 0, 0, 0};
60  //skip events with high multiplicity of hits
61  if (rechits.size() > 150) {
62  return std::vector<CSCSegment>();
63  }
64  int iadd = 0;
65  for (unsigned int i = 0; i < rechits.size(); i++) {
66  recHits_per_layer[rechits[i]->cscDetId().layer() - 1]++; //count rh per chamber
67  layerIndex[i] = rechits[i]->cscDetId().layer();
68  }
69  double z1 = aChamber->layer(1)->position().z();
70  double z6 = aChamber->layer(6)->position().z();
71  if (std::abs(z1) > std::abs(z6)) {
72  reverse(layerIndex.begin(), layerIndex.end());
73  reverse(rechits.begin(), rechits.end());
74  }
75  if (rechits.size() < 2) {
76  return std::vector<CSCSegment>();
77  }
78  // We have at least 2 hits. We intend to try all possible pairs of hits to start
79  // segment building. 'All possible' means each hit lies on different layers in the chamber.
80  // after all same size segs are build we get rid of the overcrossed segments using the chi2 criteria
81  // the hits from the segs that are left are marked as used and are not added to segs in future iterations
82  // the hits from 3p segs are marked as used separately in order to try to assamble them in longer segments
83  // in case there is a second pass
84  // Choose first hit (as close to IP as possible) h1 and second hit
85  // (as far from IP as possible) h2 To do this we iterate over hits
86  // in the chamber by layer - pick two layers. Then we
87  // iterate over hits within each of these layers and pick h1 and h2
88  // these. If they are 'close enough' we build an empty
89  // segment. Then try adding hits to this segment.
90  // Initialize flags that a given hit has been allocated to a segment
91  BoolContainer used(rechits.size(), false);
92  BoolContainer used3p(rechits.size(), false);
93  // This is going to point to fits to hits, and its content will be used to create a CSCSegment
94  AlgoState aState;
95  aState.aChamber = aChamber;
96  aState.doCollisions = doCollisions;
97  aState.enlarge = enlarge;
98  aState.dRMax = dRMax;
99  aState.dPhiMax = dPhiMax;
100  aState.dRIntMax = dRIntMax;
101  aState.dPhiIntMax = dPhiIntMax;
102  aState.chi2Norm_2D_ = chi2Norm_2D_;
103  aState.chi2_str_ = chi2_str_;
104  aState.chi2Max = chi2Max;
105 
106  int scale_factor = 1;
107  if (aState.enlarge)
108  scale_factor = 2;
109 
110  // Define buffer for segments we build
111  std::vector<CSCSegment> segments;
113  ChamberHitContainerCIt ie = rechits.end();
114  // Possibly allow 3 passes, second widening scale factor for cuts, third for segments from displaced vertices
115  aState.windowScale = 1.; // scale factor for cuts
116  bool search_disp = false;
117  aState.strip_iadd = 1;
118  aState.chi2D_iadd = 1;
119  int npass = (wideSeg > 1.) ? 3 : 2;
120  for (int ipass = 0; ipass < npass; ++ipass) {
121  if (aState.windowScale > 1.) {
122  iadd = 1;
123  aState.strip_iadd = 2 * scale_factor;
124  aState.chi2D_iadd = 2 * scale_factor;
125  if (aState.enlarge) {
126  aState.chi2Max = 2 * chi2Max;
127  if (rechits.size() <= 12)
128  iadd = 0; //allow 3 hit segments for low hit multiplicity chambers
129  }
130  }
131 
132  int used_rh = 0;
133  for (ChamberHitContainerCIt i1 = ib; i1 != ie; ++i1) {
134  if (used[i1 - ib])
135  used_rh++;
136  }
137 
138  //change the tresholds if it's time to look for displaced mu segments
139  if (aState.doCollisions && search_disp &&
140  int(rechits.size() - used_rh) >
141  2) { //check if there are enough recHits left to build a segment from displaced vertices
142  aState.doCollisions = false;
143  aState.windowScale = 1.; // scale factor for cuts
144  aState.dRMax = scale_factor * 2.0;
145  aState.dPhiMax = scale_factor * 2 * aState.dPhiMax;
146  aState.dRIntMax = scale_factor * 2 * aState.dRIntMax;
147  aState.dPhiIntMax = scale_factor * 2 * aState.dPhiIntMax;
148  aState.chi2Norm_2D_ = scale_factor * 5 * aState.chi2Norm_2D_;
149  aState.chi2_str_ = scale_factor * 100;
150  aState.chi2Max = scale_factor * 2 * aState.chi2Max;
151  } else {
152  search_disp = false; //make sure the flag is off
153  }
154 
155  for (unsigned int n_seg_min = 6u; n_seg_min > 2u + iadd; --n_seg_min) {
156  BoolContainer common_used(rechits.size(), false);
157  std::array<BoolContainer, 120> common_used_it = {};
158  for (unsigned int i = 0; i < common_used_it.size(); i++) {
159  common_used_it[i] = common_used;
160  }
161  ChamberHitContainer best_proto_segment[120];
162  float min_chi[120] = {9999};
163  int common_it = 0;
164  bool first_proto_segment = true;
165  for (ChamberHitContainerCIt i1 = ib; i1 != ie; ++i1) {
166  bool segok = false;
167  //skip if rh is used and the layer tat has big rh multiplicity(>25RHs)
168  if (used[i1 - ib] || recHits_per_layer[int(layerIndex[i1 - ib]) - 1] > 25 ||
169  (n_seg_min == 3 && used3p[i1 - ib]))
170  continue;
171  int layer1 = layerIndex[i1 - ib];
172  const CSCRecHit2D* h1 = *i1;
173  for (ChamberHitContainerCIt i2 = ie - 1; i2 != i1; --i2) {
174  if (used[i2 - ib] || recHits_per_layer[int(layerIndex[i2 - ib]) - 1] > 25 ||
175  (n_seg_min == 3 && used3p[i2 - ib]))
176  continue;
177  int layer2 = layerIndex[i2 - ib];
178  if ((abs(layer2 - layer1) + 1) < int(n_seg_min))
179  break; //decrease n_seg_min
180  const CSCRecHit2D* h2 = *i2;
181  if (areHitsCloseInR(aState, h1, h2) && areHitsCloseInGlobalPhi(aState, h1, h2)) {
182  aState.proto_segment.clear();
183  if (!addHit(aState, h1, layer1))
184  continue;
185  if (!addHit(aState, h2, layer2))
186  continue;
187  // Can only add hits if already have a segment
188  if (aState.sfit)
189  tryAddingHitsToSegment(aState, rechits, used, layerIndex, i1, i2);
190  segok = isSegmentGood(aState, rechits);
191  if (segok) {
192  if (aState.proto_segment.size() > n_seg_min) {
193  baseline(aState, n_seg_min);
194  updateParameters(aState);
195  }
196  if (aState.sfit->chi2() > aState.chi2Norm_2D_ * aState.chi2D_iadd ||
197  aState.proto_segment.size() < n_seg_min)
198  aState.proto_segment.clear();
199  if (!aState.proto_segment.empty()) {
200  updateParameters(aState);
201  //add same-size overcrossed protosegments to the collection
202  if (first_proto_segment) {
203  flagHitsAsUsed(aState, rechits, common_used_it[0]);
204  min_chi[0] = aState.sfit->chi2();
205  best_proto_segment[0] = aState.proto_segment;
206  first_proto_segment = false;
207  } else { //for the rest of found proto_segments
208  common_it++;
209  flagHitsAsUsed(aState, rechits, common_used_it[common_it]);
210  min_chi[common_it] = aState.sfit->chi2();
211  best_proto_segment[common_it] = aState.proto_segment;
212  ChamberHitContainerCIt hi, iu, ik;
213  int iter = common_it;
214  for (iu = ib; iu != ie; ++iu) {
215  for (hi = aState.proto_segment.begin(); hi != aState.proto_segment.end(); ++hi) {
216  if (*hi == *iu) {
217  int merge_nr = -1;
218  for (int k = 0; k < iter + 1; k++) {
219  if (common_used_it[k][iu - ib] == true) {
220  if (merge_nr != -1) {
221  //merge the k and merge_nr collections of flaged hits into the merge_nr collection and unmark the k collection hits
222  for (ik = ib; ik != ie; ++ik) {
223  if (common_used_it[k][ik - ib] == true) {
224  common_used_it[merge_nr][ik - ib] = true;
225  common_used_it[k][ik - ib] = false;
226  }
227  }
228  //change best_protoseg if min_chi_2 is smaller
229  if (min_chi[k] < min_chi[merge_nr]) {
230  min_chi[merge_nr] = min_chi[k];
231  best_proto_segment[merge_nr] = best_proto_segment[k];
232  best_proto_segment[k].clear();
233  min_chi[k] = 9999;
234  }
235  common_it--;
236  } else {
237  merge_nr = k;
238  }
239  } //if(common_used[k][iu-ib] == true)
240  } //for k
241  } //if
242  } //for proto_seg
243  } //for rec_hits
244  } //else
245  } //proto seg not empty
246  }
247  } // h1 & h2 close
248  if (segok)
249  break;
250  } // i2
251  } // i1
252 
253  //add the reconstructed segments
254  for (int j = 0; j < common_it + 1; j++) {
255  aState.proto_segment = best_proto_segment[j];
256  best_proto_segment[j].clear();
257  //SKIP empty proto-segments
258  if (aState.proto_segment.empty())
259  continue;
260  updateParameters(aState);
261  // Create an actual CSCSegment - retrieve all info from the fit
262  CSCSegment temp(aState.sfit->hits(),
263  aState.sfit->intercept(),
264  aState.sfit->localdir(),
265  aState.sfit->covarianceMatrix(),
266  aState.sfit->chi2());
267  aState.sfit = nullptr;
268  segments.push_back(temp);
269  //if the segment has 3 hits flag them as used in a particular way
270  if (aState.proto_segment.size() == 3) {
271  flagHitsAsUsed(aState, rechits, used3p);
272  } else {
273  flagHitsAsUsed(aState, rechits, used);
274  }
275  aState.proto_segment.clear();
276  }
277  } //for n_seg_min
278 
279  if (search_disp) {
280  //reset params and flags for the next chamber
281  search_disp = false;
282  aState.doCollisions = true;
283  aState.dRMax = 2.0;
284  aState.chi2_str_ = 100;
285  aState.dPhiMax = 0.5 * aState.dPhiMax / scale_factor;
286  aState.dRIntMax = 0.5 * aState.dRIntMax / scale_factor;
287  aState.dPhiIntMax = 0.5 * aState.dPhiIntMax / scale_factor;
288  aState.chi2Norm_2D_ = 0.2 * aState.chi2Norm_2D_ / scale_factor;
289  aState.chi2Max = 0.5 * aState.chi2Max / scale_factor;
290  }
291 
292  std::vector<CSCSegment>::iterator it = segments.begin();
293  bool good_segs = false;
294  while (it != segments.end()) {
295  if ((*it).nRecHits() > 3) {
296  good_segs = true;
297  break;
298  }
299  ++it;
300  }
301  if (good_segs &&
302  aState.doCollisions) { // only change window if not enough good segments were found (bool can be changed to int if a >0 number of good segs is required)
303  search_disp = true;
304  continue; //proceed to search the segs from displaced vertices
305  }
306 
307  // Increase cut windows by factor of wideSeg only for collisions
308  if (!aState.doCollisions && !search_disp)
309  break;
310  aState.windowScale = wideSeg;
311  } // ipass
312 
313  //get rid of enchansed 3p segments
314  std::vector<CSCSegment>::iterator it = segments.begin();
315  while (it != segments.end()) {
316  if ((*it).nRecHits() == 3) {
317  bool found_common = false;
318  const std::vector<CSCRecHit2D>& theseRH = (*it).specificRecHits();
319  for (ChamberHitContainerCIt i1 = ib; i1 != ie; ++i1) {
320  if (used[i1 - ib] && used3p[i1 - ib]) {
321  const CSCRecHit2D* sh1 = *i1;
322  CSCDetId id = sh1->cscDetId();
323  int sh1layer = id.layer();
324  int RH_centerid = sh1->nStrips() / 2;
325  int RH_centerStrip = sh1->channels(RH_centerid);
326  int RH_wg = sh1->hitWire();
327  std::vector<CSCRecHit2D>::const_iterator sh;
328  for (sh = theseRH.begin(); sh != theseRH.end(); ++sh) {
329  CSCDetId idRH = sh->cscDetId();
330  //find segment hit coord
331  int shlayer = idRH.layer();
332  int SegRH_centerid = sh->nStrips() / 2;
333  int SegRH_centerStrip = sh->channels(SegRH_centerid);
334  int SegRH_wg = sh->hitWire();
335  if (sh1layer == shlayer && SegRH_centerStrip == RH_centerStrip && SegRH_wg == RH_wg) {
336  //remove the enchansed 3p segment
337  segments.erase(it, (it + 1));
338  found_common = true;
339  break;
340  }
341  } //theserh
342  }
343  if (found_common)
344  break; //current seg has already been erased
345  } //camber hits
346  if (!found_common)
347  ++it;
348  } //its a 3p seg
349  else {
350  ++it; //go to the next seg
351  }
352  } //while
353  // Give the segments to the CSCChamber
354  return segments;
355 } //build segments
356 
359  const BoolContainer& used,
360  const LayerIndex& layerIndex,
362  const ChamberHitContainerCIt i2) const {
363  // Iterate over the layers with hits in the chamber
364  // Skip the layers containing the segment endpoints
365  // Test each hit on the other layers to see if it is near the segment
366  // If it is, see whether there is already a hit on the segment from the same layer
367  // - if so, and there are more than 2 hits on the segment, copy the segment,
368  // replace the old hit with the new hit. If the new segment chi2 is better
369  // then replace the original segment with the new one (by swap)
370  // - if not, copy the segment, add the hit. If the new chi2/dof is still satisfactory
371  // then replace the original segment with the new one (by swap)
373  ChamberHitContainerCIt ie = rechits.end();
374  for (ChamberHitContainerCIt i = ib; i != ie; ++i) {
375  int layer = layerIndex[i - ib];
376  if (hasHitOnLayer(aState, layer) && aState.proto_segment.size() <= 2)
377  continue;
378  if (layerIndex[i - ib] == layerIndex[i1 - ib] || layerIndex[i - ib] == layerIndex[i2 - ib] || used[i - ib])
379  continue;
380 
381  const CSCRecHit2D* h = *i;
382  if (isHitNearSegment(aState, h)) {
383  // Don't consider alternate hits on layers holding the two starting points
384  if (hasHitOnLayer(aState, layer)) {
385  if (aState.proto_segment.size() <= 2)
386  continue;
387  compareProtoSegment(aState, h, layer);
388  } else {
389  increaseProtoSegment(aState, h, layer, aState.chi2D_iadd);
390  }
391  } // h & seg close
392  } // i
393 }
394 
395 bool CSCSegAlgoRU::areHitsCloseInR(const AlgoState& aState, const CSCRecHit2D* h1, const CSCRecHit2D* h2) const {
396  float maxWG_width[10] = {0, 0, 4.1, 5.69, 2.49, 5.06, 2.49, 5.06, 1.87, 5.06};
397  CSCDetId id = h1->cscDetId();
398  int iStn = id.iChamberType() - 1;
399  //find maxWG_width for ME11 (tilt = 29deg)
400  int wg_num = h2->hitWire();
401  if (iStn == 0 || iStn == 1) {
402  if (wg_num == 1) {
403  maxWG_width[0] = 9.25;
404  maxWG_width[1] = 9.25;
405  }
406  if (wg_num > 1 && wg_num < 48) {
407  maxWG_width[0] = 3.14;
408  maxWG_width[1] = 3.14;
409  }
410  if (wg_num == 48) {
411  maxWG_width[0] = 10.75;
412  maxWG_width[1] = 10.75;
413  }
414  }
415  const CSCLayer* l1 = aState.aChamber->layer(h1->cscDetId().layer());
416  GlobalPoint gp1 = l1->toGlobal(h1->localPosition());
417  const CSCLayer* l2 = aState.aChamber->layer(h2->cscDetId().layer());
418  GlobalPoint gp2 = l2->toGlobal(h2->localPosition());
419  //find z to understand the direction
420  float h1z = gp1.z();
421  float h2z = gp2.z();
422  //switch off the IP check for non collisions case
423  if (!aState.doCollisions) {
424  h1z = 1;
425  h2z = 1;
426  }
427 
428  if (aState.enlarge) {
429  return (gp2.perp() > ((gp1.perp() - aState.dRMax * aState.strip_iadd * maxWG_width[iStn]) * h2z) / h1z &&
430  gp2.perp() < ((gp1.perp() + aState.dRMax * aState.strip_iadd * maxWG_width[iStn]) * h2z) / h1z)
431  ? true
432  : false;
433 
434  } else {
435  return (gp2.perp() > ((gp1.perp() - aState.dRMax * maxWG_width[iStn]) * h2z) / h1z &&
436  gp2.perp() < ((gp1.perp() + aState.dRMax * maxWG_width[iStn]) * h2z) / h1z)
437  ? true
438  : false;
439  }
440 }
441 
443  const CSCRecHit2D* h1,
444  const CSCRecHit2D* h2) const {
445  float strip_width[10] = {0.003878509,
446  0.002958185,
447  0.002327105,
448  0.00152552,
449  0.00465421,
450  0.002327105,
451  0.00465421,
452  0.002327105,
453  0.00465421,
454  0.002327105}; //in rad
455  const CSCLayer* l1 = aState.aChamber->layer(h1->cscDetId().layer());
456  GlobalPoint gp1 = l1->toGlobal(h1->localPosition());
457  const CSCLayer* l2 = aState.aChamber->layer(h2->cscDetId().layer());
458  GlobalPoint gp2 = l2->toGlobal(h2->localPosition());
459  float err_stpos_h1 = h1->errorWithinStrip();
460  float err_stpos_h2 = h2->errorWithinStrip();
461  CSCDetId id = h1->cscDetId();
462  int iStn = id.iChamberType() - 1;
463  float dphi_incr = 0;
464  if (err_stpos_h1 > 0.25 * strip_width[iStn] || err_stpos_h2 > 0.25 * strip_width[iStn])
465  dphi_incr = 0.5 * strip_width[iStn];
466  float dphi12 = deltaPhi(gp1.barePhi(), gp2.barePhi());
467  return (fabs(dphi12) < (aState.dPhiMax * aState.strip_iadd + dphi_incr)) ? true : false; // +v
468 }
469 
470 bool CSCSegAlgoRU::isHitNearSegment(const AlgoState& aState, const CSCRecHit2D* h) const {
471  // Is hit near segment?
472  // Requires deltaphi and deltaR within ranges specified in parameter set.
473  // Note that to make intuitive cuts on delta(phi) one must work in
474  // phi range (-pi, +pi] not [0, 2pi)
475  float strip_width[10] = {0.003878509,
476  0.002958185,
477  0.002327105,
478  0.00152552,
479  0.00465421,
480  0.002327105,
481  0.00465421,
482  0.002327105,
483  0.00465421,
484  0.002327105}; //in rad
485  const CSCLayer* l1 = aState.aChamber->layer((*(aState.proto_segment.begin()))->cscDetId().layer());
486  GlobalPoint gp1 = l1->toGlobal((*(aState.proto_segment.begin()))->localPosition());
487  const CSCLayer* l2 = aState.aChamber->layer((*(aState.proto_segment.begin() + 1))->cscDetId().layer());
488  GlobalPoint gp2 = l2->toGlobal((*(aState.proto_segment.begin() + 1))->localPosition());
489  float err_stpos_h1 = (*(aState.proto_segment.begin()))->errorWithinStrip();
490  float err_stpos_h2 = (*(aState.proto_segment.begin() + 1))->errorWithinStrip();
491  const CSCLayer* l = aState.aChamber->layer(h->cscDetId().layer());
492  GlobalPoint hp = l->toGlobal(h->localPosition());
493  float err_stpos_h = h->errorWithinStrip();
494  float hphi = hp.phi(); // in (-pi, +pi]
495  if (hphi < 0.)
496  hphi += 2. * M_PI; // into range [0, 2pi)
497  float sphi = phiAtZ(aState, hp.z()); // in [0, 2*pi)
498  float phidif = sphi - hphi;
499  if (phidif < 0.)
500  phidif += 2. * M_PI; // into range [0, 2pi)
501  if (phidif > M_PI)
502  phidif -= 2. * M_PI; // into range (-pi, pi]
503  SVector6 r_glob;
504  CSCDetId id = h->cscDetId();
505  int iStn = id.iChamberType() - 1;
506  float dphi_incr = 0;
507  float pos_str = 1;
508  //increase dPhi cut if the hit is on the edge of the strip
509  float stpos = (*h).positionWithinStrip();
510  bool centr_str = false;
511  if (iStn != 0 && iStn != 1) {
512  if (stpos > -0.25 && stpos < 0.25)
513  centr_str = true;
514  }
515  if (err_stpos_h1 < 0.25 * strip_width[iStn] || err_stpos_h2 < 0.25 * strip_width[iStn] ||
516  err_stpos_h < 0.25 * strip_width[iStn]) {
517  dphi_incr = 0.5 * strip_width[iStn];
518  } else {
519  if (centr_str)
520  pos_str = 1.3;
521  }
522  r_glob((*(aState.proto_segment.begin()))->cscDetId().layer() - 1) = gp1.perp();
523  r_glob((*(aState.proto_segment.begin() + 1))->cscDetId().layer() - 1) = gp2.perp();
524  float R = hp.perp();
525  int layer = h->cscDetId().layer();
526  float r_interpolated = fit_r_phi(aState, r_glob, layer);
527  float dr = fabs(r_interpolated - R);
528  float maxWG_width[10] = {0, 0, 4.1, 5.69, 2.49, 5.06, 2.49, 5.06, 1.87, 5.06};
529  //find maxWG_width for ME11 (tilt = 29deg)
530  int wg_num = h->hitWire();
531  if (iStn == 0 || iStn == 1) {
532  if (wg_num == 1) {
533  maxWG_width[0] = 9.25;
534  maxWG_width[1] = 9.25;
535  }
536  if (wg_num > 1 && wg_num < 48) {
537  maxWG_width[0] = 3.14;
538  maxWG_width[1] = 3.14;
539  }
540  if (wg_num == 48) {
541  maxWG_width[0] = 10.75;
542  maxWG_width[1] = 10.75;
543  }
544  }
545 
546  if (aState.enlarge) {
547  return (fabs(phidif) < aState.dPhiIntMax * aState.strip_iadd * pos_str + dphi_incr &&
548  fabs(dr) < aState.dRIntMax * aState.strip_iadd * maxWG_width[iStn])
549  ? true
550  : false;
551 
552  } else {
553  return (fabs(phidif) < aState.dPhiIntMax * aState.strip_iadd * pos_str + dphi_incr &&
554  fabs(dr) < aState.dRIntMax * maxWG_width[iStn])
555  ? true
556  : false;
557  }
558 }
559 
560 float CSCSegAlgoRU::phiAtZ(const AlgoState& aState, float z) const {
561  if (!aState.sfit)
562  return 0.;
563  // Returns a phi in [ 0, 2*pi )
564  const CSCLayer* l1 = aState.aChamber->layer((*(aState.proto_segment.begin()))->cscDetId().layer());
565  GlobalPoint gp = l1->toGlobal(aState.sfit->intercept());
566  GlobalVector gv = l1->toGlobal(aState.sfit->localdir());
567  float x = gp.x() + (gv.x() / gv.z()) * (z - gp.z());
568  float y = gp.y() + (gv.y() / gv.z()) * (z - gp.z());
569  float phi = atan2(y, x);
570  if (phi < 0.f)
571  phi += 2. * M_PI;
572  return phi;
573 }
574 
575 bool CSCSegAlgoRU::isSegmentGood(const AlgoState& aState, const ChamberHitContainer& rechitsInChamber) const {
576  // If the chamber has 20 hits or fewer, require at least 3 hits on segment
577  // If the chamber has >20 hits require at least 4 hits
578  // If it's the second cycle of the builder and there are <= 12 hits in chamber, require at least 3 hits on segment
579  //@@ THESE VALUES SHOULD BECOME PARAMETERS?
580  bool ok = false;
581  unsigned int iadd = (rechitsInChamber.size() > 20) ? 1 : 0;
582  if (aState.windowScale > 1.) {
583  iadd = 1;
584  if (rechitsInChamber.size() <= 12 && aState.enlarge)
585  iadd = 0;
586  }
587  if (aState.proto_segment.size() >= 3 + iadd)
588  ok = true;
589  return ok;
590 }
591 
593  const ChamberHitContainer& rechitsInChamber,
594  BoolContainer& used) const {
595  // Flag hits on segment as used
596  ChamberHitContainerCIt ib = rechitsInChamber.begin();
598  for (hi = aState.proto_segment.begin(); hi != aState.proto_segment.end(); ++hi) {
599  for (iu = ib; iu != rechitsInChamber.end(); ++iu) {
600  if (*hi == *iu)
601  used[iu - ib] = true;
602  }
603  }
604 }
605 
606 bool CSCSegAlgoRU::addHit(AlgoState& aState, const CSCRecHit2D* aHit, int layer) const {
607  // Return true if hit was added successfully
608  // (and then parameters are updated).
609  // Return false if there is already a hit on the same layer, or insert failed.
610  ChamberHitContainer::const_iterator it;
611  for (it = aState.proto_segment.begin(); it != aState.proto_segment.end(); it++)
612  if (((*it)->cscDetId().layer() == layer) && (aHit != (*it)))
613  return false;
614  aState.proto_segment.push_back(aHit);
615  // make a fit
616  updateParameters(aState);
617  return true;
618 }
619 
621  // Delete input CSCSegFit, create a new one and make the fit
622  // delete sfit;
623  aState.sfit.reset(new CSCSegFit(aState.aChamber, aState.proto_segment));
624  aState.sfit->fit();
625 }
626 
627 float CSCSegAlgoRU::fit_r_phi(const AlgoState& aState, const SVector6& points, int layer) const {
628  //find R or Phi on the given layer using the given points for the interpolation
629  float Sx = 0;
630  float Sy = 0;
631  float Sxx = 0;
632  float Sxy = 0;
633  for (int i = 1; i < 7; i++) {
634  if (points(i - 1) == 0.)
635  continue;
636  Sy = Sy + (points(i - 1));
637  Sx = Sx + i;
638  Sxx = Sxx + (i * i);
639  Sxy = Sxy + ((i)*points(i - 1));
640  }
641  float delta = 2 * Sxx - Sx * Sx;
642  float intercept = (Sxx * Sy - Sx * Sxy) / delta;
643  float slope = (2 * Sxy - Sx * Sy) / delta;
644  return (intercept + slope * layer);
645 }
646 
647 void CSCSegAlgoRU::baseline(AlgoState& aState, int n_seg_min) const {
648  int nhits = aState.proto_segment.size();
649  //initialise vectors for strip position and error within strip
650  SVector6 sp;
651  SVector6 se;
652  unsigned int init_size = aState.proto_segment.size();
654  buffer.clear();
655  buffer.reserve(init_size);
656  while (buffer.size() < init_size) {
657  ChamberHitContainer::iterator min;
658  int min_layer = 10;
659  for (ChamberHitContainer::iterator k = aState.proto_segment.begin(); k != aState.proto_segment.end(); k++) {
660  const CSCRecHit2D* iRHk = *k;
661  CSCDetId idRHk = iRHk->cscDetId();
662  int kLayer = idRHk.layer();
663  if (kLayer < min_layer) {
664  min_layer = kLayer;
665  min = k;
666  }
667  }
668  buffer.push_back(*min);
669  aState.proto_segment.erase(min);
670  } //while
671 
672  aState.proto_segment.clear();
673  for (ChamberHitContainer::const_iterator cand = buffer.begin(); cand != buffer.end(); cand++) {
674  aState.proto_segment.push_back(*cand);
675  }
676 
677  for (ChamberHitContainer::const_iterator iRH = aState.proto_segment.begin(); iRH != aState.proto_segment.end();
678  iRH++) {
679  const CSCRecHit2D* iRHp = *iRH;
680  CSCDetId idRH = iRHp->cscDetId();
681  int kRing = idRH.ring();
682  int kStation = idRH.station();
683  int kLayer = idRH.layer();
684  // Find the strip containing this hit
685  int centerid = iRHp->nStrips() / 2;
686  int centerStrip = iRHp->channels(centerid);
687  float stpos = (*iRHp).positionWithinStrip();
688  se(kLayer - 1) = (*iRHp).errorWithinStrip();
689  // Take into account half-strip staggering of layers (ME1/1 has no staggering)
690  if (kStation == 1 && (kRing == 1 || kRing == 4))
691  sp(kLayer - 1) = stpos + centerStrip;
692  else {
693  if (kLayer == 1 || kLayer == 3 || kLayer == 5)
694  sp(kLayer - 1) = stpos + centerStrip;
695  if (kLayer == 2 || kLayer == 4 || kLayer == 6)
696  sp(kLayer - 1) = stpos - 0.5 + centerStrip;
697  }
698  }
699  float chi2_str;
700  fitX(aState, sp, se, -1, -1, chi2_str);
701 
702  //-----------------------------------------------------
703  // Optimal point rejection method
704  //-----------------------------------------------------
705  float minSum = 1000;
706  int i1b = 0;
707  int i2b = 0;
708  int iworst = -1;
709  int bad_layer = -1;
710  ChamberHitContainer::const_iterator rh_to_be_deleted_1;
711  ChamberHitContainer::const_iterator rh_to_be_deleted_2;
712  if ((chi2_str) > aState.chi2_str_ * aState.chi2D_iadd) {
713  for (ChamberHitContainer::const_iterator i1 = aState.proto_segment.begin(); i1 != aState.proto_segment.end();
714  ++i1) {
715  ++i1b;
716  const CSCRecHit2D* i1_1 = *i1;
717  CSCDetId idRH1 = i1_1->cscDetId();
718  int z1 = idRH1.layer();
719  i2b = i1b;
720  for (ChamberHitContainer::const_iterator i2 = i1 + 1; i2 != aState.proto_segment.end(); ++i2) {
721  ++i2b;
722  const CSCRecHit2D* i2_1 = *i2;
723  CSCDetId idRH2 = i2_1->cscDetId();
724  int z2 = idRH2.layer();
725  int irej = 0;
726  for (ChamberHitContainer::const_iterator ir = aState.proto_segment.begin(); ir != aState.proto_segment.end();
727  ++ir) {
728  ++irej;
729  if (ir == i1 || ir == i2)
730  continue;
731  float dsum = 0;
732  int hit_nr = 0;
733  const CSCRecHit2D* ir_1 = *ir;
734  CSCDetId idRH = ir_1->cscDetId();
735  int worst_layer = idRH.layer();
736  for (ChamberHitContainer::const_iterator i = aState.proto_segment.begin(); i != aState.proto_segment.end();
737  ++i) {
738  ++hit_nr;
739  const CSCRecHit2D* i_1 = *i;
740  if (i == i1 || i == i2 || i == ir)
741  continue;
742  float slope = (sp(z2 - 1) - sp(z1 - 1)) / (z2 - z1);
743  float intersept = sp(z1 - 1) - slope * z1;
744  CSCDetId idRH = i_1->cscDetId();
745  int z = idRH.layer();
746  float di = fabs(sp(z - 1) - intersept - slope * z);
747  dsum = dsum + di;
748  } //i
749  if (dsum < minSum) {
750  minSum = dsum;
751  bad_layer = worst_layer;
752  iworst = irej;
753  rh_to_be_deleted_1 = ir;
754  }
755  } //ir
756  } //i2
757  } //i1
758  fitX(aState, sp, se, bad_layer, -1, chi2_str);
759  } //if chi2prob<1.0e-4
760 
761  //find worst from n-1 hits
762  int iworst2 = -1;
763  int bad_layer2 = -1;
764  if (iworst > -1 && (nhits - 1) > n_seg_min && (chi2_str) > aState.chi2_str_ * aState.chi2D_iadd) {
765  iworst = -1;
766  float minSum = 1000;
767  int i1b = 0;
768  int i2b = 0;
769  for (ChamberHitContainer::const_iterator i1 = aState.proto_segment.begin(); i1 != aState.proto_segment.end();
770  ++i1) {
771  ++i1b;
772  const CSCRecHit2D* i1_1 = *i1;
773  CSCDetId idRH1 = i1_1->cscDetId();
774  int z1 = idRH1.layer();
775  i2b = i1b;
776  for (ChamberHitContainer::const_iterator i2 = i1 + 1; i2 != aState.proto_segment.end(); ++i2) {
777  ++i2b;
778  const CSCRecHit2D* i2_1 = *i2;
779  CSCDetId idRH2 = i2_1->cscDetId();
780  int z2 = idRH2.layer();
781  int irej = 0;
782  for (ChamberHitContainer::const_iterator ir = aState.proto_segment.begin(); ir != aState.proto_segment.end();
783  ++ir) {
784  ++irej;
785  int irej2 = 0;
786  if (ir == i1 || ir == i2)
787  continue;
788  const CSCRecHit2D* ir_1 = *ir;
789  CSCDetId idRH = ir_1->cscDetId();
790  int worst_layer = idRH.layer();
791  for (ChamberHitContainer::const_iterator ir2 = aState.proto_segment.begin();
792  ir2 != aState.proto_segment.end();
793  ++ir2) {
794  ++irej2;
795  if (ir2 == i1 || ir2 == i2 || ir2 == ir)
796  continue;
797  float dsum = 0;
798  int hit_nr = 0;
799  const CSCRecHit2D* ir2_1 = *ir2;
800  CSCDetId idRH = ir2_1->cscDetId();
801  int worst_layer2 = idRH.layer();
802  for (ChamberHitContainer::const_iterator i = aState.proto_segment.begin(); i != aState.proto_segment.end();
803  ++i) {
804  ++hit_nr;
805  const CSCRecHit2D* i_1 = *i;
806  if (i == i1 || i == i2 || i == ir || i == ir2)
807  continue;
808  float slope = (sp(z2 - 1) - sp(z1 - 1)) / (z2 - z1);
809  float intersept = sp(z1 - 1) - slope * z1;
810  CSCDetId idRH = i_1->cscDetId();
811  int z = idRH.layer();
812  float di = fabs(sp(z - 1) - intersept - slope * z);
813  dsum = dsum + di;
814  } //i
815  if (dsum < minSum) {
816  minSum = dsum;
817  iworst2 = irej2;
818  iworst = irej;
819  bad_layer = worst_layer;
820  bad_layer2 = worst_layer2;
821  rh_to_be_deleted_1 = ir;
822  rh_to_be_deleted_2 = ir2;
823  }
824  } //ir2
825  } //ir
826  } //i2
827  } //i1
828  fitX(aState, sp, se, bad_layer, bad_layer2, chi2_str);
829  } //if prob(n-1)<e-4
830 
831  //----------------------------------
832  //erase bad_hits
833  //----------------------------------
834  if (iworst2 - 1 >= 0 && iworst2 <= int(aState.proto_segment.size())) {
835  aState.proto_segment.erase(rh_to_be_deleted_2);
836  }
837  if (iworst - 1 >= 0 && iworst <= int(aState.proto_segment.size())) {
838  aState.proto_segment.erase(rh_to_be_deleted_1);
839  }
840 }
841 
843  const AlgoState& aState, SVector6 points, SVector6 errors, int ir, int ir2, float& chi2_str) const {
844  float S = 0;
845  float Sx = 0;
846  float Sy = 0;
847  float Sxx = 0;
848  float Sxy = 0;
849  float sigma2 = 0;
850  for (int i = 1; i < 7; i++) {
851  if (i == ir || i == ir2 || points(i - 1) == 0.)
852  continue;
853  sigma2 = errors(i - 1) * errors(i - 1);
854  float i1 = i - 3.5;
855  S = S + (1 / sigma2);
856  Sy = Sy + (points(i - 1) / sigma2);
857  Sx = Sx + ((i1) / sigma2);
858  Sxx = Sxx + (i1 * i1) / sigma2;
859  Sxy = Sxy + (((i1)*points(i - 1)) / sigma2);
860  }
861  float delta = S * Sxx - Sx * Sx;
862  float intercept = (Sxx * Sy - Sx * Sxy) / delta;
863  float slope = (S * Sxy - Sx * Sy) / delta;
864  float chi_str = 0;
865  chi2_str = 0;
866  // calculate chi2_str
867  for (int i = 1; i < 7; i++) {
868  if (i == ir || i == ir2 || points(i - 1) == 0.)
869  continue;
870  chi_str = (points(i - 1) - intercept - slope * (i - 3.5)) / (errors(i - 1));
871  chi2_str = chi2_str + chi_str * chi_str;
872  }
873  return (intercept + slope * 0);
874 }
875 
876 bool CSCSegAlgoRU::hasHitOnLayer(const AlgoState& aState, int layer) const {
877  // Is there is already a hit on this layer?
879  for (it = aState.proto_segment.begin(); it != aState.proto_segment.end(); it++)
880  if ((*it)->cscDetId().layer() == layer)
881  return true;
882  return false;
883 }
884 
885 bool CSCSegAlgoRU::replaceHit(AlgoState& aState, const CSCRecHit2D* h, int layer) const {
886  // replace a hit from a layer
887  ChamberHitContainer::const_iterator it;
888  for (it = aState.proto_segment.begin(); it != aState.proto_segment.end();) {
889  if ((*it)->cscDetId().layer() == layer)
890  it = aState.proto_segment.erase(it);
891  else
892  ++it;
893  }
894  return addHit(aState, h, layer);
895 }
896 
897 void CSCSegAlgoRU::compareProtoSegment(AlgoState& aState, const CSCRecHit2D* h, int layer) const {
898  // Copy the input CSCSegFit
899  std::unique_ptr<CSCSegFit> oldfit;
900  oldfit.reset(new CSCSegFit(aState.aChamber, aState.proto_segment));
901  oldfit->fit();
902  ChamberHitContainer oldproto = aState.proto_segment;
903 
904  // May create a new fit
905  bool ok = replaceHit(aState, h, layer);
906  if ((aState.sfit->chi2() >= oldfit->chi2()) || !ok) {
907  // keep original fit
908  aState.proto_segment = oldproto;
909  aState.sfit = std::move(oldfit); // reset to the original input fit
910  }
911 }
912 
913 void CSCSegAlgoRU::increaseProtoSegment(AlgoState& aState, const CSCRecHit2D* h, int layer, int chi2_factor) const {
914  // Creates a new fit
915  std::unique_ptr<CSCSegFit> oldfit;
916  ChamberHitContainer oldproto = aState.proto_segment;
917  oldfit.reset(new CSCSegFit(aState.aChamber, aState.proto_segment));
918  oldfit->fit();
919 
920  bool ok = addHit(aState, h, layer);
921  //@@ TEST ON ndof<=0 IS JUST TO ACCEPT nhits=2 CASE??
922  if (!ok || ((aState.sfit->ndof() > 0) && (aState.sfit->chi2() / aState.sfit->ndof() >= aState.chi2Max))) {
923  // reset to original fit
924  aState.proto_segment = oldproto;
925  aState.sfit = std::move(oldfit);
926  }
927 }
Vector3DBase
Definition: Vector3DBase.h:8
GeomDet::position
const Surface::PositionType & position() const
The position (origin of the R.F.)
Definition: GeomDet.h:43
CSCSegAlgoRU::updateParameters
void updateParameters(AlgoState &aState) const
Definition: CSCSegAlgoRU.cc:620
HLT_2018_cff.points
points
Definition: HLT_2018_cff.py:20125
DDAxes::y
testProducerWithPsetDescEmpty_cfi.i2
i2
Definition: testProducerWithPsetDescEmpty_cfi.py:46
CSCSegAlgoRU::replaceHit
bool replaceHit(AlgoState &aState, const CSCRecHit2D *h, int layer) const
Definition: CSCSegAlgoRU.cc:885
CSCSegAlgoRU::myName
const std::string myName
Definition: CSCSegAlgoRU.h:148
mps_fire.i
i
Definition: mps_fire.py:355
MessageLogger.h
CSCSegmentAlgorithm
Definition: CSCSegmentAlgorithm.h:23
CSCChamber::layer
const CSCLayer * layer(CSCDetId id) const
Return the layer corresponding to the given id.
Definition: CSCChamber.cc:30
CSCSegAlgoRU::AlgoState::dRMax
float dRMax
Definition: CSCSegAlgoRU.h:93
f
double f[11][100]
Definition: MuScleFitUtils.cc:78
detailsBasic3DVector::z
float float float z
Definition: extBasic3DVector.h:14
CSCSegAlgoRU::minLayersApart
int minLayersApart
Definition: CSCSegAlgoRU.h:163
PV3DBase::x
T x() const
Definition: PV3DBase.h:59
min
T min(T a, T b)
Definition: MathUtil.h:58
CSCSegAlgoRU::ChamberHitContainer
std::vector< const CSCRecHit2D * > ChamberHitContainer
Definition: CSCSegAlgoRU.h:51
CSCSegAlgoRU::tryAddingHitsToSegment
void tryAddingHitsToSegment(AlgoState &aState, const ChamberHitContainer &rechitsInChamber, const BoolContainer &used, const LayerIndex &layerIndex, const ChamberHitContainerCIt i1, const ChamberHitContainerCIt i2) const
Definition: CSCSegAlgoRU.cc:357
CSCSegAlgoRU::AlgoState::dPhiMax
float dPhiMax
Definition: CSCSegAlgoRU.h:94
CSCDetId::ring
int ring() const
Definition: CSCDetId.h:68
testProducerWithPsetDescEmpty_cfi.i1
i1
Definition: testProducerWithPsetDescEmpty_cfi.py:45
CSCSegAlgoRU::AlgoState::enlarge
bool enlarge
Definition: CSCSegAlgoRU.h:92
MessageLogger_cfi.errors
errors
Definition: MessageLogger_cfi.py:18
CSCSegAlgoRU.h
CSCLayer
Definition: CSCLayer.h:24
CSCSegAlgoRU::chi2Max
float chi2Max
Definition: CSCSegAlgoRU.h:159
CSCSegFit
Definition: CSCSegFit.h:30
DDAxes::x
convertSQLiteXML.ok
bool ok
Definition: convertSQLiteXML.py:98
groupFilesInBlocks.temp
list temp
Definition: groupFilesInBlocks.py:142
CSCDetId::iChamberType
unsigned short iChamberType() const
Definition: CSCDetId.h:96
CSCSegAlgoRU::doCollisions
bool doCollisions
Definition: CSCSegAlgoRU.h:154
CSCSegAlgoRU::ChamberHitContainerCIt
std::vector< const CSCRecHit2D * >::const_iterator ChamberHitContainerCIt
Definition: CSCSegAlgoRU.h:52
CSCRecHit2D::cscDetId
CSCDetId cscDetId() const
Definition: CSCRecHit2D.h:58
CSCSegFit.h
groupFilesInBlocks.reverse
reverse
Definition: groupFilesInBlocks.py:131
edmScanValgrind.buffer
buffer
Definition: edmScanValgrind.py:171
testProducerWithPsetDescEmpty_cfi.z2
z2
Definition: testProducerWithPsetDescEmpty_cfi.py:41
CSCRecHit2D::errorWithinStrip
float errorWithinStrip() const
The uncertainty of the estimated position within the strip.
Definition: CSCRecHit2D.h:85
PV3DBase::z
T z() const
Definition: PV3DBase.h:61
CSCSegAlgoRU::AlgoState::sfit
std::unique_ptr< CSCSegFit > sfit
Definition: CSCSegAlgoRU.h:87
CSCSegAlgoRU::AlgoState::chi2_str_
float chi2_str_
Definition: CSCSegAlgoRU.h:98
trackingPlots.hp
hp
Definition: trackingPlots.py:1246
errors
Definition: errors.py:1
CSCSegAlgoRU::AlgoState::dRIntMax
float dRIntMax
Definition: CSCSegAlgoRU.h:95
CSCSegAlgoRU::AlgoState::doCollisions
bool doCollisions
Definition: CSCSegAlgoRU.h:91
SiPixelRawToDigiRegional_cfi.deltaPhi
deltaPhi
Definition: SiPixelRawToDigiRegional_cfi.py:9
CSCSegAlgoRU::baseline
void baseline(AlgoState &aState, int n_seg_min) const
Definition: CSCSegAlgoRU.cc:647
CSCSegAlgoRU::dPhiIntMax
float dPhiIntMax
Definition: CSCSegAlgoRU.h:158
CSCSegAlgoRU::AlgoState::strip_iadd
int strip_iadd
Definition: CSCSegAlgoRU.h:85
CSCDetId::layer
int layer() const
Definition: CSCDetId.h:56
DDAxes::z
CSCSegAlgoRU::increaseProtoSegment
void increaseProtoSegment(AlgoState &aState, const CSCRecHit2D *h, int layer, int chi2_factor) const
Definition: CSCSegAlgoRU.cc:913
CSCChamber
Definition: CSCChamber.h:22
CSCSegAlgoRU::CSCSegAlgoRU
CSCSegAlgoRU(const edm::ParameterSet &ps)
Constructor.
Definition: CSCSegAlgoRU.cc:20
CSCSegAlgoRU::BoolContainer
std::vector< bool > BoolContainer
Definition: CSCSegAlgoRU.h:59
CSCSegAlgoRU::LayerIndex
std::vector< int > LayerIndex
Definition: CSCSegAlgoRU.h:50
h
dqmdumpme.k
k
Definition: dqmdumpme.py:60
Point3DBase< float, GlobalTag >
nhits
Definition: HIMultiTrackSelector.h:42
CSCSegment
Definition: CSCSegment.h:21
CSCSegAlgoRU::hasHitOnLayer
bool hasHitOnLayer(const AlgoState &aState, int layer) const
Definition: CSCSegAlgoRU.cc:876
runTauDisplay.gp
gp
Definition: runTauDisplay.py:431
funct::true
true
Definition: Factorize.h:173
CSCSegAlgoRU::AlgoState::windowScale
float windowScale
Definition: CSCSegAlgoRU.h:84
GeomDet::toGlobal
GlobalPoint toGlobal(const Local2DPoint &lp) const
Conversion to the global R.F. from the R.F. of the GeomDet.
Definition: GeomDet.h:49
LogDebug
#define LogDebug(id)
Definition: MessageLogger.h:670
edm::ParameterSet
Definition: ParameterSet.h:36
CSCRecHit2D
Definition: CSCRecHit2D.h:18
PV3DBase::barePhi
T barePhi() const
Definition: PV3DBase.h:65
CSCRecHit2D::localPosition
LocalPoint localPosition() const override
Definition: CSCRecHit2D.h:56
dumpMFGeometry_cfg.delta
delta
Definition: dumpMFGeometry_cfg.py:25
CSCDetId
Definition: CSCDetId.h:26
TrackInfoProducer_cfi.rechits
rechits
Definition: TrackInfoProducer_cfi.py:9
cand
Definition: decayParser.h:34
PV3DBase::y
T y() const
Definition: PV3DBase.h:60
CSCSegAlgoRU::flagHitsAsUsed
void flagHitsAsUsed(const AlgoState &aState, const ChamberHitContainer &rechitsInChamber, BoolContainer &used) const
Definition: CSCSegAlgoRU.cc:592
M_PI
#define M_PI
Definition: BXVectorInputProducer.cc:50
CSCSegAlgoRU::enlarge
bool enlarge
Definition: CSCSegAlgoRU.h:165
cuy.ib
ib
Definition: cuy.py:662
CSCSegAlgoRU::AlgoState::dPhiIntMax
float dPhiIntMax
Definition: CSCSegAlgoRU.h:96
cmsLHEtoEOSManager.l
l
Definition: cmsLHEtoEOSManager.py:193
CSCSegAlgoRU::isSegmentGood
bool isSegmentGood(const AlgoState &aState, const ChamberHitContainer &rechitsInChamber) const
Definition: CSCSegAlgoRU.cc:575
DDAxes::phi
edm::ParameterSet::getParameter
T getParameter(std::string const &) const
hi
Definition: HiEvtPlaneList.h:38
CSCSegAlgoRU::areHitsCloseInGlobalPhi
bool areHitsCloseInGlobalPhi(const AlgoState &aState, const CSCRecHit2D *h1, const CSCRecHit2D *h2) const
Definition: CSCSegAlgoRU.cc:442
CSCRecHit2D::channels
int channels(unsigned int i) const
Extracting strip channel numbers comprising the rechit - low.
Definition: CSCRecHit2D.h:61
eostools.move
def move(src, dest)
Definition: eostools.py:511
CSCSegAlgoRU::AlgoState::chi2D_iadd
int chi2D_iadd
Definition: CSCSegAlgoRU.h:86
CSCSegAlgoRU::dRIntMax
float dRIntMax
Definition: CSCSegAlgoRU.h:157
CSCLayer.h
CSCSegAlgoRU::dPhiMax
float dPhiMax
Definition: CSCSegAlgoRU.h:156
CSCSegAlgoRU::AlgoState::aChamber
const CSCChamber * aChamber
Definition: CSCSegAlgoRU.h:83
flavorHistoryFilter_cfi.dr
dr
Definition: flavorHistoryFilter_cfi.py:37
CSCSegAlgoRU::fitX
float fitX(const AlgoState &aState, SVector6 points, SVector6 errors, int ir, int ir2, float &chi2_str) const
Definition: CSCSegAlgoRU.cc:842
CSCSegAlgoRU::addHit
bool addHit(AlgoState &aState, const CSCRecHit2D *hit, int layer) const
Utility functions.
Definition: CSCSegAlgoRU.cc:606
CSCSegAlgoRU::buildSegments
std::vector< CSCSegment > buildSegments(const CSCChamber *aChamber, const ChamberHitContainer &rechits) const
Definition: CSCSegAlgoRU.cc:55
S
Definition: CSCDBL1TPParametersExtended.h:16
CSCSegAlgoRU::chi2Norm_2D_
float chi2Norm_2D_
Definition: CSCSegAlgoRU.h:161
CSCSegAlgoRU::AlgoState
Definition: CSCSegAlgoRU.h:82
CSCSegAlgoRU::AlgoState::proto_segment
ChamberHitContainer proto_segment
Definition: CSCSegAlgoRU.h:88
CSCSegAlgoRU::AlgoState::chi2Max
float chi2Max
Definition: CSCSegAlgoRU.h:97
funct::abs
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
CSCSegAlgoRU::SVector6
ROOT::Math::SVector< double, 6 > SVector6
Typedefs.
Definition: CSCSegAlgoRU.h:48
CSCSegAlgoRU::dRMax
float dRMax
Definition: CSCSegAlgoRU.h:155
ParameterSet.h
CSCDetId::station
int station() const
Definition: CSCDetId.h:79
CSCRecHit2D::nStrips
unsigned int nStrips() const
Definition: CSCRecHit2D.h:62
CSCRecHit2D::hitWire
short int hitWire() const
L1A.
Definition: CSCRecHit2D.h:68
dqmiolumiharvest.j
j
Definition: dqmiolumiharvest.py:66
slope
static const double slope[3]
Definition: CastorTimeSlew.cc:6
cscSegments_cfi.chi2_str
chi2_str
Definition: cscSegments_cfi.py:270
CSCSegAlgoRU::phiAtZ
float phiAtZ(const AlgoState &aState, float z) const
Definition: CSCSegAlgoRU.cc:560
dttmaxenums::R
Definition: DTTMax.h:29
GlobalPoint.h
PV3DBase::perp
T perp() const
Definition: PV3DBase.h:69
CSCSegAlgoRU::isHitNearSegment
bool isHitNearSegment(const AlgoState &aState, const CSCRecHit2D *h) const
Definition: CSCSegAlgoRU.cc:470
CSCSegAlgoRU::fit_r_phi
float fit_r_phi(const AlgoState &aState, const SVector6 &points, int layer) const
Definition: CSCSegAlgoRU.cc:627
CSCSegAlgoRU::areHitsCloseInR
bool areHitsCloseInR(const AlgoState &aState, const CSCRecHit2D *h1, const CSCRecHit2D *h2) const
Utility functions.
Definition: CSCSegAlgoRU.cc:395
deltaPhi.h
kLayer
static const std::string kLayer("layer")
CSCSegAlgoRU::compareProtoSegment
void compareProtoSegment(AlgoState &aState, const CSCRecHit2D *h, int layer) const
Definition: CSCSegAlgoRU.cc:897
CSCSegAlgoRU::chi2_str_
float chi2_str_
Definition: CSCSegAlgoRU.h:160
CSCSegAlgoRU::wideSeg
float wideSeg
Definition: CSCSegAlgoRU.h:162