CMS 3D CMS Logo

ZdcSD.cc
Go to the documentation of this file.
1 // File: ZdcSD.cc
3 // Date: 03.01
4 // Description: Sensitive Detector class for Zdc
5 // Modifications:
13 
14 #include "G4SDManager.hh"
15 #include "G4Step.hh"
16 #include "G4Track.hh"
17 #include "G4VProcess.hh"
18 #include "G4ios.hh"
19 #include "G4Cerenkov.hh"
20 #include "G4ParticleTable.hh"
21 #include "CLHEP/Units/GlobalSystemOfUnits.h"
22 #include "CLHEP/Units/GlobalPhysicalConstants.h"
23 #include "Randomize.hh"
24 #include "G4Poisson.hh"
25 
27  const edm::EventSetup& es,
28  const SensitiveDetectorCatalog& clg,
29  edm::ParameterSet const& p,
30  const SimTrackManager* manager)
31  : CaloSD(name, es, clg, p, manager) {
32  edm::ParameterSet m_ZdcSD = p.getParameter<edm::ParameterSet>("ZdcSD");
33  useShowerLibrary = m_ZdcSD.getParameter<bool>("UseShowerLibrary");
34  useShowerHits = m_ZdcSD.getParameter<bool>("UseShowerHits");
35  zdcHitEnergyCut = m_ZdcSD.getParameter<double>("ZdcHitEnergyCut") * GeV;
36  thFibDir = m_ZdcSD.getParameter<double>("FiberDirection");
37  verbosity = m_ZdcSD.getParameter<int>("Verbosity");
38  int verbn = verbosity / 10;
39  verbosity %= 10;
41 
42  edm::LogInfo("ForwardSim") << "***************************************************\n"
43  << "* *\n"
44  << "* Constructing a ZdcSD with name " << name << " *\n"
45  << "* *\n"
46  << "***************************************************";
47 
48  edm::LogInfo("ForwardSim") << "\nUse of shower library is set to " << useShowerLibrary
49  << "\nUse of Shower hits method is set to " << useShowerHits;
50 
51  edm::LogInfo("ForwardSim") << "\nEnergy Threshold Cut set to " << zdcHitEnergyCut / GeV << " (GeV)";
52 
54  es.get<IdealGeometryRecord>().get(cpv);
55 
56  if (useShowerLibrary) {
57  showerLibrary.reset(new ZdcShowerLibrary(name, *cpv, p));
58  setParameterized(true);
59  } else {
60  showerLibrary.reset(nullptr);
61  }
62 }
63 
64 void ZdcSD::initRun() { hits.clear(); }
65 
66 bool ZdcSD::getFromLibrary(const G4Step* aStep) {
67  bool ok = true;
68 
69  auto const preStepPoint = aStep->GetPreStepPoint();
70  auto const theTrack = aStep->GetTrack();
71 
72  double etrack = preStepPoint->GetKineticEnergy();
73  int primaryID = setTrackID(aStep);
74 
75  hits.clear();
76 
77  // Reset entry point for new primary
78  resetForNewPrimary(aStep);
79 
80  if (etrack >= zdcHitEnergyCut) {
81  // create hits only if above threshold
82 
83  LogDebug("ForwardSim") << "----------------New track------------------------------\n"
84  << "Incident EnergyTrack: " << etrack << " MeV \n"
85  << "Zdc Cut Energy for Hits: " << zdcHitEnergyCut << " MeV \n"
86  << "ZdcSD::getFromLibrary " << hits.size() << " hits for " << GetName() << " of "
87  << primaryID << " with " << theTrack->GetDefinition()->GetParticleName() << " of " << etrack
88  << " MeV\n";
89 
90  hits.swap(showerLibrary.get()->getHits(aStep, ok));
91  }
92 
93  incidentEnergy = etrack;
94  entrancePoint = preStepPoint->GetPosition();
95  for (unsigned int i = 0; i < hits.size(); i++) {
96  posGlobal = hits[i].position;
97  entranceLocal = hits[i].entryLocal;
98  double time = hits[i].time;
99  unsigned int unitID = hits[i].detID;
100  edepositHAD = hits[i].DeHad;
101  edepositEM = hits[i].DeEM;
102  currentID.setID(unitID, time, primaryID, 0);
103  processHit(aStep);
104 
105  LogDebug("ForwardSim") << "ZdcSD: Final Hit number:" << i << "-->"
106  << "New HitID: " << currentHit->getUnitID()
107  << " New Hit trackID: " << currentHit->getTrackID()
108  << " New EM Energy: " << currentHit->getEM() / GeV
109  << " New HAD Energy: " << currentHit->getHadr() / GeV
110  << " New HitEntryPoint: " << currentHit->getEntryLocal()
111  << " New IncidentEnergy: " << currentHit->getIncidentEnergy() / GeV
112  << " New HitPosition: " << posGlobal;
113  }
114  return ok;
115 }
116 
117 double ZdcSD::getEnergyDeposit(const G4Step* aStep) {
118  double NCherPhot = 0.;
119 
120  // preStepPoint information
121  G4StepPoint* preStepPoint = aStep->GetPreStepPoint();
122  G4VPhysicalVolume* currentPV = preStepPoint->GetPhysicalVolume();
123  const G4String& nameVolume = currentPV->GetName();
124 
125  const G4ThreeVector& hitPoint = preStepPoint->GetPosition();
126  const G4ThreeVector& hit_mom = preStepPoint->GetMomentumDirection();
127  G4double stepL = aStep->GetStepLength() / cm;
128  G4double beta = preStepPoint->GetBeta();
129  G4double charge = preStepPoint->GetCharge();
130 
131  // postStepPoint information
132  G4StepPoint* postStepPoint = aStep->GetPostStepPoint();
133  G4VPhysicalVolume* postPV = postStepPoint->GetPhysicalVolume();
134  const G4String& postnameVolume = postPV->GetName();
135 
136  // theTrack information
137  G4Track* theTrack = aStep->GetTrack();
138  G4String particleType = theTrack->GetDefinition()->GetParticleName();
139  const G4ThreeVector& vert_mom = theTrack->GetVertexMomentumDirection();
140  G4ThreeVector localPoint = theTrack->GetTouchable()->GetHistory()->GetTopTransform().TransformPoint(hitPoint);
141 
142  // calculations
143  float costheta =
144  vert_mom.z() / sqrt(vert_mom.x() * vert_mom.x() + vert_mom.y() * vert_mom.y() + vert_mom.z() * vert_mom.z());
145  float theta = std::acos(std::min(std::max(costheta, -1.f), 1.f));
146  float eta = -std::log(std::tan(theta * 0.5f));
147  float phi = -100.;
148  if (vert_mom.x() != 0)
149  phi = std::atan2(vert_mom.y(), vert_mom.x());
150  if (phi < 0.)
151  phi += twopi;
152 
153  // Get the total energy deposit
154  double stepE = aStep->GetTotalEnergyDeposit();
155  LogDebug("ForwardSim") << "ZdcSD:: getEnergyDeposit: \n"
156  << " preStepPoint: " << nameVolume << "," << stepL << "," << stepE << "," << beta << ","
157  << charge << "\n"
158  << " postStepPoint: " << postnameVolume << "," << costheta << "," << theta << "," << eta
159  << "," << phi << "," << particleType << " id= " << theTrack->GetTrackID()
160  << " Etot(GeV)= " << theTrack->GetTotalEnergy() / GeV;
161 
162  const double bThreshold = 0.67;
163  if ((beta > bThreshold) && (charge != 0) && (nameVolume == "ZDC_EMFiber" || nameVolume == "ZDC_HadFiber")) {
164  LogDebug("ForwardSim") << "ZdcSD:: getEnergyDeposit: pass ";
165 
166  const float nMedium = 1.4925;
167  // float photEnSpectrDL = 10714.285714;
168  // photEnSpectrDL = (1./400.nm-1./700.nm)*10000000.cm/nm; /* cm-1 */
169 
170  const float photEnSpectrDE = 1.24;
171  // E = 2pi*(1./137.)*(eV*cm/370.)/lambda = 12.389184*(eV*cm)/lambda
172  // Emax = 12.389184*(eV*cm)/400nm*10-7cm/nm = 3.01 eV
173  // Emin = 12.389184*(eV*cm)/700nm*10-7cm/nm = 1.77 eV
174  // delE = Emax - Emin = 1.24 eV
175 
176  const float effPMTandTransport = 0.15;
177 
178  // Check these values
179  const float thFullRefl = 23.;
180  float thFullReflRad = thFullRefl * pi / 180.;
181 
182  float thFibDirRad = thFibDir * pi / 180.;
183 
184  // at which theta the point is located:
185  // float th1 = hitPoint.theta();
186 
187  // theta of charged particle in LabRF(hit momentum direction):
188  float costh = hit_mom.z() / sqrt(hit_mom.x() * hit_mom.x() + hit_mom.y() * hit_mom.y() + hit_mom.z() * hit_mom.z());
189  float th = acos(std::min(std::max(costh, -1.f), 1.f));
190  // just in case (can do both standard ranges of phi):
191  if (th < 0.)
192  th += twopi;
193 
194  // theta of cone with Cherenkov photons w.r.t.direction of charged part.:
195  float costhcher = 1. / (nMedium * beta);
196  float thcher = acos(std::min(std::max(costhcher, -1.f), 1.f));
197 
198  // diff thetas of charged part. and quartz direction in LabRF:
199  float DelFibPart = std::abs(th - thFibDirRad);
200 
201  // define real distances:
202  float d = std::abs(std::tan(th) - std::tan(thFibDirRad));
203 
204  float a = std::tan(thFibDirRad) + std::tan(std::abs(thFibDirRad - thFullReflRad));
205  float r = std::tan(th) + std::tan(std::abs(th - thcher));
206 
207  // define losses d_qz in cone of full reflection inside quartz direction
208  float d_qz = -1;
209  float variant = -1;
210 
211  // if (d > (r+a))
212  if (DelFibPart > (thFullReflRad + thcher)) {
213  variant = 0.;
214  d_qz = 0.;
215  } else {
216  // if ((DelFibPart + thcher) < thFullReflRad ) [(d+r) < a]
217  if ((th + thcher) < (thFibDirRad + thFullReflRad) && (th - thcher) > (thFibDirRad - thFullReflRad)) {
218  variant = 1.;
219  d_qz = 1.;
220  } else {
221  // if ((thcher - DelFibPart ) > thFullReflRad ) [(r-d) > a]
222  if ((thFibDirRad + thFullReflRad) < (th + thcher) && (thFibDirRad - thFullReflRad) > (th - thcher)) {
223  variant = 2.;
224  d_qz = 0.;
225  } else {
226  variant = 3.; // d_qz is calculated below
227 
228  // use crossed length of circles(cone projection) - dC1/dC2 :
229  float arg_arcos = 0.;
230  float tan_arcos = 2. * a * d;
231  if (tan_arcos != 0.)
232  arg_arcos = (r * r - a * a - d * d) / tan_arcos;
233  // std::cout.testOut << " d_qz: " << r << "," << a << "," << d << " " << tan_arcos << " " << arg_arcos;
234  arg_arcos = std::abs(arg_arcos);
235  // std::cout.testOut << "," << arg_arcos;
236  float th_arcos = acos(std::min(std::max(arg_arcos, -1.f), 1.f));
237  // std::cout.testOut << " " << th_arcos;
238  d_qz = th_arcos / twopi;
239  // std::cout.testOut << " " << d_qz;
240  d_qz = std::abs(d_qz);
241  // std::cout.testOut << "," << d_qz;
242  }
243  }
244  }
245  double meanNCherPhot = 0.;
246  int poissNCherPhot = 0;
247  if (d_qz > 0) {
248  meanNCherPhot = 370. * charge * charge * (1. - 1. / (nMedium * nMedium * beta * beta)) * photEnSpectrDE * stepL;
249 
250  poissNCherPhot = std::max((int)G4Poisson(meanNCherPhot), 0);
251  NCherPhot = poissNCherPhot * effPMTandTransport * d_qz;
252  }
253 
254  LogDebug("ForwardSim") << "ZdcSD:: getEnergyDeposit: gED: " << stepE << "," << costh << "," << th << ","
255  << costhcher << "," << thcher << "," << DelFibPart << "," << d << "," << a << "," << r << ","
256  << hitPoint << "," << hit_mom << "," << vert_mom << "," << localPoint << "," << charge << ","
257  << beta << "," << stepL << "," << d_qz << "," << variant << "," << meanNCherPhot << ","
258  << poissNCherPhot << "," << NCherPhot;
259  // --constants-----------------
260  // << "," << photEnSpectrDE
261  // << "," << nMedium
262  // << "," << bThreshold
263  // << "," << thFibDirRad
264  // << "," << thFullReflRad
265  // << "," << effPMTandTransport
266  // --other variables-----------
267  // << "," << curprocess
268  // << "," << nameProcess
269  // << "," << name
270  // << "," << rad
271  // << "," << mat
272 
273  } else {
274  // determine failure mode: beta, charge, and/or nameVolume
275  if (beta <= bThreshold)
276  LogDebug("ForwardSim") << "ZdcSD:: getEnergyDeposit: fail beta=" << beta;
277  if (charge == 0)
278  LogDebug("ForwardSim") << "ZdcSD:: getEnergyDeposit: fail charge=0";
279  if (!(nameVolume == "ZDC_EMFiber" || nameVolume == "ZDC_HadFiber"))
280  LogDebug("ForwardSim") << "ZdcSD:: getEnergyDeposit: fail nv=" << nameVolume;
281  }
282 
283  return NCherPhot;
284 }
285 
286 uint32_t ZdcSD::setDetUnitId(const G4Step* aStep) {
287  return (numberingScheme.get() == nullptr ? 0 : numberingScheme.get()->getUnitID(aStep));
288 }
289 
291  if (scheme != nullptr) {
292  edm::LogInfo("ForwardSim") << "ZdcSD: updates numbering scheme for " << GetName();
293  numberingScheme.reset(scheme);
294  }
295 }
#define LogDebug(id)
float edepositEM
Definition: CaloSD.h:129
void setNumberingScheme(ZdcNumberingScheme *scheme)
Definition: ZdcSD.cc:290
double thFibDir
Definition: ZdcSD.h:35
T getParameter(std::string const &) const
std::unique_ptr< ZdcNumberingScheme > numberingScheme
Definition: ZdcSD.h:39
const double GeV
Definition: MathUtil.h:16
Definition: CaloSD.h:38
int verbosity
Definition: ZdcSD.h:33
std::vector< ZdcShowerLibrary::Hit > hits
Definition: ZdcSD.h:40
Geom::Theta< T > theta() const
double getIncidentEnergy() const
Definition: CaloG4Hit.h:61
G4ThreeVector posGlobal
Definition: CaloSD.h:127
bool useShowerHits
Definition: ZdcSD.h:34
void processHit(const G4Step *step)
Definition: CaloSD.h:103
const Double_t pi
ZdcSD(const std::string &, const edm::EventSetup &, const SensitiveDetectorCatalog &, edm::ParameterSet const &, const SimTrackManager *)
Definition: ZdcSD.cc:26
float edepositHAD
Definition: CaloSD.h:129
T sqrt(T t)
Definition: SSEVec.h:19
void resetForNewPrimary(const G4Step *)
Definition: CaloSD.cc:421
Tan< T >::type tan(const T &t)
Definition: Tan.h:22
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
double f[11][100]
T min(T a, T b)
Definition: MathUtil.h:58
CaloG4Hit * currentHit
Definition: CaloSD.h:135
d
Definition: ztail.py:151
void setID(uint32_t unitID, double timeSlice, int trackID, uint16_t depth=0)
Definition: CaloHitID.cc:40
int getTrackID() const
Definition: CaloG4Hit.h:64
CaloHitID currentID
Definition: CaloSD.h:131
void initRun() override
Definition: ZdcSD.cc:64
double getEM() const
Definition: CaloG4Hit.h:55
std::unique_ptr< ZdcShowerLibrary > showerLibrary
Definition: ZdcSD.h:38
float incidentEnergy
Definition: CaloSD.h:128
virtual int setTrackID(const G4Step *)
Definition: CaloSD.cc:589
double a
Definition: hdecay.h:119
double zdcHitEnergyCut
Definition: ZdcSD.h:36
T get() const
Definition: EventSetup.h:73
math::XYZPoint getEntryLocal() const
Definition: CaloG4Hit.h:49
uint32_t getUnitID() const
Definition: CaloG4Hit.h:65
bool getFromLibrary(const G4Step *) override
Definition: ZdcSD.cc:66
uint32_t setDetUnitId(const G4Step *step) override
Definition: ZdcSD.cc:286
bool useShowerLibrary
Definition: ZdcSD.h:34
G4ThreeVector entrancePoint
Definition: CaloSD.h:125
G4ThreeVector entranceLocal
Definition: CaloSD.h:126
double getHadr() const
Definition: CaloG4Hit.h:58
double getEnergyDeposit(const G4Step *) override
Definition: ZdcSD.cc:117
void setParameterized(bool val)
Definition: CaloSD.h:100