CMS 3D CMS Logo

List of all members | Public Member Functions | Public Attributes
CSCGEMMotherboardLUTME21 Class Reference

#include <CSCUpgradeMotherboardLUT.h>

Inheritance diagram for CSCGEMMotherboardLUTME21:
CSCGEMMotherboardLUT

Public Member Functions

 CSCGEMMotherboardLUTME21 ()
 
std::vector< std::pair< int, int > > get_csc_hs_to_gem_pad (Parity par, enum CSCPart) const override
 
std::vector< int > get_gem_pad_to_csc_hs (Parity par, enum CSCPart) const override
 
 ~CSCGEMMotherboardLUTME21 () override
 
- Public Member Functions inherited from CSCGEMMotherboardLUT
 CSCGEMMotherboardLUT ()
 
std::vector< std::pair< int, int > > get_csc_wg_to_gem_roll (Parity par, int layer=1) const
 
std::vector< int > get_gem_roll_to_csc_wg (Parity par) const
 
virtual ~CSCGEMMotherboardLUT ()
 

Public Attributes

std::vector< std::pair< int, int > > csc_hs_to_gem_pad_even
 
std::vector< std::pair< int, int > > csc_hs_to_gem_pad_odd
 
std::vector< int > gem_pad_to_csc_hs_even
 
std::vector< int > gem_pad_to_csc_hs_odd
 

Additional Inherited Members

- Protected Attributes inherited from CSCGEMMotherboardLUT
std::vector< std::pair< int, int > > csc_wg_to_gem_roll_even_l1
 
std::vector< std::pair< int, int > > csc_wg_to_gem_roll_even_l2
 
std::vector< std::pair< int, int > > csc_wg_to_gem_roll_odd_l1
 
std::vector< std::pair< int, int > > csc_wg_to_gem_roll_odd_l2
 
std::vector< std::pair< double, double > > gem_roll_eta_limits_even_l1
 
std::vector< std::pair< double, double > > gem_roll_eta_limits_even_l2
 
std::vector< std::pair< double, double > > gem_roll_eta_limits_odd_l1
 
std::vector< std::pair< double, double > > gem_roll_eta_limits_odd_l2
 
std::vector< int > gem_roll_to_csc_wg_even
 
std::vector< int > gem_roll_to_csc_wg_odd
 
std::vector< std::vector< double > > lut_pt_vs_dphi_gemcsc
 
std::vector< std::vector< double > > lut_wg_eta_even
 
std::vector< std::vector< double > > lut_wg_eta_odd
 

Detailed Description

Definition at line 103 of file CSCUpgradeMotherboardLUT.h.

Constructor & Destructor Documentation

CSCGEMMotherboardLUTME21::CSCGEMMotherboardLUTME21 ( )

Definition at line 338 of file CSCUpgradeMotherboardLUT.cc.

References csc_hs_to_gem_pad_even, csc_hs_to_gem_pad_odd, CSCGEMMotherboardLUT::csc_wg_to_gem_roll_even_l1, CSCGEMMotherboardLUT::csc_wg_to_gem_roll_even_l2, CSCGEMMotherboardLUT::csc_wg_to_gem_roll_odd_l1, CSCGEMMotherboardLUT::csc_wg_to_gem_roll_odd_l2, gem_pad_to_csc_hs_even, gem_pad_to_csc_hs_odd, CSCGEMMotherboardLUT::gem_roll_eta_limits_even_l1, CSCGEMMotherboardLUT::gem_roll_eta_limits_even_l2, CSCGEMMotherboardLUT::gem_roll_eta_limits_odd_l1, CSCGEMMotherboardLUT::gem_roll_eta_limits_odd_l2, CSCGEMMotherboardLUT::gem_roll_to_csc_wg_even, CSCGEMMotherboardLUT::gem_roll_to_csc_wg_odd, CSCGEMMotherboardLUT::lut_pt_vs_dphi_gemcsc, CSCGEMMotherboardLUT::lut_wg_eta_even, and CSCGEMMotherboardLUT::lut_wg_eta_odd.

339  lut_wg_eta_odd = {{2.4305, 2.43067}, {2.42422, 2.4244}, {2.41385, 2.41403}, {2.40359, 2.40377}, {2.39345, 2.39363},
340  {2.3834, 2.38359}, {2.37347, 2.37365}, {2.36363, 2.36382}, {2.3539, 2.35409}, {2.34427, 2.34446},
341  {2.33473, 2.33492}, {2.32529, 2.32548}, {2.31594, 2.31614}, {2.30668, 2.30688}, {2.29752, 2.29771},
342  {2.28844, 2.28864}, {2.27945, 2.27965}, {2.27054, 2.27074}, {2.26172, 2.26192}, {2.25297, 2.25318},
343  {2.24431, 2.24452}, {2.23573, 2.23594}, {2.22723, 2.22744}, {2.2188, 2.21901}, {2.21045, 2.21067},
344  {2.20217, 2.20239}, {2.19397, 2.19419}, {2.18584, 2.18606}, {2.17778, 2.178}, {2.16978, 2.17},
345  {2.16186, 2.16208}, {2.154, 2.15423}, {2.14621, 2.14644}, {2.13848, 2.13871}, {2.13082, 2.13105},
346  {2.12322, 2.12346}, {2.11569, 2.11592}, {2.10821, 2.10845}, {2.1008, 2.10103}, {2.09344, 2.09368},
347  {2.08615, 2.08638}, {2.07891, 2.07915}, {2.07172, 2.07197}, {2.0646, 2.06484}, {2.05964, 2.05989},
348  {2.04842, 2.04866}, {2.04355, 2.0438}, {2.03664, 2.03689}, {2.02978, 2.03003}, {2.02297, 2.02323},
349  {2.01622, 2.01647}, {2.00951, 2.00977}, {2.00286, 2.00312}, {1.99625, 1.99651}, {1.98969, 1.98995},
350  {1.98318, 1.98344}, {1.97672, 1.97698}, {1.9703, 1.97057}, {1.96393, 1.96419}, {1.9576, 1.95787},
351  {1.95132, 1.95159}, {1.94508, 1.94535}, {1.93888, 1.93916}, {1.93273, 1.93301}, {1.92662, 1.9269},
352  {1.91995, 1.92023}, {1.91272, 1.913}, {1.90556, 1.90584}, {1.89845, 1.89874}, {1.8914, 1.89169},
353  {1.88441, 1.8847}, {1.87747, 1.87776}, {1.87059, 1.87088}, {1.86376, 1.86405}, {1.85698, 1.85728},
354  {1.85026, 1.85055}, {1.84358, 1.84388}, {1.83696, 1.83726}, {1.83039, 1.83069}, {1.82387, 1.82417},
355  {1.81901, 1.81931}, {1.80937, 1.80968}, {1.80459, 1.8049}, {1.79826, 1.79857}, {1.79197, 1.79229},
356  {1.78573, 1.78605}, {1.77954, 1.77986}, {1.77339, 1.77371}, {1.76729, 1.76761}, {1.76122, 1.76155},
357  {1.75521, 1.75553}, {1.74923, 1.74956}, {1.7433, 1.74362}, {1.7374, 1.73773}, {1.73155, 1.73188},
358  {1.72574, 1.72607}, {1.71997, 1.7203}, {1.71424, 1.71457}, {1.70855, 1.70888}, {1.70289, 1.70323},
359  {1.69728, 1.69762}, {1.6917, 1.69204}, {1.68616, 1.6865}, {1.68065, 1.681}, {1.67518, 1.67553},
360  {1.66975, 1.6701}, {1.66436, 1.66471}, {1.65899, 1.65935}, {1.65367, 1.65402}, {1.64838, 1.64873},
361  {1.64312, 1.64348}, {1.6379, 1.63826}};
362 
363  lut_wg_eta_even = {{2.40148, 2.4015}, {2.39521, 2.39522}, {2.38485, 2.38486}, {2.37459, 2.37461}, {2.36445, 2.36447},
364  {2.35442, 2.35443}, {2.34449, 2.34451}, {2.33466, 2.33468}, {2.32493, 2.32495}, {2.31531, 2.31533},
365  {2.30578, 2.3058}, {2.29634, 2.29636}, {2.287, 2.28702}, {2.27775, 2.27777}, {2.26859, 2.26862},
366  {2.25952, 2.25954}, {2.25053, 2.25056}, {2.24164, 2.24166}, {2.23282, 2.23285}, {2.22409, 2.22412},
367  {2.21544, 2.21546}, {2.20686, 2.20689}, {2.19837, 2.1984}, {2.18995, 2.18998}, {2.18161, 2.18164},
368  {2.17334, 2.17337}, {2.16515, 2.16518}, {2.15702, 2.15706}, {2.14897, 2.149}, {2.14099, 2.14102},
369  {2.13307, 2.13311}, {2.12523, 2.12526}, {2.11745, 2.11748}, {2.10973, 2.10977}, {2.10208, 2.10212},
370  {2.09449, 2.09453}, {2.08697, 2.087}, {2.0795, 2.07954}, {2.0721, 2.07214}, {2.06475, 2.06479},
371  {2.05747, 2.05751}, {2.05024, 2.05028}, {2.04307, 2.04311}, {2.03596, 2.036}, {2.03101, 2.03105},
372  {2.0198, 2.01985}, {2.01494, 2.01499}, {2.00804, 2.00809}, {2.0012, 2.00124}, {1.9944, 1.99445},
373  {1.98766, 1.98771}, {1.98097, 1.98102}, {1.97433, 1.97437}, {1.96773, 1.96778}, {1.96119, 1.96124},
374  {1.95469, 1.95474}, {1.94824, 1.94829}, {1.94183, 1.94188}, {1.93547, 1.93552}, {1.92916, 1.92921},
375  {1.92289, 1.92294}, {1.91667, 1.91672}, {1.91048, 1.91054}, {1.90435, 1.9044}, {1.89825, 1.8983},
376  {1.89159, 1.89165}, {1.88439, 1.88444}, {1.87724, 1.8773}, {1.87015, 1.87021}, {1.86312, 1.86318},
377  {1.85614, 1.8562}, {1.84922, 1.84928}, {1.84236, 1.84241}, {1.83554, 1.8356}, {1.82878, 1.82884},
378  {1.82208, 1.82214}, {1.81542, 1.81548}, {1.80882, 1.80888}, {1.80227, 1.80233}, {1.79576, 1.79583},
379  {1.79092, 1.79098}, {1.78131, 1.78137}, {1.77654, 1.77661}, {1.77023, 1.7703}, {1.76396, 1.76403},
380  {1.75775, 1.75781}, {1.75157, 1.75164}, {1.74544, 1.74551}, {1.73936, 1.73943}, {1.73332, 1.73338},
381  {1.72732, 1.72739}, {1.72136, 1.72143}, {1.71545, 1.71552}, {1.70958, 1.70965}, {1.70374, 1.70382},
382  {1.69795, 1.69803}, {1.6922, 1.69228}, {1.68649, 1.68657}, {1.68082, 1.68089}, {1.67519, 1.67526},
383  {1.66959, 1.66967}, {1.66403, 1.66411}, {1.65851, 1.65859}, {1.65303, 1.65311}, {1.64759, 1.64766},
384  {1.64218, 1.64225}, {1.6368, 1.63688}, {1.63146, 1.63154}, {1.62616, 1.62624}, {1.62089, 1.62097},
385  {1.61565, 1.61573}, {1.61045, 1.61053}};
386 
387  /*
388  98% acceptance cuts of the GEM-CSC bending angle in ME21
389  for various pT thresholds and for even/odd chambers
390  */
391  lut_pt_vs_dphi_gemcsc = {{3, 0.01832829, 0.01003643},
392  {5, 0.01095490, 0.00631625},
393  {7, 0.00786026, 0.00501017},
394  {10, 0.00596349, 0.00414560},
395  {15, 0.00462411, 0.00365550},
396  {20, 0.00435298, 0.00361550},
397  {30, 0.00465160, 0.00335700},
398  {40, 0.00372145, 0.00366262}};
399 
400  // roll 1 through 8
401  gem_roll_eta_limits_odd_l1 = {{1.64351, 1.70857},
402  {1.70864, 1.77922},
403  {1.79143, 1.86953},
404  {1.8696, 1.95538},
405  {1.97034, 2.06691},
406  {2.06701, 2.17505},
407  {2.19413, 2.31912},
408  {2.31924, 2.46333}};
409 
410  gem_roll_eta_limits_odd_l2 = {{1.64764, 1.71913},
411  {1.71919, 1.79737},
412  {1.80979, 1.89713},
413  {1.8972, 1.99417},
414  {2.00973, 2.10042},
415  {2.10052, 2.20119},
416  {2.22072, 2.33613},
417  {2.33625, 2.46772}};
418 
419  gem_roll_eta_limits_even_l1 = {{1.6407, 1.70574},
420  {1.70581, 1.77636},
421  {1.78857, 1.86665},
422  {1.86672, 1.95247},
423  {1.96743, 2.06399},
424  {2.06408, 2.1721},
425  {2.19118, 2.31615},
426  {2.31627, 2.46036}};
427 
428  gem_roll_eta_limits_even_l2 = {{1.64485, 1.71631},
429  {1.71637, 1.79453},
430  {1.80694, 1.89425},
431  {1.89433, 1.99127},
432  {2.00683, 2.0975},
433  {2.0976, 2.19825},
434  {2.21778, 2.33317},
435  {2.3333, 2.46475}};
436 
438  {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {7, 7}, {7, 7}, {7, 7},
439  {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7},
440  {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6},
441  {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5},
442  {5, 5}, {5, 5}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4},
443  {4, 4}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3},
444  {3, 3}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {1, 1},
445  {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}};
446 
448  {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7},
449  {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {6, 6}, {6, 6}, {6, 6}, {6, 6},
450  {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5},
451  {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {4, 4}, {4, 4}, {4, 4}, {4, 4},
452  {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {3, 3}, {3, 3}, {3, 3},
453  {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {2, 2}, {2, 2},
454  {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {1, 1}, {1, 1}, {1, 1},
455  {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}};
456 
458  {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7},
459  {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {6, 6}, {6, 6}, {6, 6}, {6, 6},
460  {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {5, 5}, {5, 5}, {5, 5}, {5, 5},
461  {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {4, 4}, {4, 4},
462  {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {3, 3}, {3, 3},
463  {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {2, 2}, {2, 2}, {2, 2},
464  {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1},
465  {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}};
466 
468  {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7},
469  {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6},
470  {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5},
471  {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4},
472  {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3},
473  {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2},
474  {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1},
475  {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}};
476 
478  157, 157, 156, 156, 156, 155, 155, 154, 154, 154, 153, 153, 152, 152, 152, 151, 151, 150, 150, 150, 149, 149, 148,
479  148, 148, 147, 147, 146, 146, 146, 145, 145, 144, 144, 144, 143, 143, 142, 142, 142, 141, 141, 140, 140, 140, 139,
480  139, 138, 138, 138, 137, 137, 136, 136, 135, 135, 135, 134, 134, 133, 133, 133, 132, 132, 131, 131, 131, 130, 130,
481  129, 129, 129, 128, 128, 127, 127, 127, 126, 126, 125, 125, 125, 124, 124, 123, 123, 122, 122, 122, 121, 121, 120,
482  120, 120, 119, 119, 118, 118, 118, 117, 117, 116, 116, 116, 115, 115, 114, 114, 113, 113, 113, 112, 112, 111, 111,
483  111, 110, 110, 109, 109, 109, 108, 108, 107, 107, 107, 106, 106, 105, 105, 104, 104, 104, 103, 103, 102, 102, 102,
484  101, 101, 100, 100, 100, 99, 99, 98, 98, 97, 97, 97, 96, 96, 95, 95, 95, 94, 94, 93, 93, 93, 92,
485  92, 91, 91, 90, 90, 90, 89, 89, 88, 88, 88, 87, 87, 86, 86, 86, 85, 85, 84, 84, 83, 83, 83,
486  82, 82, 81, 81, 81, 80, 80, 79, 79, 79, 78, 78, 77, 77, 76, 76, 76, 75, 75, 74, 74, 74, 73,
487  73, 72, 72, 72, 71, 71, 70, 70, 69, 69, 69, 68, 68, 67, 67, 67, 66, 66, 65, 65, 65, 64, 64,
488  63, 63, 62, 62, 62, 61, 61, 60, 60, 60, 59, 59, 58, 58, 58, 57, 57, 56, 56, 55, 55, 55, 54,
489  54, 53, 53, 53, 52, 52, 51, 51, 51, 50, 50, 49, 49, 48, 48, 48, 47, 47, 46, 46, 46, 45, 45,
490  44, 44, 44, 43, 43, 42, 42, 42, 41, 41, 40, 40, 39, 39, 39, 38, 38, 37, 37, 37, 36, 36, 35,
491  35, 35, 34, 34, 33, 33, 33, 32, 32, 31, 31, 31, 30, 30, 29, 29, 28, 28, 28, 27, 27, 26, 26,
492  26, 25, 25, 24, 24, 24, 23, 23, 22, 22, 22, 21, 21, 20, 20, 20, 19, 19, 18, 18, 18, 17, 17,
493  16, 16, 16, 15, 15, 14, 14, 14, 13, 13, 12, 12, 11, 11, 11, 10, 10, 9, 9, 9, 8, 8, 7,
494  7, 7, 6, 6, 5, 5, 5, 4, 4, 3, 3, 3, 2, 2, 1, 1};
495 
497  1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 10,
498  10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 17, 18, 18, 19, 19,
499  19, 20, 20, 21, 21, 21, 22, 22, 23, 23, 23, 24, 24, 25, 25, 25, 26, 26, 27, 27, 27, 28, 28,
500  29, 29, 29, 30, 30, 31, 31, 32, 32, 32, 33, 33, 34, 34, 34, 35, 35, 36, 36, 36, 37, 37, 38,
501  38, 38, 39, 39, 40, 40, 40, 41, 41, 42, 42, 43, 43, 43, 44, 44, 45, 45, 45, 46, 46, 47, 47,
502  47, 48, 48, 49, 49, 50, 50, 50, 51, 51, 52, 52, 52, 53, 53, 54, 54, 54, 55, 55, 56, 56, 56,
503  57, 57, 58, 58, 59, 59, 59, 60, 60, 61, 61, 61, 62, 62, 63, 63, 63, 64, 64, 65, 65, 66, 66,
504  66, 67, 67, 68, 68, 68, 69, 69, 70, 70, 70, 71, 71, 72, 72, 73, 73, 73, 74, 74, 75, 75, 75,
505  76, 76, 77, 77, 77, 78, 78, 79, 79, 80, 80, 80, 81, 81, 82, 82, 82, 83, 83, 84, 84, 84, 85,
506  85, 86, 86, 87, 87, 87, 88, 88, 89, 89, 89, 90, 90, 91, 91, 92, 92, 92, 93, 93, 94, 94, 94,
507  95, 95, 96, 96, 96, 97, 97, 98, 98, 98, 99, 99, 100, 100, 101, 101, 101, 102, 102, 103, 103, 103, 104,
508  104, 105, 105, 105, 106, 106, 107, 107, 108, 108, 108, 109, 109, 110, 110, 110, 111, 111, 112, 112, 112, 113, 113,
509  114, 114, 115, 115, 115, 116, 116, 117, 117, 117, 118, 118, 119, 119, 119, 120, 120, 121, 121, 121, 122, 122, 123,
510  123, 124, 124, 124, 125, 125, 126, 126, 126, 127, 127, 128, 128, 128, 129, 129, 130, 130, 130, 131, 131, 132, 132,
511  132, 133, 133, 134, 134, 134, 135, 135, 136, 136, 137, 137, 137, 138, 138, 139, 139, 139, 140, 140, 141, 141, 141,
512  142, 142, 143, 143, 143, 144, 144, 145, 145, 145, 146, 146, 147, 147, 147, 148, 148, 149, 149, 149, 150, 150, 151,
513  151, 151, 152, 152, 153, 153, 153, 154, 154, 155, 155, 155, 156, 156, 157, 157};
514 
516  {384, 384}, {384, 384}, {382, 383}, {380, 381}, {377, 378}, {375, 376}, {372, 373}, {369, 370}, {367, 368},
517  {364, 365}, {362, 363}, {359, 360}, {357, 358}, {355, 356}, {352, 353}, {350, 351}, {347, 348}, {345, 346},
518  {342, 343}, {340, 341}, {337, 338}, {335, 336}, {332, 333}, {330, 331}, {327, 328}, {325, 326}, {322, 323},
519  {320, 321}, {317, 318}, {315, 316}, {312, 313}, {310, 311}, {307, 308}, {305, 306}, {303, 304}, {300, 301},
520  {298, 299}, {295, 296}, {293, 294}, {290, 291}, {288, 289}, {285, 286}, {283, 284}, {280, 281}, {278, 279},
521  {276, 277}, {273, 274}, {271, 272}, {268, 269}, {266, 267}, {263, 264}, {261, 262}, {258, 259}, {256, 257},
522  {254, 255}, {251, 252}, {249, 250}, {246, 247}, {244, 245}, {241, 242}, {239, 240}, {236, 237}, {234, 235},
523  {232, 233}, {229, 230}, {227, 228}, {224, 225}, {222, 223}, {219, 220}, {217, 218}, {215, 216}, {212, 213},
524  {210, 211}, {207, 208}, {205, 206}, {202, 203}, {200, 201}, {198, 199}, {195, 196}, {193, 194}, {190, 191},
525  {188, 189}, {185, 186}, {183, 184}, {180, 181}, {178, 179}, {176, 177}, {173, 174}, {171, 172}, {168, 169},
526  {166, 167}, {163, 164}, {161, 162}, {159, 160}, {156, 157}, {154, 155}, {151, 152}, {149, 150}, {146, 147},
527  {144, 145}, {142, 143}, {139, 140}, {137, 138}, {134, 135}, {132, 133}, {129, 130}, {127, 128}, {124, 125},
528  {122, 123}, {120, 121}, {117, 118}, {115, 116}, {112, 113}, {110, 111}, {107, 108}, {105, 106}, {102, 103},
529  {100, 101}, {98, 99}, {95, 96}, {93, 94}, {90, 91}, {88, 89}, {85, 86}, {83, 84}, {80, 81},
530  {78, 79}, {75, 76}, {73, 74}, {70, 71}, {68, 69}, {66, 67}, {63, 64}, {61, 62}, {58, 59},
531  {56, 57}, {53, 54}, {51, 52}, {48, 49}, {46, 47}, {43, 44}, {41, 42}, {38, 39}, {36, 37},
532  {33, 34}, {31, 32}, {28, 29}, {26, 27}, {23, 24}, {21, 22}, {18, 19}, {16, 17}, {13, 14},
533  {11, 12}, {8, 9}, {6, 7}, {3, 4}, {1, 2}, {0, 0}, {0, 0}};
534 
536  {0, 0}, {0, 0}, {1, 2}, {3, 4}, {6, 7}, {8, 9}, {11, 12}, {13, 14}, {16, 17},
537  {18, 19}, {21, 22}, {23, 24}, {26, 27}, {28, 29}, {31, 32}, {33, 34}, {36, 37}, {38, 39},
538  {41, 42}, {43, 44}, {46, 47}, {48, 49}, {51, 52}, {53, 54}, {56, 57}, {58, 59}, {61, 62},
539  {63, 64}, {66, 67}, {68, 69}, {71, 72}, {73, 74}, {76, 77}, {78, 79}, {80, 81}, {83, 84},
540  {85, 86}, {88, 89}, {90, 91}, {93, 94}, {95, 96}, {98, 99}, {100, 101}, {103, 104}, {105, 106},
541  {107, 108}, {110, 111}, {112, 113}, {115, 116}, {117, 118}, {120, 121}, {122, 123}, {125, 126}, {127, 128},
542  {129, 130}, {132, 133}, {134, 135}, {137, 138}, {139, 140}, {142, 143}, {144, 145}, {147, 148}, {149, 150},
543  {151, 152}, {154, 155}, {156, 157}, {159, 160}, {161, 162}, {164, 165}, {166, 167}, {168, 169}, {171, 172},
544  {173, 174}, {176, 177}, {178, 179}, {181, 182}, {183, 184}, {185, 186}, {188, 189}, {190, 191}, {193, 194},
545  {195, 196}, {198, 199}, {200, 201}, {203, 204}, {205, 206}, {207, 208}, {210, 211}, {212, 213}, {215, 216},
546  {217, 218}, {220, 221}, {222, 223}, {224, 225}, {227, 228}, {229, 230}, {232, 233}, {234, 235}, {237, 238},
547  {239, 240}, {242, 243}, {244, 245}, {246, 247}, {249, 250}, {251, 252}, {254, 255}, {256, 257}, {259, 260},
548  {261, 262}, {263, 264}, {266, 267}, {268, 269}, {271, 272}, {273, 274}, {276, 277}, {278, 279}, {281, 282},
549  {283, 284}, {286, 287}, {288, 289}, {290, 291}, {293, 294}, {295, 296}, {298, 299}, {300, 301}, {303, 304},
550  {305, 306}, {308, 309}, {310, 311}, {313, 314}, {315, 316}, {318, 319}, {320, 321}, {322, 323}, {325, 326},
551  {327, 328}, {330, 331}, {332, 333}, {335, 336}, {337, 338}, {340, 341}, {342, 343}, {345, 346}, {347, 348},
552  {350, 351}, {352, 353}, {355, 356}, {357, 358}, {360, 361}, {362, 363}, {365, 366}, {367, 368}, {370, 371},
553  {372, 373}, {375, 376}, {377, 378}, {380, 381}, {382, 383}, {384, 384}, {384, 384}};
554 
555  gem_roll_to_csc_wg_odd = {98, 86, 73, 61, 46, 31, 15, 1};
556  gem_roll_to_csc_wg_even = {98, 86, 73, 61, 46, 31, 15, 1};
557 }
std::vector< std::pair< int, int > > csc_wg_to_gem_roll_odd_l2
std::vector< std::pair< double, double > > gem_roll_eta_limits_even_l1
std::vector< int > gem_pad_to_csc_hs_even
std::vector< std::pair< int, int > > csc_wg_to_gem_roll_even_l2
std::vector< std::pair< double, double > > gem_roll_eta_limits_odd_l2
std::vector< std::pair< int, int > > csc_wg_to_gem_roll_even_l1
std::vector< int > gem_roll_to_csc_wg_even
std::vector< std::pair< int, int > > csc_wg_to_gem_roll_odd_l1
std::vector< std::vector< double > > lut_wg_eta_odd
std::vector< std::pair< double, double > > gem_roll_eta_limits_even_l2
std::vector< std::pair< int, int > > csc_hs_to_gem_pad_odd
std::vector< int > gem_pad_to_csc_hs_odd
std::vector< std::pair< double, double > > gem_roll_eta_limits_odd_l1
std::vector< std::vector< double > > lut_wg_eta_even
std::vector< std::vector< double > > lut_pt_vs_dphi_gemcsc
std::vector< int > gem_roll_to_csc_wg_odd
std::vector< std::pair< int, int > > csc_hs_to_gem_pad_even
CSCGEMMotherboardLUTME21::~CSCGEMMotherboardLUTME21 ( )
override

Definition at line 559 of file CSCUpgradeMotherboardLUT.cc.

559 {}

Member Function Documentation

std::vector< std::pair< int, int > > CSCGEMMotherboardLUTME21::get_csc_hs_to_gem_pad ( Parity  par,
enum CSCPart  p 
) const
overridevirtual

Implements CSCGEMMotherboardLUT.

Definition at line 126 of file CSCUpgradeMotherboardLUT.cc.

References Even.

126  {
128 }
std::vector< std::pair< int, int > > csc_hs_to_gem_pad_odd
std::vector< std::pair< int, int > > csc_hs_to_gem_pad_even
std::vector< int > CSCGEMMotherboardLUTME21::get_gem_pad_to_csc_hs ( Parity  par,
enum CSCPart  p 
) const
overridevirtual

Implements CSCGEMMotherboardLUT.

Definition at line 122 of file CSCUpgradeMotherboardLUT.cc.

References Even.

122  {
124 }
std::vector< int > gem_pad_to_csc_hs_even
std::vector< int > gem_pad_to_csc_hs_odd

Member Data Documentation

std::vector<std::pair<int, int> > CSCGEMMotherboardLUTME21::csc_hs_to_gem_pad_even

Definition at line 117 of file CSCUpgradeMotherboardLUT.h.

Referenced by CSCGEMMotherboardLUTME21().

std::vector<std::pair<int, int> > CSCGEMMotherboardLUTME21::csc_hs_to_gem_pad_odd

Definition at line 116 of file CSCUpgradeMotherboardLUT.h.

Referenced by CSCGEMMotherboardLUTME21().

std::vector<int> CSCGEMMotherboardLUTME21::gem_pad_to_csc_hs_even

Definition at line 113 of file CSCUpgradeMotherboardLUT.h.

Referenced by CSCGEMMotherboardLUTME21().

std::vector<int> CSCGEMMotherboardLUTME21::gem_pad_to_csc_hs_odd

Definition at line 112 of file CSCUpgradeMotherboardLUT.h.

Referenced by CSCGEMMotherboardLUTME21().