CMS 3D CMS Logo

sseBasic3DVector.h
Go to the documentation of this file.
1 #ifndef GeometryVector_newBasic3DVector_h
2 #define GeometryVector_newBasic3DVector_h
3 
10 #include <iosfwd>
11 #include <cmath>
12 
13 namespace detailsBasic3DVector {
14  inline float __attribute__((always_inline)) __attribute__ ((pure))
15  eta(float x, float y, float z) { float t(z/std::sqrt(x*x+y*y)); return ::asinhf(t);}
16  inline double __attribute__((always_inline)) __attribute__ ((pure))
17  eta(double x, double y, double z) { double t(z/std::sqrt(x*x+y*y)); return ::asinh(t);}
18  inline long double __attribute__((always_inline)) __attribute__ ((pure))
19  eta(long double x, long double y, long double z) { long double t(z/std::sqrt(x*x+y*y)); return ::asinhl(t);}
20 }
21 
22 
23 template < typename T>
24 class Basic3DVector {
25 public:
26 
27  typedef T ScalarType;
32  typedef Spherical Polar; // synonym
33 
39 
42  v(p.v) {}
43 
45  template <class U>
47  v(p.v) {}
48 
49 
52  v(p.x(),p.y(),0) {}
53 
54 
63  template <class OtherPoint>
64  explicit Basic3DVector( const OtherPoint& p) :
65  v(p.x(),p.y(),p.z()) {}
66 
67 
68  // constructor from Vec4
69  template<class U>
70  Basic3DVector(mathSSE::Vec4<U> const& iv) : v(iv){}
71 
73  Basic3DVector( const T& x, const T& y, const T& z, const T&w=0) :
74  v(x,y,z,w){}
75 
80  template <typename U>
82  const Geom::Phi<U>& phi, const T& r) {
83  Polar p( theta.value(), phi.value(), r);
84  v.o.theX = p.x(); v.o.theY = p.y(); v.o.theZ = p.z();
85  }
86 
87  MathVector const & mathVector() const { return v;}
88  MathVector & mathVector() { return v;}
89 
90  T operator[](int i) const { return v[i];}
91  T & operator[](int i) { return v[i];}
92 
94  T x() const { return v.o.theX;}
95 
97  T y() const { return v.o.theY;}
98 
100  T z() const { return v.o.theZ;}
101 
102  T w() const { return v.o.theW;}
103 
104  Basic2DVector<T> xy() const { return v.xy();}
105 
106  // equality
107  bool operator==(const Basic3DVector& rh) const {
108  return v==rh.v;
109  }
110 
112  T mag2() const { return ::dot(v,v);}
113 
115  T mag() const { return std::sqrt( mag2());}
116 
118  T perp2() const { return ::dotxy(v,v);}
119 
121  T perp() const { return std::sqrt( perp2());}
122 
124  T transverse() const { return perp();}
125 
130  T barePhi() const {return std::atan2(y(),x());}
131  Geom::Phi<T> phi() const {return Geom::Phi<T>(barePhi());}
132 
137  T bareTheta() const {return std::atan2(perp(),z());}
138  Geom::Theta<T> theta() const {return Geom::Theta<T>(std::atan2(perp(),z()));}
139 
144  // T eta() const { return -log( tan( theta()/2.));}
145  T eta() const { return detailsBasic3DVector::eta(x(),y(),z());} // correct
146 
150  Basic3DVector unit() const {
151  T my_mag = mag2();
152  return (0!=my_mag) ? (*this)*(T(1)/std::sqrt(my_mag)) : *this;
153  }
154 
157  template <class U>
159  v = v + p.v;
160  return *this;
161  }
162 
165  template <class U>
167  v = v - p.v;
168  return *this;
169  }
170 
172  Basic3DVector operator-() const { return Basic3DVector(-v);}
173 
176  v = t*v;
177  return *this;
178  }
179 
182  //t = T(1)/t;
183  v = v/t;
184  return *this;
185  }
186 
188  T dot( const Basic3DVector& rh) const {
189  return ::dot(v,rh.v);
190  }
191 
197  template <class U>
201  }
202 
204  Basic3DVector cross( const Basic3DVector& lh) const {
205  return ::cross(v,lh.v);
206  }
207 
208 
214  template <class U>
216  cross( const Basic3DVector<U>& lh) const {
219  }
220 
221 public:
223 } __attribute__ ((aligned (16)));
224 
225 
226 namespace geometryDetails {
227  std::ostream & print3D(std::ostream& s, double x, double y, double z);
228 }
229 
231 template <class T>
232 inline std::ostream & operator<<( std::ostream& s, const Basic3DVector<T>& v) {
233  return geometryDetails::print3D(s, v.x(),v.y(), v.z());
234 }
235 
238 template <class T>
239 inline Basic3DVector<T>
241  return a.v+b.v;
242 }
243 template <class T>
244 inline Basic3DVector<T>
246  return a.v-b.v;
247 }
249 template <class T, class U>
253  return RT(a).v+RT(b).v;
254 }
255 
256 template <class T, class U>
260  return RT(a).v-RT(b).v;
261 }
262 
264 template <class T>
265 inline T operator*( const Basic3DVector<T>& v1, const Basic3DVector<T>& v2) {
266  return v1.dot(v2);
267 }
268 
270 template <class T, class U>
272  const Basic3DVector<U>& v2) {
273  return v1.dot(v2);
274 }
275 
279 template <class T>
281  return v.v*t;
282 }
283 
285 template <class T>
287  return v.v*t;
288 }
289 
290 
291 
292 template <class T, typename S>
294  return static_cast<T>(t)*v;
295 }
296 
297 template <class T, typename S>
299  return static_cast<T>(t)*v;
300 }
301 
306 template <class T>
308  return v.v/t;
309 }
310 
311 template <class T, typename S>
313  // T t = S(1)/s; return v*t;
314  T t = s;
315  return v/t;
316 }
318 
321 
322 
323 // add long double specialization
325 
326 #endif // GeometryVector_Basic3DVector_h
327 
328 
T mag2() const
The vector magnitude squared. Equivalent to vec.dot(vec)
T barePhi() const
Basic2DVector< T > xy() const
Basic3DVector & operator*=(T t)
Scaling by a scalar value (multiplication)
T operator*(const Basic3DVector< T > &v1, const Basic3DVector< T > &v2)
scalar product of vectors of same precision
T y() const
Cartesian y coordinate.
T perp() const
Magnitude of transverse component.
T x() const
Cartesian x coordinate.
T mag() const
The vector magnitude. Equivalent to sqrt(vec.mag2())
Basic3DVector cross(const Basic3DVector &lh) const
Vector product, or "cross" product, with a vector of same type.
T & operator[](int i)
Basic3DVector(const T &x, const T &y, const T &z, const T &w=0)
construct from cartesian coordinates
T perp2() const
Squared magnitude of transverse component.
Geom::Theta< T > theta() const
T barePhi() const
Basic3DVector unit() const
Basic3DVector cross(const Basic3DVector &lh) const
Vector product, or "cross" product, with a vector of same type.
Basic3DVector< typename PreciseFloatType< T, U >::Type > cross(const Basic3DVector< U > &lh) const
Basic3DVector()
bool operator==(const Basic3DVector &rh) const
Basic3DVector(const Basic3DVector &p)
Copy constructor from same type. Should not be needed but for gcc bug 12685.
T dot(const Basic3DVector &rh) const
Scalar product, or "dot" product, with a vector of same type.
Geom::Phi< T > phi() const
mathSSE::Vec4< T > MathVector
bool int lh
Definition: SIMDVec.h:21
Basic3DVector< T > operator+(const Basic3DVector< T > &a, const Basic3DVector< T > &b)
vector sum and subtraction of vectors of possibly different precision
float float float z
Basic3DVector(mathSSE::Vec4< U > const &iv)
Basic3DVector & operator-=(const Basic3DVector< U > &p)
T eta() const
Basic3DVector< T > operator/(const Basic3DVector< T > &v, T t)
Basic3DVector & operator/=(T t)
Scaling by a scalar value (division)
Basic3DVector(const Geom::Theta< U > &theta, const Geom::Phi< U > &phi, const T &r)
T z() const
Cartesian z coordinate.
T sqrt(T t)
Definition: SSEVec.h:18
mathSSE::Vec4< T > v
Basic3DVector< double > Basic3DVectorD
MathVector const & mathVector() const
T perp() const
Magnitude of transverse component.
T operator[](int i) const
T value() const
Explicit access to value in case implicit conversion not OK.
Definition: Theta.h:25
T value() const
Explicit access to value in case implicit conversion not OK.
Definition: Phi.h:38
Basic3DVector(const Basic3DVector< U > &p)
Copy constructor and implicit conversion from Basic3DVector of different precision.
Basic3DVector(const Basic2DVector< T > &p)
constructor from 2D vector (X and Y from 2D vector, z set to zero)
Geom::Spherical2Cartesian< T > Spherical
Basic3DVector< float > Basic3DVectorF
T w() const
Geom::Theta< T > theta() const
double b
Definition: hdecay.h:120
MathVector & mathVector()
Geom::Cylindrical2Cartesian< T > Cylindrical
T perp2() const
Squared magnitude of transverse component.
float __attribute__((always_inline)) __attribute__((pure)) eta(float x
double a
Definition: hdecay.h:121
T transverse() const
Another name for perp()
T bareTheta() const
mathSSE::Vec4< T > v
std::ostream & print3D(std::ostream &s, double x, double y, double z)
Definition: print.cc:5
Basic3DVector operator-() const
Unary minus, returns a vector with components (-x(),-y(),-z())
long double T
Basic3DVector(const OtherPoint &p)
Definition: Phi.h:20
PreciseFloatType< T, U >::Type dot(const Basic3DVector< U > &lh) const
Basic3DVector operator-() const
Unary minus, returns a vector with components (-x(),-y(),-z())
Basic3DVector & operator+=(const Basic3DVector< U > &p)
T mag2() const
The vector magnitude squared. Equivalent to vec.dot(vec)
T dot(const Basic3DVector &rh) const
Scalar product, or "dot" product, with a vector of same type.
mathSSE::Vec4< T > VectorType