CMS 3D CMS Logo

EgammaPCAHelper.cc
Go to the documentation of this file.
1 
3 
8 
10 
11 #include <algorithm>
12 #include <iostream>
13 
14 using namespace hgcal;
15 
17  : // Thickness correction to dEdx weights
18  // (100um, 200um, 300um silicon)
19  // See RecoLocalCalo.HGCalRecProducers.HGCalRecHit_cfi
20  invThicknessCorrection_({1. / 1.132, 1. / 1.092, 1. / 1.084}),
21  pca_(new TPrincipal(3, "D")) {
22  hitMapOrigin_ = 0;
23  hitMap_ = new std::map<DetId, const HGCRecHit*>();
24  debug_ = false;
25 }
26 
28  if (hitMapOrigin_ == 2)
29  delete hitMap_;
30 }
31 
32 void EGammaPCAHelper::setHitMap(std::map<DetId, const HGCRecHit*>* hitMap) {
33  hitMapOrigin_ = 1;
34  hitMap_ = hitMap;
35  pcaIteration_ = 0;
36 }
37 
39  recHitTools_ = recHitTools;
41 }
42 
44  const HGCRecHitCollection& rechitsFH,
45  const HGCRecHitCollection& rechitsBH) {
46  hitMap_->clear();
47  for (const auto& hit : rechitsEE) {
48  hitMap_->emplace_hint(hitMap_->end(), hit.detid(), &hit);
49  }
50 
51  for (const auto& hit : rechitsFH) {
52  hitMap_->emplace_hint(hitMap_->end(), hit.detid(), &hit);
53  }
54 
55  for (const auto& hit : rechitsBH) {
56  hitMap_->emplace_hint(hitMap_->end(), hit.detid(), &hit);
57  }
58 
59  pcaIteration_ = 0;
60  hitMapOrigin_ = 2;
61 }
62 
64  theCluster_ = &cluster;
65  std::vector<std::pair<DetId, float>> result;
66  for (reco::HGCalMultiCluster::component_iterator it = cluster.begin(); it != cluster.end(); it++) {
67  const std::vector<std::pair<DetId, float>>& hf = (*it)->hitsAndFractions();
68  result.insert(result.end(), hf.begin(), hf.end());
69  }
70  storeRecHits(result);
71 }
72 
74  theCluster_ = &cluster;
75  storeRecHits(cluster.hitsAndFractions());
76 }
77 
78 void EGammaPCAHelper::storeRecHits(const std::vector<std::pair<DetId, float>>& hf) {
79  std::vector<double> pcavars;
80  pcavars.resize(3, 0.);
81  theSpots_.clear();
82  pcaIteration_ = 0;
83 
84  sigu_ = 0.;
85  sigv_ = 0.;
86  sigp_ = 0.;
87  sige_ = 0.;
88 
89  unsigned hfsize = hf.size();
90  if (debug_)
91  std::cout << "The seed cluster constains " << hfsize << " hits " << std::endl;
92 
93  if (hfsize == 0)
94  return;
95 
96  for (unsigned int j = 0; j < hfsize; j++) {
97  unsigned int layer = recHitTools_->getLayerWithOffset(hf[j].first);
98 
99  const DetId rh_detid = hf[j].first;
100  std::map<DetId, const HGCRecHit*>::const_iterator itcheck = hitMap_->find(rh_detid);
101  if (itcheck == hitMap_->end()) {
102  edm::LogWarning("EgammaPCAHelper") << " Big problem, unable to find a hit " << rh_detid.rawId() << " "
103  << rh_detid.det() << " " << HGCalDetId(rh_detid) << std::endl;
104  continue;
105  }
106  if (debug_) {
107  std::cout << "DetId " << rh_detid.rawId() << " " << layer << " " << itcheck->second->energy() << std::endl;
108  std::cout << " Hit " << itcheck->second << " " << itcheck->second->energy() << std::endl;
109  }
110  float fraction = hf[j].second;
111 
112  int thickIndex = recHitTools_->getSiThickIndex(rh_detid);
113  double mip = dEdXWeights_[layer] * 0.001; // convert in GeV
114  if (thickIndex > -1 and thickIndex < 3)
115  mip *= invThicknessCorrection_[thickIndex];
116 
117  pcavars[0] = recHitTools_->getPosition(rh_detid).x();
118  pcavars[1] = recHitTools_->getPosition(rh_detid).y();
119  pcavars[2] = recHitTools_->getPosition(rh_detid).z();
120  if (pcavars[2] == 0.)
121  edm::LogWarning("EgammaPCAHelper") << " Problem, hit with z =0 ";
122  else {
123  Spot mySpot(rh_detid, itcheck->second->energy(), pcavars, layer, fraction, mip);
124  theSpots_.push_back(mySpot);
125  }
126  }
127  if (debug_) {
128  std::cout << " Stored " << theSpots_.size() << " hits " << std::endl;
129  }
130 }
131 
132 void EGammaPCAHelper::computePCA(float radius, bool withHalo) {
133  // very important - to reset
134  pca_.reset(new TPrincipal(3, "D"));
135  bool initialCalculation = radius < 0;
136  if (debug_)
137  std::cout << " Initial calculation " << initialCalculation << std::endl;
138  if (initialCalculation && withHalo) {
139  edm::LogWarning("EGammaPCAHelper") << "Warning - in the first iteration, the halo hits are excluded " << std::endl;
140  withHalo = false;
141  }
142 
143  float radius2 = radius * radius;
144  if (!initialCalculation) {
145  math::XYZVector mainAxis(axis_);
146  mainAxis.unit();
147  math::XYZVector phiAxis(barycenter_.x(), barycenter_.y(), 0);
148  math::XYZVector udir(mainAxis.Cross(phiAxis));
149  udir = udir.unit();
152  Point(barycenter_ + udir),
153  Point(0, 0, 0),
154  Point(0., 0., 1.),
155  Point(1., 0., 0.));
156  }
157 
158  std::set<int> layers;
159  for (const auto& spot : theSpots_) {
160  if (spot.layer() > recHitTools_->lastLayerEE())
161  continue;
162  if (!withHalo && (!spot.isCore()))
163  continue;
164  if (initialCalculation) {
165  // initial calculation, take only core hits
166  if (!spot.isCore())
167  continue;
168  layers.insert(spot.layer());
169  for (int i = 0; i < spot.multiplicity(); ++i)
170  pca_->AddRow(spot.row());
171  } else {
172  // use a cylinder, include all hits
173  math::XYZPoint local = trans_(Point(spot.row()[0], spot.row()[1], spot.row()[2]));
174  if (local.Perp2() > radius2)
175  continue;
176  layers.insert(spot.layer());
177  for (int i = 0; i < spot.multiplicity(); ++i)
178  pca_->AddRow(spot.row());
179  }
180  }
181  if (debug_)
182  std::cout << " Nlayers " << layers.size() << std::endl;
183  if (layers.size() < 3) {
184  pcaIteration_ = -1;
185  return;
186  }
187  pca_->MakePrincipals();
188  ++pcaIteration_;
189  const TVectorD& means = *(pca_->GetMeanValues());
190  const TMatrixD& eigens = *(pca_->GetEigenVectors());
191 
192  barycenter_ = math::XYZPoint(means[0], means[1], means[2]);
193  axis_ = math::XYZVector(eigens(0, 0), eigens(1, 0), eigens(2, 0));
194  if (axis_.z() * barycenter_.z() < 0.0) {
195  axis_ = -1. * axis_;
196  }
197 }
198 
199 void EGammaPCAHelper::computeShowerWidth(float radius, bool withHalo) {
200  sigu_ = 0.;
201  sigv_ = 0.;
202  sigp_ = 0.;
203  sige_ = 0.;
204  double cyl_ene = 0.;
205 
206  float radius2 = radius * radius;
207  for (const auto& spot : theSpots_) {
208  Point globalPoint(spot.row()[0], spot.row()[1], spot.row()[2]);
209  math::XYZPoint local = trans_(globalPoint);
210  if (local.Perp2() > radius2)
211  continue;
212 
213  // Select halo hits or not
214  if (withHalo && spot.fraction() < 0)
215  continue;
216  if (!withHalo && !(spot.isCore()))
217  continue;
218 
219  sige_ += (globalPoint.eta() - theCluster_->eta()) * (globalPoint.eta() - theCluster_->eta()) * spot.energy();
220  sigp_ += deltaPhi(globalPoint.phi(), theCluster_->phi()) * deltaPhi(globalPoint.phi(), theCluster_->phi()) *
221  spot.energy();
222 
223  sigu_ += local.x() * local.x() * spot.energy();
224  sigv_ += local.y() * local.y() * spot.energy();
225  cyl_ene += spot.energy();
226  }
227 
228  if (cyl_ene > 0.) {
229  const double inv_cyl_ene = 1. / cyl_ene;
230  sigu_ = sigu_ * inv_cyl_ene;
231  sigv_ = sigv_ * inv_cyl_ene;
232  sigp_ = sigp_ * inv_cyl_ene;
233  sige_ = sige_ * inv_cyl_ene;
234  }
235  sigu_ = std::sqrt(sigu_);
236  sigv_ = std::sqrt(sigv_);
237  sigp_ = std::sqrt(sigp_);
238  sige_ = std::sqrt(sige_);
239 }
240 
242  if (pcaIteration_ == 0) {
243  if (debug_)
244  std::cout << " The PCA has not been run yet " << std::endl;
245  return false;
246  } else if (pcaIteration_ == 1) {
247  if (debug_)
248  std::cout << " The PCA has been run only once - careful " << std::endl;
249  return false;
250  } else if (pcaIteration_ == -1) {
251  if (debug_)
252  std::cout << " Not enough layers to perform PCA " << std::endl;
253  return false;
254  }
255  return true;
256 }
257 
259  theSpots_.clear();
260  pcaIteration_ = 0;
261  sigu_ = 0.;
262  sigv_ = 0.;
263  sigp_ = 0.;
264  sige_ = 0.;
265 }
266 
268  if (debug_)
269  checkIteration();
270  std::set<int> layers;
271  float radius2 = radius * radius;
272  std::vector<float> energyPerLayer(maxlayer_ + 1, 0.f);
273  math::XYZVector mainAxis(axis_);
274  mainAxis.unit();
275  math::XYZVector phiAxis(barycenter_.x(), barycenter_.y(), 0);
276  math::XYZVector udir(mainAxis.Cross(phiAxis));
277  udir = udir.unit();
280  Point(barycenter_ + udir),
281  Point(0, 0, 0),
282  Point(0., 0., 1.),
283  Point(1., 0., 0.));
284  float energyEE = 0.;
285  float energyFH = 0.;
286  float energyBH = 0.;
287 
288  for (const auto& spot : theSpots_) {
289  if (!withHalo && !spot.isCore())
290  continue;
291  math::XYZPoint local = trans_(Point(spot.row()[0], spot.row()[1], spot.row()[2]));
292  if (local.Perp2() > radius2)
293  continue;
294  energyPerLayer[spot.layer()] += spot.energy();
295  layers.insert(spot.layer());
296  if (spot.detId().det() == DetId::HGCalEE or spot.subdet() == HGCEE) {
297  energyEE += spot.energy();
298  } else if (spot.detId().det() == DetId::HGCalHSi or spot.subdet() == HGCHEF) {
299  energyFH += spot.energy();
300  } else if (spot.detId().det() == DetId::HGCalHSc or spot.subdet() == HGCHEB) {
301  energyBH += spot.energy();
302  }
303  }
304  return LongDeps(radius, energyPerLayer, energyEE, energyFH, energyBH, layers);
305 }
306 
308  unsigned nSpots = theSpots_.size();
309  float radius2 = radius * radius;
310  for (unsigned i = 0; i < nSpots; ++i) {
311  Spot spot(theSpots_[i]);
312  math::XYZPoint local = trans_(Point(spot.row()[0], spot.row()[1], spot.row()[2]));
313  if (local.Perp2() < radius2) {
314  std::cout << i << " " << theSpots_[i].detId().rawId() << " " << theSpots_[i].layer() << " "
315  << theSpots_[i].energy() << " " << theSpots_[i].isCore();
316  std::cout << " " << std::sqrt(local.Perp2()) << std::endl;
317  }
318  }
319 }
320 
322  unsigned int firstLayer = 0;
323  for (unsigned il = 1; il <= maxlayer_; ++il) {
324  if (ld.energyPerLayer()[il] > 0.) {
325  firstLayer = il;
326  break;
327  }
328  }
329  // Make dummy DetId to get abs(z) for layer
330  return recHitTools_->getPositionLayer(firstLayer).z();
331 }
332 
334  float& measuredDepth,
335  float& expectedDepth,
336  float& expectedSigma) {
337  expectedDepth = -999.;
338  expectedSigma = -999.;
339  measuredDepth = -999.;
340  if (!checkIteration())
341  return -999.;
342 
343  float z = findZFirstLayer(ld);
344  math::XYZVector dir = axis_.unit();
345  measuredDepth = std::abs((z - std::abs(barycenter_.z())) / dir.z());
346  return showerDepth_.getClusterDepthCompatibility(measuredDepth, ld.energyEE(), expectedDepth, expectedSigma);
347 }
void computeShowerWidth(float radius, bool withHalo=true)
math::XYZPoint barycenter_
float energyEE() const
Definition: LongDeps.h:25
void computePCA(float radius, bool withHalo=true)
std::map< DetId, const HGCRecHit * > * hitMap_
LongDeps energyPerLayer(float radius, bool withHalo=true)
float findZFirstLayer(const LongDeps &) const
std::unique_ptr< TPrincipal > pca_
component_iterator begin() const
constexpr uint32_t rawId() const
get the raw id
Definition: DetId.h:57
T y() const
Definition: PV3DBase.h:60
unsigned int lastLayerBH() const
Definition: RecHitTools.h:65
float getClusterDepthCompatibility(float measuredDepth, float emEnergy, float &expectedDepth, float &expectedSigma) const
Definition: ShowerDepth.cc:6
double eta() const
pseudorapidity of cluster centroid
Definition: CaloCluster.h:180
void storeRecHits(const reco::CaloCluster &theCluster)
const std::vector< std::pair< DetId, float > > & hitsAndFractions() const
Definition: CaloCluster.h:209
T sqrt(T t)
Definition: SSEVec.h:19
The Signals That Services Can Subscribe To This is based on ActivityRegistry and is current per Services can connect to the signals distributed by the ActivityRegistry in order to monitor the activity of the application Each possible callback has some defined which we here list in angle e< void, edm::EventID const &, edm::Timestamp const & > We also list in braces which AR_WATCH_USING_METHOD_ is used for those or
Definition: Activities.doc:12
T z() const
Definition: PV3DBase.h:61
void setHitMap(std::map< DetId, const HGCRecHit * > *hitMap)
to set from outside - once per event
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
double f[11][100]
std::vector< Spot > theSpots_
unsigned int lastLayerEE() const
Definition: RecHitTools.h:62
ROOT::Math::Transform3D Transform3D
component_iterator end() const
Definition: DetId.h:17
void setRecHitTools(const hgcal::RecHitTools *recHitTools)
unsigned int getLayerWithOffset(const DetId &) const
Definition: RecHitTools.cc:355
float clusterDepthCompatibility(const LongDeps &, float &measuredDepth, float &expectedDepth, float &expectedSigma)
XYZVectorD XYZVector
spatial vector with cartesian internal representation
Definition: Vector3D.h:31
int getSiThickIndex(const DetId &) const
Definition: RecHitTools.cc:205
GlobalPoint getPositionLayer(int layer, bool nose=false) const
Definition: RecHitTools.cc:141
XYZPointD XYZPoint
point in space with cartesian internal representation
Definition: Point3D.h:12
const std::vector< float > & energyPerLayer() const
Definition: LongDeps.h:28
void printHits(float radius) const
GlobalPoint getPosition(const DetId &id) const
Definition: RecHitTools.cc:129
Structure Point Contains parameters of Gaussian fits to DMRs.
Definition: DMRtrends.cc:57
const double * row() const
Definition: Spot.h:24
std::vector< double > invThicknessCorrection_
void fillHitMap(const HGCRecHitCollection &HGCEERecHits, const HGCRecHitCollection &HGCFHRecHits, const HGCRecHitCollection &HGCBHRecHits)
to compute from inside - once per event
std::vector< double > dEdXWeights_
const reco::CaloCluster * theCluster_
bool checkIteration() const
double phi() const
azimuthal angle of cluster centroid
Definition: CaloCluster.h:183
ROOT::Math::Transform3D::Point Point
T x() const
Definition: PV3DBase.h:59
const hgcal::RecHitTools * recHitTools_
constexpr Detector det() const
get the detector field from this detid
Definition: DetId.h:46