CMS 3D CMS Logo

DTGeometryParsFromDD.cc
Go to the documentation of this file.
1 
10 
21 
22 #include <string>
23 
24 using namespace std;
25 
26 using namespace geant_units;
27 using namespace geant_units::operators;
28 
30 
32 
34  const MuonDDDConstants& muonConstants,
35  RecoIdealGeometry& rig) {
36  // cout << "DTGeometryParsFromDD::build" << endl;
37  // static const string t0 = "DTGeometryParsFromDD::build";
38  // TimeMe timer(t0,true);
39 
40  std::string attribute = "MuStructure";
41  std::string value = "MuonBarrelDT";
42 
43  // Asking only for the Muon DTs
44  DDSpecificsMatchesValueFilter filter{DDValue(attribute, value, 0.0)};
45  DDFilteredView fview(*cview, filter);
46  buildGeometry(fview, muonConstants, rig);
47  //cout << "RecoIdealGeometry " << rig.size() << endl;
48 }
49 
51  const MuonDDDConstants& muonConstants,
52  RecoIdealGeometry& rig) const {
53  // static const string t0 = "DTGeometryParsFromDD::buildGeometry";
54  // TimeMe timer(t0,true);
55 
56  bool doChamber = fv.firstChild();
57 
58  // Loop on chambers
59  int ChamCounter = 0;
60  while (doChamber) {
61  ChamCounter++;
62  DDValue val("Type");
64  string type;
65  if (DDfetch(&params, val))
66  type = val.strings()[0];
67  // FIXME
68  val = DDValue("FEPos");
69  string FEPos;
70  if (DDfetch(&params, val))
71  FEPos = val.strings()[0];
72  insertChamber(fv, type, muonConstants, rig);
73 
74  // Loop on SLs
75  bool doSL = fv.firstChild();
76  int SLCounter = 0;
77  while (doSL) {
78  SLCounter++;
79  insertSuperLayer(fv, type, muonConstants, rig);
80 
81  bool doL = fv.firstChild();
82  int LCounter = 0;
83  // Loop on SLs
84  while (doL) {
85  LCounter++;
86  insertLayer(fv, type, muonConstants, rig);
87 
88  // fv.parent();
89  doL = fv.nextSibling(); // go to next layer
90  } // layers
91 
92  fv.parent();
93  doSL = fv.nextSibling(); // go to next SL
94  } // sls
95 
96  fv.parent();
97  doChamber = fv.nextSibling(); // go to next chamber
98  } // chambers
99 }
100 
102  const string& type,
103  const MuonDDDConstants& muonConstants,
104  RecoIdealGeometry& rig) const {
105  MuonDDDNumbering mdddnum(muonConstants);
106  DTNumberingScheme dtnum(muonConstants);
107  int rawid = dtnum.getDetId(mdddnum.geoHistoryToBaseNumber(fv.geoHistory()));
108  DTChamberId detId(rawid);
109  //cout << "inserting Chamber " << detId << endl;
110 
111  // Chamber specific parameter (size)
112  vector<double> par;
113  par.emplace_back(DTChamberTag);
114  vector<double> size = extractParameters(fv);
115  par.insert(par.end(), size.begin(), size.end());
116 
118  // width is along local X
119  // length is along local Y
120  // thickness is long local Z
121 
122  PosRotPair posRot(plane(fv));
123 
124  rig.insert(rawid, posRot.first, posRot.second, par);
125 }
126 
128  const std::string& type,
129  const MuonDDDConstants& muonConstants,
130  RecoIdealGeometry& rig) const {
131  MuonDDDNumbering mdddnum(muonConstants);
132  DTNumberingScheme dtnum(muonConstants);
133  int rawid = dtnum.getDetId(mdddnum.geoHistoryToBaseNumber(fv.geoHistory()));
134  DTSuperLayerId slId(rawid);
135  //cout << "inserting SuperLayer " << slId << endl;
136 
137  // Slayer specific parameter (size)
138  vector<double> par;
139  par.emplace_back(DTSuperLayerTag);
140  vector<double> size = extractParameters(fv);
141  par.insert(par.end(), size.begin(), size.end());
142 
143  // Ok this is the slayer position...
144  PosRotPair posRot(plane(fv));
145 
146  rig.insert(slId, posRot.first, posRot.second, par);
147 }
148 
150  const std::string& type,
151  const MuonDDDConstants& muonConstants,
152  RecoIdealGeometry& rig) const {
153  MuonDDDNumbering mdddnum(muonConstants);
154  DTNumberingScheme dtnum(muonConstants);
155  int rawid = dtnum.getDetId(mdddnum.geoHistoryToBaseNumber(fv.geoHistory()));
156  DTLayerId layId(rawid);
157  //cout << "inserting Layer " << layId << endl;
158 
159  // Layer specific parameter (size)
160  vector<double> par;
161  par.emplace_back(DTLayerTag);
162  vector<double> size = extractParameters(fv);
163  par.insert(par.end(), size.begin(), size.end());
164 
165  // Loop on wires
166  bool doWire = fv.firstChild();
167  int WCounter = 0;
168  int firstWire = fv.copyno();
169  //float wireLength = par[1]/cm;
170  while (doWire) {
171  WCounter++;
172  doWire = fv.nextSibling(); // next wire
173  }
174  vector<double> sensSize = extractParameters(fv);
175  //int lastWire=fv.copyno();
176  par.emplace_back(firstWire);
177  par.emplace_back(WCounter);
178  par.emplace_back(sensSize[1]);
179  fv.parent();
180 
181  PosRotPair posRot(plane(fv));
182 
183  rig.insert(layId, posRot.first, posRot.second, par);
184 }
185 
187  vector<double> par;
188  if (fv.logicalPart().solid().shape() != DDSolidShape::ddbox) {
189  DDBooleanSolid bs(fv.logicalPart().solid());
190  DDSolid A = bs.solidA();
191  while (A.shape() != DDSolidShape::ddbox) {
192  DDBooleanSolid bs(A);
193  A = bs.solidA();
194  }
195  par = A.parameters();
196  } else {
197  par = fv.logicalPart().solid().parameters();
198  }
199  return par;
200 }
201 
203  // extract the position
204  const DDTranslation& trans(fv.translation());
205 
206  std::vector<double> gtran(3);
207  gtran[0] = convertMmToCm(trans.x());
208  gtran[1] = convertMmToCm(trans.y());
209  gtran[2] = convertMmToCm(trans.z());
210 
211  // now the rotation
212  // 'active' and 'passive' rotations are inverse to each other
213  const DDRotationMatrix& rotation = fv.rotation(); //REMOVED .Inverse();
214  DD3Vector x, y, z;
215  rotation.GetComponents(x, y, z);
216  // std::cout << "INVERSE rotation by its own operator: "<< fv.rotation() << std::endl;
217  // std::cout << "INVERSE rotation manually: "
218  // << x.X() << ", " << x.Y() << ", " << x.Z() << std::endl
219  // << y.X() << ", " << y.Y() << ", " << y.Z() << std::endl
220  // << z.X() << ", " << z.Y() << ", " << z.Z() << std::endl;
221 
222  std::vector<double> grmat(9);
223  grmat[0] = x.X();
224  grmat[1] = x.Y();
225  grmat[2] = x.Z();
226 
227  grmat[3] = y.X();
228  grmat[4] = y.Y();
229  grmat[5] = y.Z();
230 
231  grmat[6] = z.X();
232  grmat[7] = z.Y();
233  grmat[8] = z.Z();
234 
235  // std::cout << "rotation by its own operator: "<< tmp << std::endl;
236  // DD3Vector tx, ty,tz;
237  // tmp.GetComponents(tx, ty, tz);
238  // std::cout << "rotation manually: "
239  // << tx.X() << ", " << tx.Y() << ", " << tx.Z() << std::endl
240  // << ty.X() << ", " << ty.Y() << ", " << ty.Z() << std::endl
241  // << tz.X() << ", " << tz.Y() << ", " << tz.Z() << std::endl;
242 
243  return pair<std::vector<double>, std::vector<double> >(gtran, grmat);
244 }
size
Write out results.
type
Definition: HCALResponse.h:21
const std::vector< double > & parameters(void) const
Give the parameters of the solid.
Definition: DDSolid.cc:121
bool parent()
set the current node to the parent node ...
const DDLogicalPart & logicalPart() const
The logical-part of the current node in the filtered-view.
bool nextSibling()
set the current node to the next sibling ...
const DDRotationMatrix & rotation() const
The absolute rotation of the current node.
bool insert(DetId id, const std::vector< double > &trans, const std::vector< double > &rot, const std::vector< double > &pars)
ROOT::Math::Rotation3D DDRotationMatrix
A DDRotationMatrix is currently implemented with a ROOT Rotation3D.
void insertChamber(DDFilteredView &fv, const std::string &type, const MuonDDDConstants &muonConstants, RecoIdealGeometry &rig) const
create the chamber
const DDSolid & solid(void) const
Returns a reference object of the solid being the shape of this LogicalPart.
Compact representation of the geometrical detector hierarchy.
Definition: DDCompactView.h:80
const DDGeoHistory & geoHistory() const
The list of ancestors up to the root-node of the current node.
bool DDfetch(const DDsvalues_type *, DDValue &)
helper for retrieving DDValues from DDsvalues_type *.
Definition: DDsvalues.cc:79
A DDSolid represents the shape of a part.
Definition: DDSolid.h:39
ROOT::Math::DisplacementVector3D< ROOT::Math::Cartesian3D< double > > DDTranslation
Definition: DDTranslation.h:7
int copyno() const
Copy number associated with the current node.
virtual ~DTGeometryParsFromDD()
Destructor.
std::vector< std::pair< unsigned int, DDValue > > DDsvalues_type
Definition: DDsvalues.h:12
ROOT::Math::DisplacementVector3D< ROOT::Math::Cartesian3D< double > > DD3Vector
A DD Translation is currently implemented with Root Vector3D.
Definition: DDTranslation.h:6
std::vector< double > extractParameters(DDFilteredView &fv) const
get parameter also for boolean solid.
void insertLayer(DDFilteredView &fv, const std::string &type, const MuonDDDConstants &muonConstants, RecoIdealGeometry &rig) const
create the layer
DDSolidShape shape(void) const
The type of the solid.
Definition: DDSolid.cc:119
Definition: value.py:1
const std::vector< std::string > & strings() const
a reference to the std::string-valued values stored in the given instance of DDValue ...
Definition: DDValue.h:60
DTGeometryParsFromDD()
Constructor.
DDSolid solidA(void) const
Definition: DDSolid.cc:466
std::pair< std::vector< double >, std::vector< double > > PosRotPair
DDsvalues_type mergedSpecifics() const
void buildGeometry(DDFilteredView &fv, const MuonDDDConstants &muonConstants, RecoIdealGeometry &rig) const
int getDetId(const MuonBaseNumber &num) const
bool firstChild()
set the current node to the first child ...
constexpr NumType convertMmToCm(NumType millimeters)
Definition: GeantUnits.h:62
const DDTranslation & translation() const
The absolute translation of the current node.
MuonBaseNumber geoHistoryToBaseNumber(const DDGeoHistory &history)
void insertSuperLayer(DDFilteredView &fv, const std::string &type, const MuonDDDConstants &muonConstants, RecoIdealGeometry &rig) const
create the SL
void build(const DDCompactView *cview, const MuonDDDConstants &muonConstants, RecoIdealGeometry &rig)
PosRotPair plane(const DDFilteredView &fv) const