233 const double tol(0.01);
234 for (
unsigned int i = 0;
i <
layers_.size();
i++) {
240 for (
int ly = laymin; ly < laymax; ++ly) {
250 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalEEAlgo: Layer " << ly <<
":" << ii <<
" Front " << zi <<
", " << routF
251 <<
" Back " << zo <<
", " << rinB <<
" superlayer thickness " << layerThick_[
i];
257 std::vector<double> pgonZ, pgonRin, pgonRout;
260 pgonZ.emplace_back(-hthick);
261 pgonZ.emplace_back(hthick);
262 pgonRin.emplace_back(rinB);
263 pgonRin.emplace_back(rinB);
264 pgonRout.emplace_back(rmax);
265 pgonRout.emplace_back(rmax);
279 for (
unsigned int isec = 0; isec < pgonZ.size(); ++isec) {
281 pgonRout[isec] = pgonRout[isec] *
cosAlpha_ - tol;
291 <<
" sections and filled with " << matName <<
":" << &matter;
292 for (
unsigned int k = 0;
k < pgonZ.size(); ++
k)
293 edm::LogVerbatim(
"HGCalGeom") <<
"[" <<
k <<
"] z " << pgonZ[
k] <<
" R " << pgonRin[
k] <<
":" << pgonRout[
k];
299 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalEEAlgo: " << solid.
name() <<
" Tubs made of " << matName <<
":" 300 << &matter <<
" of dimensions " << rinB <<
", " << routF <<
", " << hthick
301 <<
", 0.0, 360.0 and position " << glog.
name() <<
" number " << copy <<
":" 311 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalEEAlgo: " << glog.
name() <<
" number " << copy <<
" positioned in " 312 << module.
name() <<
" at " <<
r1 <<
" with " <<
rot;
318 if (
std::abs(thickTot - layerThick_[
i]) < 0.00001) {
319 }
else if (thickTot > layerThick_[i]) {
320 edm::LogError(
"HGCalGeom") <<
"Thickness of the partition " << layerThick_[
i] <<
" is smaller than " << thickTot
321 <<
": thickness of all its " 322 <<
"components **** ERROR ****";
323 }
else if (thickTot < layerThick_[i]) {
324 edm::LogWarning(
"HGCalGeom") <<
"Thickness of the partition " << layerThick_[
i] <<
" does not match with " 325 << thickTot <<
" of the components";
std::vector< double > slopeB_
std::vector< double > zFrontT_
std::vector< double > thick_
std::vector< double > layerThick_
DDMaterial is used to define and access material information.
std::vector< int > copyNumber_
std::vector< double > zFrontB_
constexpr NumType convertRadToDeg(NumType radians)
DDName is used to identify DDD entities uniquely.
std::vector< int > layerCenter_
std::vector< double > slopeT_
std::vector< int > layerSense_
A DDSolid represents the shape of a part.
ROOT::Math::DisplacementVector3D< ROOT::Math::Cartesian3D< double > > DDTranslation
Represents a uniquely identifyable rotation matrix.
U second(std::pair< T, U > const &p)
Abs< T >::type abs(const T &t)
A DDLogicalPart aggregates information concerning material, solid and sensitveness ...
std::vector< int > layerType_
static DDSolid tubs(const DDName &name, double zhalf, double rIn, double rOut, double startPhi, double deltaPhi)
std::vector< int > layers_
std::vector< std::string > names_
void position(const DDLogicalPart &self, const DDLogicalPart &parent, const std::string ©no, const DDTranslation &trans, const DDRotation &rot, const DDDivision *div=0)
std::vector< double > rMinFront_
void positionSensitive(const DDLogicalPart &glog, double rin, double rout, double zpos, int layertype, int layercenter, DDCompactView &cpv)
std::vector< std::string > materials_
std::vector< double > rMaxFront_
std::pair< std::string, std::string > DDSplit(const std::string &n)
split into (name,namespace), separator = ':'
static DDSolid polyhedra(const DDName &name, int sides, double startPhi, double deltaPhi, const std::vector< double > &z, const std::vector< double > &rmin, const std::vector< double > &rmax)
Creates a polyhedra (refere to Geant3 or Geant4 documentation)