24 #include "TStopwatch.h" 42 events = std::vector< std::vector<Event*> >(1);
65 for(
unsigned int i=0;
i <
trees.size();
i++)
82 for(
unsigned int i=0;
i <
trees.size();
i++)
104 Event*
e = trainingEvents[0];
109 events = std::vector< std::vector<Event*> >();
111 for(
unsigned int i=0;
i<e->
data.size();
i++)
113 events.push_back(trainingEvents);
164 std::cout << std::endl <<
"Listing Events... " << std::endl;
166 for(
unsigned int i=0;
i <
e.size();
i++)
168 std::cout << std::endl <<
"Variable " <<
i <<
" vector contents: " << std::endl;
169 for(
unsigned int j=0; j<
e[
i].size(); j++)
171 e[
i][j]->outputEvent();
197 return e1->
id < e2->
id;
208 for(
unsigned int i=0;
i<
e.size();
i++)
231 std::vector<double>
v(
events.size(), 0);
235 for(
unsigned int j=0; j <
trees.size(); j++)
237 trees[j]->rankVariables(
v);
240 double max = *std::max_element(
v.begin(),
v.end());
243 for(
unsigned int i=0;
i <
v.size();
i++)
250 std::vector< std::pair<double, int> >
w(
events.size());
252 for(
unsigned int i=0;
i<
v.size();
i++)
254 w[
i] = std::pair<double, int>(
v[
i],
i);
261 for(
int i=(
v.size()-1);
i>=0;
i--)
278 std::ofstream splitvaluefile;
279 splitvaluefile.open(savefilename);
283 std::vector<std::vector<double>>
v(
events.size(), std::vector<double>());
288 for(
unsigned int j=0; j<
trees.size(); j++)
290 trees[j]->getSplitValues(v);
294 for(
unsigned int i=0;
i<v.size();
i++)
302 for(
unsigned int i=1;
i<v.size();
i++)
305 for(
unsigned int j=0; j<v[
i].size(); j++)
307 std::stringstream ss;
309 ss << std::scientific << v[
i][j];
311 splitValues+=ss.str().c_str();
314 splitValues=splitValues(1,splitValues.Length());
315 splitvaluefile << splitValues << std::endl << std::endl;;
332 for(std::list<Node*>::iterator it=tn.begin(); it!=tn.end(); it++)
335 std::vector<Event*>&
v = (*it)->getEvents()[0];
341 fit = learningRate*
fit;
344 (*it)->setFitValue(fit);
348 for(
unsigned int j=0; j<v.size(); j++)
356 (*it)->getEvents() = std::vector< std::vector<Event*> >();
372 for(std::list<Node*>::iterator it=tn.begin(); it!=tn.end(); it++)
374 std::vector<Event*>&
v = (*it)->getEvents()[0];
375 double fit = (*it)->getFitValue();
379 for(
unsigned int j=0; j<v.size(); j++)
386 (*it)->getEvents() = std::vector< std::vector<Event*> >();
413 for(
unsigned int i=0;
i< (unsigned) treeLimit;
i++)
417 trees.push_back(tree);
424 std::ostringstream ss;
425 ss << savetreesdirectory <<
"/" <<
i <<
".xml";
427 const char*
c = s.c_str();
446 if(numtrees >
trees.size())
449 numtrees =
trees.size();
453 for(
unsigned int i=0;
i < numtrees;
i++)
484 if(numtrees >
trees.size())
487 numtrees =
trees.size();
494 for(
unsigned int i=0;
i < numtrees;
i++)
525 trees = std::vector<Tree*>(numTrees);
529 for(
unsigned int i=0;
i < numTrees;
i++)
533 std::stringstream ss;
534 ss << directory <<
"/" <<
i <<
".xml";
546 unsigned int numTrees = forest.size();
549 for(
unsigned int i=0;
i <
trees.size();
i++)
554 trees = std::vector<Tree*>(numTrees);
557 for(
unsigned int i=0;
i < numTrees;
i++)
560 trees[
i]->loadFromCondPayload(forest[
i]);
576 size_t subSampleSize = fraction*
events[0].size();
608 trees = std::vector<Tree*>(treeLimit);
622 for(
unsigned int i=0;
i< (unsigned) treeLimit;
i++)
627 trees[
i]->buildTree(nodeLimit);
637 std::ostringstream ss;
638 ss <<
"trees/" << i <<
".xml";
640 const char*
c = s.c_str();
void appendCorrection(std::vector< Event * > &eventsp, int treenum)
void predictEvent(Event *e, unsigned int trees)
void updateEvents(Tree *tree)
void prepareRandomSubsample(double fraction)
void doRegression(int nodeLimit, int treeLimit, double learningRate, LossFunction *l, const char *savetreesdirectory, bool saveTrees)
void buildTree(int nodeLimit)
std::vector< std::vector< Event * > > subSample
void doStochasticRegression(int nodeLimit, int treeLimit, double learningRate, double fraction, LossFunction *l)
void sortEventVectors(std::vector< std::vector< Event * > > &e)
void saveSplitValues(const char *savefilename)
void loadFromCondPayload(const L1TMuonEndCapForest::DForest &payload)
virtual double fit(std::vector< Event * > &v)=0
void updateRegTargets(Tree *tree, double learningRate, LossFunction *l)
U second(std::pair< T, U > const &p)
std::vector< Event * > getTrainingEvents()
def unique(seq, keepstr=True)
std::vector< DTree > DForest
std::vector< Tree * > trees
std::list< Node * > & getTerminalNodes()
void listEvents(std::vector< std::vector< Event * > > &e)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
bool compareEvents(Event *e1, Event *e2)
virtual double target(Event *e)=0
void loadForestFromXML(const char *directory, unsigned int numTrees)
Node * filterEvent(Event *e)
void rankVariables(std::vector< int > &rank)
Tree * getTree(unsigned int i)
void saveToXML(const char *filename)
Forest & operator=(const Forest &forest)
void predictEvents(std::vector< Event * > &eventsp, unsigned int trees)
std::vector< std::vector< Event * > > events
bidiiter shuffle(bidiiter begin, bidiiter end, size_t num_random)
void filterEvents(std::vector< Event * > &tEvents)
bool compareEventsById(Event *e1, Event *e2)
void setTrainingEvents(std::vector< Event * > &trainingEvents)
std::vector< double > data