CMS 3D CMS Logo

CTPPSFastTrackingProducer.cc
Go to the documentation of this file.
1 // -*- C++ -*-
2 //
3 // Package: FastSimulation/CTPPSFastTrackingProducer
4 // Class: CTPPSFastTrackingProducer
5 //
13 //
14 // Original Author: Sandro Fonseca De Souza
15 // Created: Thu, 29 Sep 2016 16:13:41 GMT
16 //
17 //
18 
19 // system include files
20 #include <memory>
21 
22 // user include files
25 #include "TLorentzVector.h"
26 // hector includes
27 #include "H_Parameters.h"
28 #include "H_BeamLine.h"
29 #include "H_RecRPObject.h"
30 #include "H_BeamParticle.h"
32 // constructors and destructor
33 //
35  : m_verbosity(false), fBeamMomentum(0.), fCrossAngleCorr(false), fCrossingAngleBeam1(0.), fCrossingAngleBeam2(0.) {
36  //register your products
37  produces<edm::CTPPSFastTrackContainer>("CTPPSFastTrack");
38  using namespace edm;
39  _recHitToken = consumes<CTPPSFastRecHitContainer>(iConfig.getParameter<edm::InputTag>("recHitTag"));
40  m_verbosity = iConfig.getParameter<bool>("Verbosity");
41  // User definitons
42 
43  // Read beam parameters needed for Hector reconstruction
44  lengthctpps = iConfig.getParameter<double>("BeamLineLengthCTPPS");
45  beam1filename = iConfig.getParameter<string>("Beam1");
46  beam2filename = iConfig.getParameter<string>("Beam2");
47  fBeamEnergy = iConfig.getParameter<double>("BeamEnergy"); // beam energy in GeV
48  fBeamMomentum = sqrt(fBeamEnergy * fBeamEnergy - PPSTools::ProtonMassSQ);
49  fCrossingAngleBeam1 = iConfig.getParameter<double>("CrossingAngleBeam1");
50  fCrossingAngleBeam2 = iConfig.getParameter<double>("CrossingAngleBeam2");
51 
52  if (fCrossingAngleBeam1 != 0 || fCrossingAngleBeam2 != 0)
53  fCrossAngleCorr = true;
54  //Read detectors positions and parameters
55 
56  fz_tracker1 = iConfig.getParameter<double>("Z_Tracker1");
57  fz_tracker2 = iConfig.getParameter<double>("Z_Tracker2");
58  fz_timing = iConfig.getParameter<double>("Z_Timing");
59  //
60  fTrackerWidth = iConfig.getParameter<double>("TrackerWidth");
61  fTrackerHeight = iConfig.getParameter<double>("TrackerHeight");
62  fTrackerInsertion = iConfig.getParameter<double>("TrackerInsertion");
63  fBeamXRMS_Trk1 = iConfig.getParameter<double>("BeamXRMS_Trk1");
64  fBeamXRMS_Trk2 = iConfig.getParameter<double>("BeamXRMS_Trk2");
65  fTrk1XOffset = iConfig.getParameter<double>("Trk1XOffset");
66  fTrk2XOffset = iConfig.getParameter<double>("Trk2XOffset");
67  fToFCellWidth = iConfig.getUntrackedParameter<std::vector<double> >("ToFCellWidth");
68  fToFCellHeight = iConfig.getParameter<double>("ToFCellHeight");
69  fToFPitchX = iConfig.getParameter<double>("ToFPitchX");
70  fToFPitchY = iConfig.getParameter<double>("ToFPitchY");
71  fToFNCellX = iConfig.getParameter<int>("ToFNCellX");
72  fToFNCellY = iConfig.getParameter<int>("ToFNCellY");
73  fToFInsertion = iConfig.getParameter<double>("ToFInsertion");
74  fBeamXRMS_ToF = iConfig.getParameter<double>("BeamXRMS_ToF");
75  fToFXOffset = iConfig.getParameter<double>("ToFXOffset");
76  fTimeSigma = iConfig.getParameter<double>("TimeSigma");
77  fImpParcut = iConfig.getParameter<double>("ImpParcut");
78 
79  if (!SetBeamLine()) {
80  if (m_verbosity)
81  LogDebug("CTPPSFastTrackingProducer") << "CTPPSFastTrackingProducer: WARNING: lengthctpps= " << lengthctpps;
82  return;
83  }
84 
85  // Create a particle to get the beam energy from the beam file
86  // Take care: the z inside the station is in meters
87  //
88  //Tracker Detector Description
89  det1F = std::unique_ptr<CTPPSTrkDetector>(
90  new CTPPSTrkDetector(fTrackerWidth, fTrackerHeight, fTrackerInsertion * fBeamXRMS_Trk1 + fTrk1XOffset));
91  det2F = std::unique_ptr<CTPPSTrkDetector>(
92  new CTPPSTrkDetector(fTrackerWidth, fTrackerHeight, fTrackerInsertion * fBeamXRMS_Trk2 + fTrk2XOffset));
93  det1B = std::unique_ptr<CTPPSTrkDetector>(
94  new CTPPSTrkDetector(fTrackerWidth, fTrackerHeight, fTrackerInsertion * fBeamXRMS_Trk1 + fTrk1XOffset));
95  det2B = std::unique_ptr<CTPPSTrkDetector>(
96  new CTPPSTrkDetector(fTrackerWidth, fTrackerHeight, fTrackerInsertion * fBeamXRMS_Trk2 + fTrk2XOffset));
97 
98  //Timing Detector Description
99  std::vector<double> vToFCellWidth;
100  for (int i = 0; i < 8; i++) {
101  vToFCellWidth.push_back(fToFCellWidth[i]);
102  }
103  double pos_tof = fToFInsertion * fBeamXRMS_ToF + fToFXOffset;
104  detToF_F = std::unique_ptr<CTPPSToFDetector>(new CTPPSToFDetector(
105  fToFNCellX, fToFNCellY, vToFCellWidth, fToFCellHeight, fToFPitchX, fToFPitchY, pos_tof, fTimeSigma));
106  detToF_B = std::unique_ptr<CTPPSToFDetector>(new CTPPSToFDetector(
107  fToFNCellX, fToFNCellY, vToFCellWidth, fToFCellHeight, fToFPitchX, fToFPitchY, pos_tof, fTimeSigma));
108  //
109 }
111  for (std::map<unsigned int, H_BeamParticle*>::iterator it = m_beamPart.begin(); it != m_beamPart.end(); ++it) {
112  delete (*it).second;
113  }
114 }
115 // ------------ method called to produce the data ------------
117  using namespace edm;
120  iEvent.getByToken(_recHitToken, recHits);
121  recCellId_F.clear();
122  recCellId_B.clear();
123  recTof_F.clear();
124  recTof_B.clear();
125  ReadRecHits(recHits);
126  Reconstruction();
128 
129  std::unique_ptr<CTPPSFastTrackContainer> output_tracks(new CTPPSFastTrackContainer);
130  int n = 0;
131  for (std::vector<CTPPSFastTrack>::const_iterator i = theCTPPSFastTrack.begin(); i != theCTPPSFastTrack.end(); i++) {
132  output_tracks->push_back(*i);
133  n += 1;
134  }
135 
136  iEvent.put(std::move(output_tracks), "CTPPSFastTrack");
137 } //end
140 }
144 }
145 
148  TrkStation_F->first.clear();
149  TrkStation_F->second.clear();
150  TrkStation_B->first.clear();
151  TrkStation_B->second.clear();
152 }
155  det1F->clear();
156  det1B->clear();
157  det2F->clear();
158  det2B->clear();
159  detToF_F->clear();
160  detToF_B->clear();
161 }
162 
165  // DetId codification for PSimHit taken from CTPPSPixel- It will be replaced by CTPPSDetId
166  // 2014314496 -> Tracker1 zPositive
167  // 2014838784 -> Tracker2 zPositive
168  // 2046820352 -> Timing zPositive
169  // 2031091712 -> Tracker1 zNegative
170  // 2031616000 -> Tracker2 zNegative
171  // 2063597568 -> Timing zNegative
172 
173  for (unsigned int irecHits = 0; irecHits < recHits->size(); ++irecHits) {
174  const CTPPSFastRecHit* recHitDet = &(*recHits)[irecHits];
175  unsigned int detlayerId = recHitDet->detUnitId();
176  double x = recHitDet->entryPoint().x();
177  double y = recHitDet->entryPoint().y();
178  double z = recHitDet->entryPoint().z();
179  float tof = recHitDet->tof();
180  if (detlayerId == 2014314496)
181  det1F->AddHit(detlayerId, x, y, z);
182  else if (detlayerId == 2014838784)
183  det2F->AddHit(detlayerId, x, y, z);
184  else if (detlayerId == 2031091712)
185  det1B->AddHit(detlayerId, x, y, z);
186  else if (detlayerId == 2031616000)
187  det2B->AddHit(detlayerId, x, y, z);
188  else if (detlayerId == 2046820352) {
189  detToF_F->AddHit(x, y, tof);
190  recCellId_F.push_back(detToF_F->findCellId(x, y));
191  recTof_F.push_back(tof);
192  } else if (detlayerId == 2063597568) {
193  detToF_B->AddHit(x, y, tof);
194  recCellId_B.push_back(detToF_B->findCellId(x, y));
195  recTof_B.push_back(tof);
196  }
197 
198  } //LOOP TRK
199  //creating Stations
200  TrkStation_F = std::unique_ptr<CTPPSTrkStation>(new std::pair<CTPPSTrkDetector, CTPPSTrkDetector>(*det1F, *det2F));
201  TrkStation_B = std::unique_ptr<CTPPSTrkStation>(new std::pair<CTPPSTrkDetector, CTPPSTrkDetector>(*det1B, *det2B));
202 } // end function
203 
205  theCTPPSFastTrack.clear();
206  int Direction;
207  Direction = 1; //cms positive Z / forward
208  FastReco(Direction, &*pps_stationF);
209  Direction = -1; //cms negative Z / backward
210  FastReco(Direction, &*pps_stationB);
211 } //end Reconstruction
212 
214  int j,
215  int Direction,
216  double& xi,
217  double& t,
218  double& partP,
219  double& pt,
220  double& thx,
221  double& thy,
222  double& x0,
223  double& y0,
224  double& xt,
225  double& yt,
226  double& X1d,
227  double& Y1d,
228  double& X2d,
229  double& Y2d) {
230  // Given 1 hit in Tracker1 and 1 hit in Tracker2 try to make a track with Hector
231  double theta = 0.;
232  xi = 0;
233  t = 0;
234  partP = 0;
235  pt = 0;
236  x0 = 0.;
237  y0 = 0.;
238  xt = 0.;
239  yt = 0.;
240  X1d = 0.;
241  Y1d = 0.;
242  X2d = 0.;
243  Y2d = 0.;
244  CTPPSTrkDetector* det1 = nullptr;
245  CTPPSTrkDetector* det2 = nullptr;
246  H_RecRPObject* station = nullptr;
247  // Separate in forward and backward stations according to direction
248  if (Direction > 0) {
249  det1 = &(TrkStation_F->first);
250  det2 = &(TrkStation_F->second);
251  station = &*pps_stationF;
252  } else {
253  det1 = &(TrkStation_B->first);
254  det2 = &(TrkStation_B->second);
255  station = &*pps_stationB;
256  }
257  if (det1->ppsNHits_ <= i || det2->ppsNHits_ <= j)
258  return false;
259  //
260  double x1 = det1->ppsX_.at(i);
261  double y1 = det1->ppsY_.at(i);
262  double x2 = det2->ppsX_.at(j);
263  double y2 = det2->ppsY_.at(j);
264  double eloss;
265 
266  //thx and thy are returned in microrad
268  station, Direction * x1, y1, Direction * x2, y2, thx, thy, eloss); // Pass the hits in the LHC ref. frame
269  thx *= -Direction; // invert to the CMS ref frame
270 
271  // Protect for unphysical results
272  if (std::isnan(eloss) || std::isinf(eloss) || std::isnan(thx) || std::isinf(thx) || std::isnan(thy) ||
273  std::isinf(thy))
274  return false;
275  //
276 
277  if (m_verbosity)
278  LogDebug("CTPPSFastTrackingProducer::SearchTrack:") << "thx " << thx << " thy " << thy << " eloss " << eloss;
279 
280  // Get the start point of the reconstructed track near the origin made by Hector in the CMS ref. frame
281  x0 = -Direction * station->getX0() * um_to_cm;
282  y0 = station->getY0() * um_to_cm;
283  double ImpPar = sqrt(x0 * x0 + y0 * y0);
284  if (ImpPar > fImpParcut)
285  return false;
286  if (eloss < 0. || eloss > fBeamEnergy)
287  return false;
288  //
289  // Calculate the reconstructed track parameters
290  theta = sqrt(thx * thx + thy * thy) * urad;
291  xi = eloss / fBeamEnergy;
292  double energy = fBeamEnergy * (1. - xi);
293  partP = sqrt(energy * energy - PPSTools::ProtonMassSQ);
294  t = -2. * (PPSTools::ProtonMassSQ - fBeamEnergy * energy + fBeamMomentum * partP * cos(theta));
295  pt = sqrt(pow(partP * thx * urad, 2) + pow(partP * thy * urad, 2));
296  if (xi < 0. || xi > 1. || t < 0. || t > 10. || pt <= 0.) {
297  xi = 0.;
298  t = 0.;
299  partP = 0.;
300  pt = 0.;
301  theta = 0.;
302  x0 = 0.;
303  y0 = 0.;
304  return false; // unphysical values
305  }
306  //Try to include the timing detector in the track
307  ProjectToToF(x1, y1, x2, y2, xt, yt); // the projections is done in the CMS ref frame
308  X1d = x1;
309  Y1d = y1;
310  X2d = x2;
311  Y2d = y2;
312  return true;
313 } //end SearchTrack
314 
316  H_RecRPObject* pps_station, double x1, double y1, double x2, double y2, double& tx, double& ty, double& eloss) {
317  tx = 0.;
318  ty = 0.;
319  eloss = 0.;
320  if (!pps_station)
321  return;
322  x1 *= mm_to_um;
323  x2 *= mm_to_um;
324  y1 *= mm_to_um;
325  y2 *= mm_to_um;
326  pps_station->setPositions(x1, y1, x2, y2);
327  double energy = pps_station->getE(AM); // dummy call needed to calculate some Hector internal parameter
328  if (std::isnan(energy) || std::isinf(energy))
329  return;
330  tx = pps_station->getTXIP(); // change orientation to CMS
331  ty = pps_station->getTYIP();
332  eloss = pps_station->getE();
333 }
334 
336  int cellId, std::vector<int> vrecCellId, std::vector<double> vrecTof, bool& match, double& recTof) {
337  for (unsigned int i = 0; i < vrecCellId.size(); i++) {
338  if (cellId == vrecCellId.at(i)) {
339  match = true;
340  recTof = vrecTof.at(i);
341  continue;
342  }
343  }
344 }
345 
346 void CTPPSFastTrackingProducer::FastReco(int Direction, H_RecRPObject* station) {
347  double theta = 0.;
348  double xi, t, partP, pt, phi, x0, y0, thx, thy, xt, yt, X1d, Y1d, X2d, Y2d;
349  CTPPSTrkDetector* Trk1 = nullptr;
350  CTPPSTrkDetector* Trk2 = nullptr;
351  double pos_tof = fToFInsertion * fBeamXRMS_ToF + fToFXOffset;
352  int cellId = 0;
353  std::vector<double> vToFCellWidth;
354  for (int i = 0; i < 8; i++) {
355  vToFCellWidth.push_back(fToFCellWidth[i]);
356  }
358  fToFNCellX, fToFNCellY, vToFCellWidth, fToFCellHeight, fToFPitchX, fToFPitchY, pos_tof, fTimeSigma);
359  if (Direction > 0) {
360  Trk1 = &(TrkStation_F->first);
361  Trk2 = &(TrkStation_F->second);
362  } else {
363  Trk1 = &(TrkStation_B->first);
364  Trk2 = &(TrkStation_B->second);
365  }
366  // Make a track from EVERY pair of hits combining Tracker1 and Tracker2.
367  // The tracks may not be independent as 1 hit may belong to more than 1 track.
368  for (int i = 0; i < (int)Trk1->ppsNHits_; i++) {
369  for (int j = 0; j < (int)Trk2->ppsNHits_; j++) {
370  if (SearchTrack(i, j, Direction, xi, t, partP, pt, thx, thy, x0, y0, xt, yt, X1d, Y1d, X2d, Y2d)) {
371  // Check if the hitted timing cell matches the reconstructed track
372  cellId = ToF->findCellId(xt, yt);
373  double recTof = 0.;
374  bool matchCellId = false;
375  if (Direction > 0) {
376  theta = sqrt(thx * thx + thy * thy) * urad;
377  MatchCellId(cellId, recCellId_F, recTof_F, matchCellId, recTof);
378  } else if (Direction < 0) {
379  theta = TMath::Pi() - sqrt(thx * thx + thy * thy) * urad;
380  MatchCellId(cellId, recCellId_B, recTof_B, matchCellId, recTof);
381  }
382  phi = atan2(thy, thx); // at this point, thx is already in the cms ref. frame
383 
384  double px = partP * sin(theta) * cos(phi);
385  double py = partP * sin(theta) * sin(phi);
386  double pz = partP * cos(theta);
387  double e = sqrt(partP * partP + PPSTools::ProtonMassSQ);
388  TLorentzVector p(px, py, pz, e);
389  // Invert the Lorentz boost made to take into account the crossing angle during simulation
390  if (fCrossAngleCorr) {
392  }
393  //Getting the Xi and t (squared four momentum transferred) of the reconstructed track
394  PPSTools::Get_t_and_xi(const_cast<TLorentzVector*>(&p), t, xi, {fBeamMomentum, fBeamEnergy});
395  double pxx = p.Px();
396  double pyy = p.Py();
397  double pzz = p.Pz();
398  math::XYZVector momentum(pxx, pyy, pzz);
399  math::XYZPoint vertex(x0, y0, 0);
400 
401  track.setp(momentum);
402  track.setvertex(vertex);
403  track.sett(t);
404  track.setxi(xi);
405  track.setx1(X1d);
406  track.sety1(Y1d);
407  track.setx2(X2d);
408  track.sety2(Y2d);
409  if (matchCellId) {
410  track.setcellid(cellId);
411  track.settof(recTof);
412  } else {
413  track.setcellid(0);
414  track.settof(0.);
415  }
416  theCTPPSFastTrack.push_back(track);
417  }
418  }
419  }
420 } //end FastReco
421 
422 // ------------ method called once each stream before processing any runs, lumis or events ------------
423 
425 
426 // ------------ method called once each stream after processing all runs, lumis and events ------------
427 
430  edm::FileInPath b1(beam1filename.c_str());
431  edm::FileInPath b2(beam2filename.c_str());
432  if (lengthctpps <= 0)
433  return false;
434  m_beamlineCTPPS1 = std::unique_ptr<H_BeamLine>(new H_BeamLine(-1, lengthctpps + 0.1)); // (direction, length)
435  m_beamlineCTPPS1->fill(b2.fullPath(), 1, "IP5");
436  m_beamlineCTPPS2 = std::unique_ptr<H_BeamLine>(new H_BeamLine(1, lengthctpps + 0.1)); //
437  m_beamlineCTPPS2->fill(b1.fullPath(), 1, "IP5");
438  m_beamlineCTPPS1->offsetElements(120, 0.097);
439  m_beamlineCTPPS2->offsetElements(120, -0.097);
440  pps_stationF = std::unique_ptr<H_RecRPObject>(new H_RecRPObject(fz_tracker1, fz_tracker2, *m_beamlineCTPPS1));
441  pps_stationB = std::unique_ptr<H_RecRPObject>(new H_RecRPObject(fz_tracker1, fz_tracker2, *m_beamlineCTPPS2));
442  return true;
443 }
444 //define this as a plug-in
#define LogDebug(id)
void LorentzBoost(H_BeamParticle &h_p, int dir, const std::string &frame, FullBeamInfo const &bi)
void sett(float t)
const double Pi
T getParameter(std::string const &) const
T getUntrackedParameter(std::string const &, T const &) const
void beginStream(edm::StreamID) override
std::vector< double > ppsX_
OrphanHandle< PROD > put(std::unique_ptr< PROD > product)
Put a new product.
Definition: Event.h:131
std::unique_ptr< CTPPSTrkDetector > det2B
int findCellId(double x, double y)
bool getByToken(EDGetToken token, Handle< PROD > &result) const
Definition: Event.h:525
std::unique_ptr< H_BeamLine > m_beamlineCTPPS1
virtual void endEvent(edm::Event &event, const edm::EventSetup &eventSetup)
Sin< T >::type sin(const T &t)
Definition: Sin.h:22
void FastReco(int Direction, H_RecRPObject *station)
Geom::Theta< T > theta() const
T y() const
Definition: PV3DBase.h:60
void setvertex(const Point &vertex)
static const double urad
void sety1(float y1)
void setx2(float x2)
void ReconstructArm(H_RecRPObject *pps_station, double x1, double y1, double x2, double y2, double &tx, double &ty, double &eloss)
std::unique_ptr< H_RecRPObject > pps_stationB
std::unique_ptr< CTPPSToFDetector > detToF_F
float tof() const
deprecated name for timeOfFlight()
std::unique_ptr< CTPPSTrkDetector > det2F
std::unique_ptr< H_RecRPObject > pps_stationF
void setp(const Vector &momentum)
int iEvent
Definition: GenABIO.cc:224
#define DEFINE_FWK_MODULE(type)
Definition: MakerMacros.h:16
void setx1(float x1)
CTPPSFastTrackingProducer(const edm::ParameterSet &)
std::unique_ptr< CTPPSTrkDetector > det1B
bool isnan(float x)
Definition: math.h:13
virtual void beginEvent(edm::Event &event, const edm::EventSetup &eventSetup)
T sqrt(T t)
Definition: SSEVec.h:19
unsigned int detUnitId() const
T z() const
Definition: PV3DBase.h:61
std::unique_ptr< CTPPSTrkStation > TrkStation_B
Cos< T >::type cos(const T &t)
Definition: Cos.h:22
void setxi(float xi)
const double ProtonMassSQ
Definition: PPSUtilities.h:31
std::unique_ptr< CTPPSToFDetector > detToF_B
std::map< unsigned int, H_BeamParticle * > m_beamPart
std::unique_ptr< H_BeamLine > m_beamlineCTPPS2
void ProjectToToF(const double x1, const double y1, const double x2, const double y2, double &xt, double &yt)
std::vector< double > ppsY_
void MatchCellId(int cellId, std::vector< int > vrecCellId, std::vector< double > vrecTof, bool &match, double &recTof)
std::unique_ptr< CTPPSTrkStation > TrkStation_F
std::vector< CTPPSFastTrack > theCTPPSFastTrack
const GeomDet * recHitDet(const TrackingRecHit &hit, const TrackingGeometry *geom)
XYZVectorD XYZVector
spatial vector with cartesian internal representation
Definition: Vector3D.h:31
XYZPointD XYZPoint
point in space with cartesian internal representation
Definition: Point3D.h:12
static const double um_to_cm
Local3DPoint entryPoint() const
Entry point in the local Det frame.
std::unique_ptr< CTPPSTrkDetector > det1F
void settof(float tof)
void sety2(float y2)
static const double mm_to_um
HLT enums.
edm::EDGetTokenT< CTPPSFastRecHitContainer > _recHitToken
std::pair< typename Association::data_type::first_type, double > match(Reference key, Association association, bool bestMatchByMaxValue)
Generic matching function.
Definition: Utils.h:10
void Get_t_and_xi(const TLorentzVector *proton, double &t, double &xi, LimitedBeamInfo const &bi)
Definition: PPSUtilities.cc:72
T x() const
Definition: PV3DBase.h:59
void produce(edm::Event &, const edm::EventSetup &) override
std::vector< CTPPSFastTrack > CTPPSFastTrackContainer
void setcellid(unsigned int cellid)
void ReadRecHits(edm::Handle< CTPPSFastRecHitContainer > &)
Power< A, B >::type pow(const A &a, const B &b)
Definition: Power.h:30
def move(src, dest)
Definition: eostools.py:511
Definition: event.py:1
bool SearchTrack(int, int, int Direction, double &xi, double &t, double &partP, double &pt, double &thx, double &thy, double &x0, double &y0, double &xt, double &yt, double &X1d, double &Y1d, double &X2d, double &Y2d)