9 #include "DD4hep/DetFactoryHelper.h" 19 #include <unordered_set> 26 dd4hep::SensitiveDetector& ) {
30 const auto& wafer = args.
value<std::vector<std::string> >(
"WaferName");
31 auto materials = args.
value<std::vector<std::string> >(
"MaterialNames");
32 const auto&
names = args.
value<std::vector<std::string> >(
"VolumeNames");
33 const auto& thick = args.
value<std::vector<double> >(
"Thickness");
34 std::vector<int> copyNumber;
35 for (
unsigned int i = 0;
i < materials.size(); ++
i) {
36 if (materials[
i] ==
"materials:M_NEMAFR4plate")
37 materials[
i] =
"materials:M_NEMA FR4 plate";
38 copyNumber.emplace_back(1);
41 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalModule: " << wafer.size() <<
" wafers";
42 for (
unsigned int i = 0;
i < wafer.size(); ++
i)
44 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalModule: " << materials.size() <<
" types of volumes";
45 for (
unsigned int i = 0;
i < names.size(); ++
i)
46 edm::LogVerbatim(
"HGCalGeom") <<
"Volume [" <<
i <<
"] " << names[
i] <<
" of thickness " << thick[
i]
47 <<
" filled with " << materials[
i] <<
" first copy number " << copyNumber[
i];
49 const auto&
layers = args.
value<std::vector<int> >(
"Layers");
50 const auto& layerThick = args.
value<std::vector<double> >(
"LayerThick");
51 const auto& layerType = args.
value<std::vector<int> >(
"LayerType");
52 const auto& layerSense = args.
value<std::vector<int> >(
"LayerSense");
55 for (
unsigned int i = 0;
i <
layers.size(); ++
i)
58 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalModule: " << layerType.size() <<
" layers";
59 for (
unsigned int i = 0;
i < layerType.size(); ++
i)
60 edm::LogVerbatim(
"HGCalGeom") <<
"Layer [" <<
i <<
"] with material type " << layerType[
i] <<
" sensitive class " 63 double zMinBlock = args.
value<
double>(
"zMinBlock");
64 double rMaxFine = args.
value<
double>(
"rMaxFine");
65 double waferW = args.
value<
double>(
"waferW");
66 double waferGap = args.
value<
double>(
"waferGap");
69 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalModule: zStart " << zMinBlock <<
" rFineCoarse " << rMaxFine
70 <<
" wafer width " << waferW << waferW <<
" gap among wafers " << waferGap
73 const auto& slopeB = args.
value<std::vector<double> >(
"SlopeBottom");
74 const auto& slopeT = args.
value<std::vector<double> >(
"SlopeTop");
75 const auto& zFront = args.
value<std::vector<double> >(
"ZFront");
76 const auto& rMaxFront = args.
value<std::vector<double> >(
"RMaxFront");
78 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalModule: Bottom slopes " << slopeB[0] <<
":" << slopeB[1] <<
" and " 79 << slopeT.size() <<
" slopes for top";
80 for (
unsigned int i = 0;
i < slopeT.size(); ++
i)
81 edm::LogVerbatim(
"HGCalGeom") <<
"Block [" <<
i <<
"] Zmin " << zFront[
i] <<
" Rmax " << rMaxFront[
i] <<
" Slope " 87 std::unordered_set<int> copies;
96 const double tol(0.01);
97 for (
unsigned int i = 0;
i < layers.size();
i++) {
98 double zo = zi + layerThick[
i];
100 int laymax = laymin + layers[
i];
103 for (
int ly = laymin; ly < laymax; ++ly) {
104 int ii = layerType[ly];
105 int copy = copyNumber[
ii];
106 double rinB = (layerSense[ly] == 0) ? (zo * slopeB[0]) : (zo * slopeB[1]);
107 zz += (0.5 * thick[
ii]);
108 thickTot += thick[
ii];
112 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalModule: Layer " << ly <<
":" << ii <<
" Front " << zi <<
", " << routF
113 <<
" Back " << zo <<
", " << rinB <<
" superlayer thickness " << layerThick[
i];
117 if (layerSense[ly] == 0) {
119 double rmax = routF *
cos(alpha) - tol;
120 std::vector<double> pgonZ, pgonRin, pgonRout;
121 pgonZ.emplace_back(-0.5 * thick[ii]);
122 pgonZ.emplace_back(0.5 * thick[ii]);
123 pgonRin.emplace_back(rinB);
124 pgonRin.emplace_back(rinB);
125 pgonRout.emplace_back(rmax);
126 pgonRout.emplace_back(rmax);
131 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalModule: " << solid.name() <<
" polyhedra of " << sectors
133 << (360.0 +
convertRadToDeg(-alpha)) <<
" with " << pgonZ.size() <<
" sections";
134 for (
unsigned int k = 0;
k < pgonZ.size(); ++
k)
135 edm::LogVerbatim(
"HGCalGeom") <<
"[" <<
k <<
"] z " << pgonZ[
k] <<
" R " << pgonRin[
k] <<
":" << pgonRout[
k];
138 dd4hep::Solid solid = dd4hep::Tube(0.5 * thick[ii], rinB, routF, 0.0, 2 *
cms_units::piRadians);
142 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalModule: " << solid.name() <<
" Tubs made of " << materials[
ii]
143 <<
" of dimensions " << rinB <<
", " << routF <<
", " << 0.5 * thick[
ii]
145 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalModule test position in: " << glog.name() <<
" number " <<
copy;
147 double ww = (waferW + waferGap);
148 double dx = 0.5 * ww;
149 double dy = 3.0 * dx *
tan(30._deg);
150 double rr = 2.0 * dx *
tan(30._deg);
151 int ncol =
static_cast<int>(2.0 * routF / ww) + 1;
152 int nrow =
static_cast<int>(routF / (ww *
tan(30._deg))) + 1;
154 int incm(0), inrm(0), kount(0), ntot(0),
nin(0), nfine(0), ncoarse(0);
155 edm::LogVerbatim(
"HGCalGeom") << glog.name() <<
" rout " << routF <<
" Row " << nrow <<
" Column " << ncol;
157 for (
int nr = -nrow;
nr <= nrow; ++
nr) {
158 int inr = (
nr >= 0) ?
nr : -
nr;
159 for (
int nc = -ncol; nc <= ncol; ++nc) {
160 int inc = (nc >= 0) ? nc : -nc;
161 if (inr % 2 == inc % 2) {
162 double xpos = nc *
dx;
163 double ypos =
nr *
dy;
168 if (corner.first > 0) {
169 int copyL = inr * 100 + inc;
183 double rpos =
std::sqrt(xpos * xpos + ypos * ypos);
184 dd4hep::Position tran(xpos, ypos, 0.0);
187 glog.placeVolume(glog1, copyL, dd4hep::Transform3D(rotation, tran));
195 <<
"DDHGCalModule: " << glog1.name() <<
" number " << copyL <<
" positioned in " << glog.name()
196 <<
" at " << tran <<
" with " <<
rotation;
204 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalModule: # of columns " << incm <<
" # of rows " << inrm <<
" and " 205 <<
nin <<
":" << kount <<
":" << ntot <<
" wafers (" << nfine <<
":" << ncoarse
206 <<
") for " << glog.name() <<
" R " << rinB <<
":" << routF;
209 dd4hep::Position
r1(0, 0, zz);
210 dd4hep::Rotation3D
rot;
211 module.placeVolume(glog, copy, dd4hep::Transform3D(rot, r1));
214 edm::LogVerbatim(
"HGCalGeom") <<
"DDHGCalModule: " << glog.name() <<
" number " << copy <<
" positioned in " 215 << module.name() <<
" at " << r1 <<
" with " <<
rot;
217 zz += (0.5 * thick[
ii]);
221 if (fabs(thickTot - layerThick[
i]) < 0.00001) {
222 }
else if (thickTot > layerThick[i]) {
223 edm::LogError(
"HGCalGeom") <<
"Thickness of the partition " << layerThick[
i] <<
" is smaller than thickness " 224 << thickTot <<
" of all its components **** ERROR ****\n";
225 }
else if (thickTot < layerThick[i]) {
226 edm::LogWarning(
"HGCalGeom") <<
"Thickness of the partition " << layerThick[
i] <<
" does not match with " 227 << thickTot <<
" of the components\n";
232 edm::LogVerbatim(
"HGCalGeom") << copies.size() <<
" different wafer copy numbers";
234 for (std::unordered_set<int>::const_iterator itr = copies.begin(); itr != copies.end(); ++itr, ++
k)
236 edm::LogVerbatim(
"HGCalGeom") <<
"<<== End of DDHGCalModule construction ...";
dd4hep::Solid addSolidNS(const std::string &name, dd4hep::Solid solid) const
dd4hep::Volume volume(const std::string &name, bool exc=true) const
constexpr NumType convertRadToDeg(NumType radians)
T value(const std::string &name) const
const std::string names[nVars_]
std::string_view name() const
constexpr long double piRadians(M_PIl)
Cos< T >::type cos(const T &t)
Tan< T >::type tan(const T &t)
dd4hep::Material material(const std::string &name) const
static long algorithm(dd4hep::Detector &, cms::DDParsingContext &ctxt, xml_h e, dd4hep::SensitiveDetector &)
std::string prepend(const std::string &) const
static uint32_t k_CornerSize
alpha
zGenParticlesMatch = cms.InputTag(""),
#define DECLARE_DDCMS_DETELEMENT(name, func)
std::string parentName() const
Access value of rParent child node.