CMS 3D CMS Logo

PATElectronProducer.cc
Go to the documentation of this file.
1 //
3 
7 
13 
16 
19 
22 
23 
26 
31 
40 
42 
44 
46 
47 #include <vector>
48 #include <memory>
49 
50 
51 using namespace pat;
52 using namespace std;
53 
54 
56  // general configurables
57  electronToken_(consumes<edm::View<reco::GsfElectron> >(iConfig.getParameter<edm::InputTag>( "electronSource" ))),
58  hConversionsToken_(consumes<reco::ConversionCollection>(edm::InputTag("allConversions"))),
59  embedGsfElectronCore_(iConfig.getParameter<bool>( "embedGsfElectronCore" )),
60  embedGsfTrack_(iConfig.getParameter<bool>( "embedGsfTrack" )),
61  embedSuperCluster_(iConfig.getParameter<bool> ( "embedSuperCluster" )),
62  embedPflowSuperCluster_(iConfig.getParameter<bool> ( "embedPflowSuperCluster" )),
63  embedSeedCluster_(iConfig.getParameter<bool>( "embedSeedCluster" )),
64  embedBasicClusters_(iConfig.getParameter<bool>( "embedBasicClusters" )),
65  embedPreshowerClusters_(iConfig.getParameter<bool>( "embedPreshowerClusters" )),
66  embedPflowBasicClusters_(iConfig.getParameter<bool>( "embedPflowBasicClusters" )),
67  embedPflowPreshowerClusters_(iConfig.getParameter<bool>( "embedPflowPreshowerClusters" )),
68  embedTrack_(iConfig.getParameter<bool>( "embedTrack" )),
69  addGenMatch_(iConfig.getParameter<bool>( "addGenMatch" )),
70  embedGenMatch_(addGenMatch_ ? iConfig.getParameter<bool>( "embedGenMatch" ) : false),
71  embedRecHits_(iConfig.getParameter<bool>( "embedRecHits" )),
72  // pflow configurables
73  useParticleFlow_(iConfig.getParameter<bool>( "useParticleFlow" )),
74  usePfCandidateMultiMap_(iConfig.getParameter<bool>( "usePfCandidateMultiMap" )),
75  pfElecToken_(!usePfCandidateMultiMap_ ? consumes<reco::PFCandidateCollection>(iConfig.getParameter<edm::InputTag>( "pfElectronSource" )) : edm::EDGetTokenT<reco::PFCandidateCollection>()),
76  pfCandidateMapToken_(!usePfCandidateMultiMap_ ? mayConsume<edm::ValueMap<reco::PFCandidatePtr> >(iConfig.getParameter<edm::InputTag>( "pfCandidateMap" )) : edm::EDGetTokenT<edm::ValueMap<reco::PFCandidatePtr>>()),
77  pfCandidateMultiMapToken_(usePfCandidateMultiMap_ ? consumes<edm::ValueMap<std::vector<reco::PFCandidateRef>>>(iConfig.getParameter<edm::InputTag>( "pfCandidateMultiMap" )) : edm::EDGetTokenT<edm::ValueMap<std::vector<reco::PFCandidateRef>>>()),
78  embedPFCandidate_(iConfig.getParameter<bool>( "embedPFCandidate" )),
79  // mva input variables
80  addMVAVariables_(iConfig.getParameter<bool>("addMVAVariables")),
81  reducedBarrelRecHitCollection_(iConfig.getParameter<edm::InputTag>("reducedBarrelRecHitCollection")),
82  reducedBarrelRecHitCollectionToken_(mayConsume<EcalRecHitCollection>(reducedBarrelRecHitCollection_)),
83  reducedEndcapRecHitCollection_(iConfig.getParameter<edm::InputTag>("reducedEndcapRecHitCollection")),
84  reducedEndcapRecHitCollectionToken_(mayConsume<EcalRecHitCollection>(reducedEndcapRecHitCollection_)),
85  // PFCluster Isolation maps
86  addPFClusterIso_(iConfig.getParameter<bool>("addPFClusterIso")),
87  addPuppiIsolation_(iConfig.getParameter<bool>("addPuppiIsolation")),
88  ecalPFClusterIsoT_(consumes<edm::ValueMap<float> >(iConfig.getParameter<edm::InputTag>("ecalPFClusterIsoMap"))),
89  hcalPFClusterIsoT_(consumes<edm::ValueMap<float> >(iConfig.getParameter<edm::InputTag>("hcalPFClusterIsoMap"))),
90  // embed high level selection variables?
91  embedHighLevelSelection_(iConfig.getParameter<bool>("embedHighLevelSelection")),
92  beamLineToken_(consumes<reco::BeamSpot>(iConfig.getParameter<edm::InputTag>("beamLineSrc"))),
93  pvToken_(mayConsume<std::vector<reco::Vertex> >(iConfig.getParameter<edm::InputTag>("pvSrc"))),
94  getdBFromTrack_(iConfig.getParameter<bool>("getdBFromTrack")),
95  addElecID_(iConfig.getParameter<bool>( "addElectronID" )),
96  pTComparator_(),
97  isolator_(iConfig.exists("userIsolation") ? iConfig.getParameter<edm::ParameterSet>("userIsolation") : edm::ParameterSet(), consumesCollector(), false) ,
98  addEfficiencies_(iConfig.getParameter<bool>("addEfficiencies")),
99  addResolutions_(iConfig.getParameter<bool>( "addResolutions" )),
100  useUserData_(iConfig.exists("userData"))
101 
102 {
103  // MC matching configurables (scheduled mode)
104 
105  if (addGenMatch_) {
106  if (iConfig.existsAs<edm::InputTag>("genParticleMatch")) {
107  genMatchTokens_.push_back(consumes<edm::Association<reco::GenParticleCollection> >(iConfig.getParameter<edm::InputTag>( "genParticleMatch" )));
108  }
109  else {
110  genMatchTokens_ = edm::vector_transform(iConfig.getParameter<std::vector<edm::InputTag> >( "genParticleMatch" ), [this](edm::InputTag const & tag){return consumes<edm::Association<reco::GenParticleCollection> >(tag);});
111  }
112  }
113  // resolution configurables
114  if (addResolutions_) {
116  }
117  if(addPuppiIsolation_){
118  //puppi
119  PUPPIIsolation_charged_hadrons_ = consumes<edm::ValueMap<float> >(iConfig.getParameter<edm::InputTag>("puppiIsolationChargedHadrons"));
120  PUPPIIsolation_neutral_hadrons_ = consumes<edm::ValueMap<float> >(iConfig.getParameter<edm::InputTag>("puppiIsolationNeutralHadrons"));
121  PUPPIIsolation_photons_ = consumes<edm::ValueMap<float> >(iConfig.getParameter<edm::InputTag>("puppiIsolationPhotons"));
122  //puppiNoLeptons
123  PUPPINoLeptonsIsolation_charged_hadrons_ = consumes<edm::ValueMap<float> >(iConfig.getParameter<edm::InputTag>("puppiNoLeptonsIsolationChargedHadrons"));
124  PUPPINoLeptonsIsolation_neutral_hadrons_ = consumes<edm::ValueMap<float> >(iConfig.getParameter<edm::InputTag>("puppiNoLeptonsIsolationNeutralHadrons"));
125  PUPPINoLeptonsIsolation_photons_ = consumes<edm::ValueMap<float> >(iConfig.getParameter<edm::InputTag>("puppiNoLeptonsIsolationPhotons"));
126  }
127  // electron ID configurables
128  if (addElecID_) {
129  // it might be a single electron ID
130  if (iConfig.existsAs<edm::InputTag>("electronIDSource")) {
131  elecIDSrcs_.push_back(NameTag("", iConfig.getParameter<edm::InputTag>("electronIDSource")));
132  }
133  // or there might be many of them
134  if (iConfig.existsAs<edm::ParameterSet>("electronIDSources")) {
135  // please don't configure me twice
136  if (!elecIDSrcs_.empty()){
137  throw cms::Exception("Configuration") << "PATElectronProducer: you can't specify both 'electronIDSource' and 'electronIDSources'\n";
138  }
139  // read the different electron ID names
140  edm::ParameterSet idps = iConfig.getParameter<edm::ParameterSet>("electronIDSources");
141  std::vector<std::string> names = idps.getParameterNamesForType<edm::InputTag>();
142  for (std::vector<std::string>::const_iterator it = names.begin(), ed = names.end(); it != ed; ++it) {
143  elecIDSrcs_.push_back(NameTag(*it, idps.getParameter<edm::InputTag>(*it)));
144  }
145  }
146  // but in any case at least once
147  if (elecIDSrcs_.empty()){
148  throw cms::Exception("Configuration") <<
149  "PATElectronProducer: id addElectronID is true, you must specify either:\n" <<
150  "\tInputTag electronIDSource = <someTag>\n" << "or\n" <<
151  "\tPSet electronIDSources = { \n" <<
152  "\t\tInputTag <someName> = <someTag> // as many as you want \n " <<
153  "\t}\n";
154  }
155  }
156  elecIDTokens_ = edm::vector_transform(elecIDSrcs_, [this](NameTag const & tag){return mayConsume<edm::ValueMap<float> >(tag.second);});
157  // construct resolution calculator
158 
159  // // IsoDeposit configurables
160  // if (iConfig.exists("isoDeposits")) {
161  // edm::ParameterSet depconf = iConfig.getParameter<edm::ParameterSet>("isoDeposits");
162  // if (depconf.exists("tracker")) isoDepositLabels_.push_back(std::make_pair(TrackerIso, depconf.getParameter<edm::InputTag>("tracker")));
163  // if (depconf.exists("ecal")) isoDepositLabels_.push_back(std::make_pair(ECalIso, depconf.getParameter<edm::InputTag>("ecal")));
164  // if (depconf.exists("hcal")) isoDepositLabels_.push_back(std::make_pair(HCalIso, depconf.getParameter<edm::InputTag>("hcal")));
165 
166 
167  // if (depconf.exists("user")) {
168  // std::vector<edm::InputTag> userdeps = depconf.getParameter<std::vector<edm::InputTag> >("user");
169  // std::vector<edm::InputTag>::const_iterator it = userdeps.begin(), ed = userdeps.end();
170  // int key = UserBaseIso;
171  // for ( ; it != ed; ++it, ++key) {
172  // isoDepositLabels_.push_back(std::make_pair(IsolationKeys(key), *it));
173  // }
174  // }
175  // }
176  // isoDepositTokens_ = edm::vector_transform(isoDepositLabels_, [this](std::pair<IsolationKeys,edm::InputTag> const & label){return consumes<edm::ValueMap<IsoDeposit> >(label.second);});
177 
178  // for mini-iso
179  computeMiniIso_ = iConfig.getParameter<bool>("computeMiniIso");
180  miniIsoParamsE_ = iConfig.getParameter<std::vector<double> >("miniIsoParamsE");
181  miniIsoParamsB_ = iConfig.getParameter<std::vector<double> >("miniIsoParamsB");
182  if(computeMiniIso_ && (miniIsoParamsE_.size() != 9 || miniIsoParamsB_.size() != 9)){
183  throw cms::Exception("ParameterError") << "miniIsoParams must have exactly 9 elements.\n";
184  }
185  if(computeMiniIso_)
186  pcToken_ = consumes<pat::PackedCandidateCollection>(iConfig.getParameter<edm::InputTag>("pfCandsForMiniIso"));
187 
188  // read isoDeposit labels, for direct embedding
189  readIsolationLabels(iConfig, "isoDeposits", isoDepositLabels_, isoDepositTokens_);
190  // read isolation value labels, for direct embedding
192  // read isolation value labels for non PF identified electron, for direct embedding
194  // Efficiency configurables
195  if (addEfficiencies_) {
196  efficiencyLoader_ = pat::helper::EfficiencyLoader(iConfig.getParameter<edm::ParameterSet>("efficiencies"), consumesCollector());
197  }
198  // Check to see if the user wants to add user data
199  if ( useUserData_ ) {
200  userDataHelper_ = PATUserDataHelper<Electron>(iConfig.getParameter<edm::ParameterSet>("userData"), consumesCollector());
201  }
202 
203  // consistency check
204  if (useParticleFlow_ && usePfCandidateMultiMap_) throw cms::Exception("Configuration", "usePfCandidateMultiMap not supported when useParticleFlow is set to true");
205 
206  // produces vector of muons
207  produces<std::vector<Electron> >();
208  }
209 
210 
212 {
213 }
214 
215 
217 {
218  // switch off embedding (in unschedules mode)
219  if (iEvent.isRealData()){
220  addGenMatch_ = false;
221  embedGenMatch_ = false;
222  }
223 
224  edm::ESHandle<CaloTopology> theCaloTopology;
225  iSetup.get<CaloTopologyRecord>().get(theCaloTopology);
226  ecalTopology_ = & (*theCaloTopology);
227 
228  // Get the collection of electrons from the event
230  iEvent.getByToken(electronToken_, electrons);
231 
233  if(computeMiniIso_)
234  iEvent.getByToken(pcToken_, pc);
235 
236  // for additional mva variables
237  edm::InputTag reducedEBRecHitCollection(string("reducedEcalRecHitsEB"));
238  edm::InputTag reducedEERecHitCollection(string("reducedEcalRecHitsEE"));
239  //EcalClusterLazyTools lazyTools(iEvent, iSetup, reducedEBRecHitCollection, reducedEERecHitCollection);
241 
242  // for conversion veto selection
244  iEvent.getByToken(hConversionsToken_, hConversions);
245 
246  // Get the ESHandle for the transient track builder, if needed for
247  // high level selection embedding
249 
250  if (isolator_.enabled()) isolator_.beginEvent(iEvent,iSetup);
251 
253  if (resolutionLoader_.enabled()) resolutionLoader_.newEvent(iEvent, iSetup);
254 
256  for (size_t j = 0, nd = isoDepositTokens_.size(); j < nd; ++j) {
257  iEvent.getByToken(isoDepositTokens_[j], deposits[j]);
258  }
259 
261  for (size_t j = 0; j<isolationValueTokens_.size(); ++j) {
263  }
264 
266  for (size_t j = 0; j<isolationValueNoPFIdTokens_.size(); ++j) {
268  }
269 
270  // prepare the MC matching
271  GenAssociations genMatches(genMatchTokens_.size());
272  if (addGenMatch_) {
273  for (size_t j = 0, nd = genMatchTokens_.size(); j < nd; ++j) {
274  iEvent.getByToken(genMatchTokens_[j], genMatches[j]);
275  }
276  }
277 
278  // prepare ID extraction
279  std::vector<edm::Handle<edm::ValueMap<float> > > idhandles;
280  std::vector<pat::Electron::IdPair> ids;
281  if (addElecID_) {
282  idhandles.resize(elecIDSrcs_.size());
283  ids.resize(elecIDSrcs_.size());
284  for (size_t i = 0; i < elecIDSrcs_.size(); ++i) {
285  iEvent.getByToken(elecIDTokens_[i], idhandles[i]);
286  ids[i].first = elecIDSrcs_[i].first;
287  }
288  }
289 
290 
291  // prepare the high level selection:
292  // needs beamline
293  reco::TrackBase::Point beamPoint(0,0,0);
296  bool beamSpotIsValid = false;
297  bool primaryVertexIsValid = false;
298 
299  // Get the beamspot
300  edm::Handle<reco::BeamSpot> beamSpotHandle;
301  iEvent.getByToken(beamLineToken_, beamSpotHandle);
302 
303  if ( embedHighLevelSelection_ ) {
304  // Get the primary vertex
306  iEvent.getByToken( pvToken_, pvHandle );
307 
308  // This is needed by the IPTools methods from the tracking group
309  iSetup.get<TransientTrackRecord>().get("TransientTrackBuilder", trackBuilder);
310 
311  if ( pvHandle.isValid() && !pvHandle->empty() ) {
312  primaryVertex = pvHandle->at(0);
313  primaryVertexIsValid = true;
314  } else {
315  edm::LogError("DataNotAvailable")
316  << "No primary vertex available from EventSetup, not adding high level selection \n";
317  }
318  }
319  //value maps for puppi isolation
320  edm::Handle<edm::ValueMap<float>> PUPPIIsolation_charged_hadrons;
321  edm::Handle<edm::ValueMap<float>> PUPPIIsolation_neutral_hadrons;
322  edm::Handle<edm::ValueMap<float>> PUPPIIsolation_photons;
323  //value maps for puppiNoLeptons isolation
324  edm::Handle<edm::ValueMap<float>> PUPPINoLeptonsIsolation_charged_hadrons;
325  edm::Handle<edm::ValueMap<float>> PUPPINoLeptonsIsolation_neutral_hadrons;
326  edm::Handle<edm::ValueMap<float>> PUPPINoLeptonsIsolation_photons;
327  if(addPuppiIsolation_){
328  //puppi
329  iEvent.getByToken(PUPPIIsolation_charged_hadrons_, PUPPIIsolation_charged_hadrons);
330  iEvent.getByToken(PUPPIIsolation_neutral_hadrons_, PUPPIIsolation_neutral_hadrons);
331  iEvent.getByToken(PUPPIIsolation_photons_, PUPPIIsolation_photons);
332  //puppiNoLeptons
333  iEvent.getByToken(PUPPINoLeptonsIsolation_charged_hadrons_, PUPPINoLeptonsIsolation_charged_hadrons);
334  iEvent.getByToken(PUPPINoLeptonsIsolation_neutral_hadrons_, PUPPINoLeptonsIsolation_neutral_hadrons);
335  iEvent.getByToken(PUPPINoLeptonsIsolation_photons_, PUPPINoLeptonsIsolation_photons);
336  }
337 
338 
339  std::vector<Electron> * patElectrons = new std::vector<Electron>();
340 
341  if( useParticleFlow_ ) {
343  iEvent.getByToken(pfElecToken_, pfElectrons);
344  unsigned index=0;
345 
346  for( reco::PFCandidateConstIterator i = pfElectrons->begin();
347  i != pfElectrons->end(); ++i, ++index) {
348 
349  reco::PFCandidateRef pfRef(pfElectrons, index);
350  reco::PFCandidatePtr ptrToPFElectron(pfElectrons,index);
351 // reco::CandidateBaseRef pfBaseRef( pfRef );
352 
353  reco::GsfTrackRef PfTk= i->gsfTrackRef();
354 
355  bool Matched=false;
356  bool MatchedToAmbiguousGsfTrack=false;
357  for (edm::View<reco::GsfElectron>::const_iterator itElectron = electrons->begin(); itElectron != electrons->end(); ++itElectron) {
358  unsigned int idx = itElectron - electrons->begin();
359  auto elePtr = electrons -> ptrAt(idx);
360  if (Matched || MatchedToAmbiguousGsfTrack) continue;
361 
362  reco::GsfTrackRef EgTk= itElectron->gsfTrack();
363 
364  if (itElectron->gsfTrack()==i->gsfTrackRef()){
365  Matched=true;
366  }
367  else {
368  for( reco::GsfTrackRefVector::const_iterator it = itElectron->ambiguousGsfTracksBegin() ;
369  it!=itElectron->ambiguousGsfTracksEnd(); it++ ){
370  MatchedToAmbiguousGsfTrack |= (bool)(i->gsfTrackRef()==(*it));
371  }
372  }
373 
374  if (Matched || MatchedToAmbiguousGsfTrack){
375 
376  // ptr needed for finding the matched gen particle
377  reco::CandidatePtr ptrToGsfElectron(electrons,idx);
378 
379  // ref to base needed for the construction of the pat object
380  const edm::RefToBase<reco::GsfElectron>& elecsRef = electrons->refAt(idx);
381  Electron anElectron(elecsRef);
382  anElectron.setPFCandidateRef( pfRef );
383  if (addPuppiIsolation_) {
384  anElectron.setIsolationPUPPI((*PUPPIIsolation_charged_hadrons)[elePtr], (*PUPPIIsolation_neutral_hadrons)[elePtr], (*PUPPIIsolation_photons)[elePtr]);
385  anElectron.setIsolationPUPPINoLeptons((*PUPPINoLeptonsIsolation_charged_hadrons)[elePtr], (*PUPPINoLeptonsIsolation_neutral_hadrons)[elePtr], (*PUPPINoLeptonsIsolation_photons)[elePtr]);
386  }
387  else {
388  anElectron.setIsolationPUPPI(-999., -999.,-999.);
389  anElectron.setIsolationPUPPINoLeptons(-999., -999.,-999.);
390  }
391 
392  //it should be always true when particleFlow electrons are used.
393  anElectron.setIsPF( true );
394 
395  if( embedPFCandidate_ ) anElectron.embedPFCandidate();
396 
397  if ( useUserData_ ) {
398  userDataHelper_.add( anElectron, iEvent, iSetup );
399  }
400 
401  double ip3d = -999; // for mva variable
402 
403  // embed high level selection
404  if ( embedHighLevelSelection_ ) {
405  // get the global track
406  const reco::GsfTrackRef& track = PfTk;
407 
408  // Make sure the collection it points to is there
409  if ( track.isNonnull() && track.isAvailable() ) {
410 
411  reco::TransientTrack tt = trackBuilder->build(track);
412  embedHighLevel( anElectron,
413  track,
414  tt,
415  primaryVertex,
416  primaryVertexIsValid,
417  beamSpot,
418  beamSpotIsValid );
419 
420  std::pair<bool,Measurement1D> ip3dpv = IPTools::absoluteImpactParameter3D(tt, primaryVertex);
421  ip3d = ip3dpv.second.value(); // for mva variable
422  }
423  }
424 
425  //Electron Id
426 
427  if (addElecID_) {
428  //STANDARD EL ID
429  for (size_t i = 0; i < elecIDSrcs_.size(); ++i) {
430  ids[i].second = (*idhandles[i])[elecsRef];
431  }
432  //SPECIFIC PF ID
433  ids.push_back(std::make_pair("pf_evspi",pfRef->mva_e_pi()));
434  ids.push_back(std::make_pair("pf_evsmu",pfRef->mva_e_mu()));
435  anElectron.setElectronIDs(ids);
436  }
437 
438  if (addMVAVariables_) {
439  // add missing mva variables
440  std::vector<float> vCov = lazyTools.localCovariances(*( itElectron->superCluster()->seed()));
441  anElectron.setMvaVariables(vCov[1], ip3d);
442  }
443  // PFClusterIso
444  if (addPFClusterIso_) {
445  // Get PFCluster Isolation
446  edm::Handle<edm::ValueMap<float> > ecalPFClusterIsoMapH;
447  iEvent.getByToken(ecalPFClusterIsoT_, ecalPFClusterIsoMapH);
448  edm::Handle<edm::ValueMap<float> > hcalPFClusterIsoMapH;
449  iEvent.getByToken(hcalPFClusterIsoT_, hcalPFClusterIsoMapH);
451  newPFIsol.sumEcalClusterEt = (*ecalPFClusterIsoMapH)[elecsRef];
452  newPFIsol.sumHcalClusterEt = (*hcalPFClusterIsoMapH)[elecsRef];
453  anElectron.setPfIsolationVariables(newPFIsol);
454  }
455 
456  std::vector<DetId> selectedCells;
457  bool barrel = itElectron->isEB();
458  //loop over sub clusters
459  if (embedBasicClusters_) {
460  for (reco::CaloCluster_iterator clusIt = itElectron->superCluster()->clustersBegin(); clusIt!=itElectron->superCluster()->clustersEnd(); ++clusIt) {
461  //get seed (max energy xtal)
462  DetId seed = lazyTools.getMaximum(**clusIt).first;
463  //get all xtals in 5x5 window around the seed
464  std::vector<DetId> dets5x5 = (barrel) ? ecalTopology_->getSubdetectorTopology(DetId::Ecal,EcalBarrel)->getWindow(seed,5,5):
466  selectedCells.insert(selectedCells.end(), dets5x5.begin(), dets5x5.end());
467 
468  //get all xtals belonging to cluster
469  for (const std::pair<DetId, float> &hit : (*clusIt)->hitsAndFractions()) {
470  selectedCells.push_back(hit.first);
471  }
472  }
473  }
474 
475  if (embedPflowBasicClusters_ && itElectron->parentSuperCluster().isNonnull()) {
476  for (reco::CaloCluster_iterator clusIt = itElectron->parentSuperCluster()->clustersBegin(); clusIt!=itElectron->parentSuperCluster()->clustersEnd(); ++clusIt) {
477  //get seed (max energy xtal)
478  DetId seed = lazyTools.getMaximum(**clusIt).first;
479  //get all xtals in 5x5 window around the seed
480  std::vector<DetId> dets5x5 = (barrel) ? ecalTopology_->getSubdetectorTopology(DetId::Ecal,EcalBarrel)->getWindow(seed,5,5):
482  selectedCells.insert(selectedCells.end(), dets5x5.begin(), dets5x5.end());
483 
484  //get all xtals belonging to cluster
485  for (const std::pair<DetId, float> &hit : (*clusIt)->hitsAndFractions()) {
486  selectedCells.push_back(hit.first);
487  }
488  }
489  }
490 
491  //remove duplicates
492  std::sort(selectedCells.begin(),selectedCells.end());
493  std::unique(selectedCells.begin(),selectedCells.end());
494 
495 
496  // Retrieve the corresponding RecHits
497 
499  if(barrel)
501  else
503 
504  EcalRecHitCollection selectedRecHits;
505  const EcalRecHitCollection *recHits = rechitsH.product();
506 
507  unsigned nSelectedCells = selectedCells.size();
508  for (unsigned icell = 0 ; icell < nSelectedCells ; ++icell) {
509  EcalRecHitCollection::const_iterator it = recHits->find( selectedCells[icell] );
510  if ( it != recHits->end() ) {
511  selectedRecHits.push_back(*it);
512  }
513  }
514  selectedRecHits.sort();
515  if (embedRecHits_) anElectron.embedRecHits(& selectedRecHits);
516 
517  // set conversion veto selection
518  bool passconversionveto = false;
519  if( hConversions.isValid()){
520  // this is recommended method
521  passconversionveto = !ConversionTools::hasMatchedConversion( *itElectron, *hConversions, beamSpotHandle->position());
522  }else{
523  // use missing hits without vertex fit method
524  passconversionveto = itElectron->gsfTrack()->hitPattern().numberOfLostHits(reco::HitPattern::MISSING_INNER_HITS) < 1;
525  }
526 
527  anElectron.setPassConversionVeto( passconversionveto );
528 
529 
530 // fillElectron(anElectron,elecsRef,pfBaseRef,
531 // genMatches, deposits, isolationValues);
532 
533  //COLIN small warning !
534  // we are currently choosing to take the 4-momentum of the PFCandidate;
535  // the momentum of the GsfElectron is saved though
536  // we must therefore match the GsfElectron.
537  // because of this, we should not change the source of the electron matcher
538  // to the collection of PFElectrons in the python configuration
539  // I don't know what to do with the efficiencyLoader, since I don't know
540  // what this class is for.
541  fillElectron2( anElectron,
542  ptrToPFElectron,
543  ptrToGsfElectron,
544  ptrToGsfElectron,
545  genMatches, deposits, isolationValues );
546 
547  //COLIN need to use fillElectron2 in the non-pflow case as well, and to test it.
548 
549  if(computeMiniIso_)
550  setElectronMiniIso(anElectron, pc.product());
551 
552  patElectrons->push_back(anElectron);
553  }
554  }
555  //if( !Matched && !MatchedToAmbiguousGsfTrack) std::cout << "!!!!A pf electron could not be matched to a gsf!!!!" << std::endl;
556  }
557  }
558 
559  else{
563  bool pfCandsPresent = false, valMapPresent = false;
565  iEvent.getByToken(pfCandidateMultiMapToken_, ValMultiMapH);
566  } else {
567  pfCandsPresent = iEvent.getByToken(pfElecToken_, pfElectrons);
568  valMapPresent = iEvent.getByToken(pfCandidateMapToken_,ValMapH);
569  }
570 
571  for (edm::View<reco::GsfElectron>::const_iterator itElectron = electrons->begin(); itElectron != electrons->end(); ++itElectron) {
572  // construct the Electron from the ref -> save ref to original object
573  //FIXME: looks like a lot of instances could be turned into const refs
574  unsigned int idx = itElectron - electrons->begin();
575  edm::RefToBase<reco::GsfElectron> elecsRef = electrons->refAt(idx);
576  reco::CandidateBaseRef elecBaseRef(elecsRef);
577  Electron anElectron(elecsRef);
578  auto elePtr = electrons -> ptrAt(idx);
579 
580  // Is this GsfElectron also identified as an e- in the particle flow?
581  bool pfId = false;
582 
584  for (const reco::PFCandidateRef& pf : (*ValMultiMapH)[elePtr]) {
585  if (pf->particleId() == reco::PFCandidate::e) {
586  pfId = true;
587  anElectron.setPFCandidateRef( pf );
588  break;
589  }
590  }
591  } else if ( pfCandsPresent ) {
592  // PF electron collection not available.
593  const reco::GsfTrackRef& trkRef = itElectron->gsfTrack();
594  int index = 0;
595  for( reco::PFCandidateConstIterator ie = pfElectrons->begin();
596  ie != pfElectrons->end(); ++ie, ++index) {
597  if(ie->particleId()!=reco::PFCandidate::e) continue;
598  const reco::GsfTrackRef& pfTrkRef= ie->gsfTrackRef();
599  if( trkRef == pfTrkRef ) {
600  pfId = true;
601  reco::PFCandidateRef pfRef(pfElectrons, index);
602  anElectron.setPFCandidateRef( pfRef );
603  break;
604  }
605  }
606  }
607  else if( valMapPresent ) {
608  // use value map if PF collection not available
609  const edm::ValueMap<reco::PFCandidatePtr> & myValMap(*ValMapH);
610  // Get the PFCandidate
611  const reco::PFCandidatePtr& pfElePtr(myValMap[elecsRef]);
612  pfId= pfElePtr.isNonnull();
613  }
614  // set PFId function
615  anElectron.setIsPF( pfId );
616 
617  // add resolution info
618 
619  // Isolation
620  if (isolator_.enabled()) {
621  isolator_.fill(*electrons, idx, isolatorTmpStorage_);
622  typedef pat::helper::MultiIsolator::IsolationValuePairs IsolationValuePairs;
623  // better to loop backwards, so the vector is resized less times
624  for (IsolationValuePairs::const_reverse_iterator it = isolatorTmpStorage_.rbegin(), ed = isolatorTmpStorage_.rend(); it != ed; ++it) {
625  anElectron.setIsolation(it->first, it->second);
626  }
627  }
628 
629  for (size_t j = 0, nd = deposits.size(); j < nd; ++j) {
630  anElectron.setIsoDeposit(isoDepositLabels_[j].first, (*deposits[j])[elecsRef]);
631  }
632 
633  // add electron ID info
634  if (addElecID_) {
635  for (size_t i = 0; i < elecIDSrcs_.size(); ++i) {
636  ids[i].second = (*idhandles[i])[elecsRef];
637  }
638  anElectron.setElectronIDs(ids);
639  }
640 
641 
642  if ( useUserData_ ) {
643  userDataHelper_.add( anElectron, iEvent, iSetup );
644  }
645 
646 
647  double ip3d = -999; //for mva variable
648 
649  // embed high level selection
650  if ( embedHighLevelSelection_ ) {
651  // get the global track
652  reco::GsfTrackRef track = itElectron->gsfTrack();
653 
654  // Make sure the collection it points to is there
655  if ( track.isNonnull() && track.isAvailable() ) {
656 
657  reco::TransientTrack tt = trackBuilder->build(track);
658  embedHighLevel( anElectron,
659  track,
660  tt,
661  primaryVertex,
662  primaryVertexIsValid,
663  beamSpot,
664  beamSpotIsValid );
665 
666  std::pair<bool,Measurement1D> ip3dpv = IPTools::absoluteImpactParameter3D(tt, primaryVertex);
667  ip3d = ip3dpv.second.value(); // for mva variable
668 
669  }
670  }
671 
672  if (addMVAVariables_) {
673  // add mva variables
674  std::vector<float> vCov = lazyTools.localCovariances(*( itElectron->superCluster()->seed()));
675  anElectron.setMvaVariables(vCov[1], ip3d);
676  }
677 
678  // PFCluster Isolation
679  if (addPFClusterIso_) {
680  // Get PFCluster Isolation
681  edm::Handle<edm::ValueMap<float> > ecalPFClusterIsoMapH;
682  iEvent.getByToken(ecalPFClusterIsoT_, ecalPFClusterIsoMapH);
683  edm::Handle<edm::ValueMap<float> > hcalPFClusterIsoMapH;
684  iEvent.getByToken(hcalPFClusterIsoT_, hcalPFClusterIsoMapH);
686  newPFIsol.sumEcalClusterEt = (*ecalPFClusterIsoMapH)[elecsRef];
687  newPFIsol.sumHcalClusterEt = (*hcalPFClusterIsoMapH)[elecsRef];
688  anElectron.setPfIsolationVariables(newPFIsol);
689  }
690 
691  if (addPuppiIsolation_) {
692  anElectron.setIsolationPUPPI((*PUPPIIsolation_charged_hadrons)[elePtr], (*PUPPIIsolation_neutral_hadrons)[elePtr], (*PUPPIIsolation_photons)[elePtr]);
693  anElectron.setIsolationPUPPINoLeptons((*PUPPINoLeptonsIsolation_charged_hadrons)[elePtr], (*PUPPINoLeptonsIsolation_neutral_hadrons)[elePtr], (*PUPPINoLeptonsIsolation_photons)[elePtr]);
694  }
695  else {
696  anElectron.setIsolationPUPPI(-999., -999.,-999.);
697  anElectron.setIsolationPUPPINoLeptons(-999., -999.,-999.);
698  }
699 
700  std::vector<DetId> selectedCells;
701  bool barrel = itElectron->isEB();
702  //loop over sub clusters
703  if (embedBasicClusters_) {
704  for (reco::CaloCluster_iterator clusIt = itElectron->superCluster()->clustersBegin(); clusIt!=itElectron->superCluster()->clustersEnd(); ++clusIt) {
705  //get seed (max energy xtal)
706  DetId seed = lazyTools.getMaximum(**clusIt).first;
707  //get all xtals in 5x5 window around the seed
708  std::vector<DetId> dets5x5 = (barrel) ? ecalTopology_->getSubdetectorTopology(DetId::Ecal,EcalBarrel)->getWindow(seed,5,5):
710  selectedCells.insert(selectedCells.end(), dets5x5.begin(), dets5x5.end());
711 
712  //get all xtals belonging to cluster
713  for (const std::pair<DetId, float> &hit : (*clusIt)->hitsAndFractions()) {
714  selectedCells.push_back(hit.first);
715  }
716  }
717  }
718 
719  if (embedPflowBasicClusters_ && itElectron->parentSuperCluster().isNonnull()) {
720  for (reco::CaloCluster_iterator clusIt = itElectron->parentSuperCluster()->clustersBegin(); clusIt!=itElectron->parentSuperCluster()->clustersEnd(); ++clusIt) {
721  //get seed (max energy xtal)
722  DetId seed = lazyTools.getMaximum(**clusIt).first;
723  //get all xtals in 5x5 window around the seed
724  std::vector<DetId> dets5x5 = (barrel) ? ecalTopology_->getSubdetectorTopology(DetId::Ecal,EcalBarrel)->getWindow(seed,5,5):
726  selectedCells.insert(selectedCells.end(), dets5x5.begin(), dets5x5.end());
727 
728  //get all xtals belonging to cluster
729  for (const std::pair<DetId, float> &hit : (*clusIt)->hitsAndFractions()) {
730  selectedCells.push_back(hit.first);
731  }
732  }
733  }
734 
735  //remove duplicates
736  std::sort(selectedCells.begin(),selectedCells.end());
737  std::unique(selectedCells.begin(),selectedCells.end());
738 
739  // Retrieve the corresponding RecHits
740 
742  if(barrel)
744  else
746 
747  EcalRecHitCollection selectedRecHits;
748  const EcalRecHitCollection *recHits = rechitsH.product();
749 
750  unsigned nSelectedCells = selectedCells.size();
751  for (unsigned icell = 0 ; icell < nSelectedCells ; ++icell) {
752  EcalRecHitCollection::const_iterator it = recHits->find( selectedCells[icell] );
753  if ( it != recHits->end() ) {
754  selectedRecHits.push_back(*it);
755  }
756  }
757  selectedRecHits.sort();
758  if (embedRecHits_) anElectron.embedRecHits(& selectedRecHits);
759 
760  // set conversion veto selection
761  bool passconversionveto = false;
762  if( hConversions.isValid()){
763  // this is recommended method
764  passconversionveto = !ConversionTools::hasMatchedConversion( *itElectron, *hConversions, beamSpotHandle->position());
765  }else{
766  // use missing hits without vertex fit method
767  passconversionveto = itElectron->gsfTrack()->hitPattern().numberOfLostHits(reco::HitPattern::MISSING_INNER_HITS) < 1;
768  }
769  anElectron.setPassConversionVeto( passconversionveto );
770 
771  // add sel to selected
772  fillElectron( anElectron, elecsRef,elecBaseRef,
773  genMatches, deposits, pfId, isolationValues, isolationValuesNoPFId);
774 
775  if(computeMiniIso_)
776  setElectronMiniIso(anElectron, pc.product());
777 
778  patElectrons->push_back(anElectron);
779  }
780  }
781 
782  // sort electrons in pt
783  std::sort(patElectrons->begin(), patElectrons->end(), pTComparator_);
784 
785  // add the electrons to the event output
786  std::unique_ptr<std::vector<Electron> > ptr(patElectrons);
787  iEvent.put(std::move(ptr));
788 
789  // clean up
791 
792 }
793 
795  const edm::RefToBase<reco::GsfElectron>& elecRef,
796  const reco::CandidateBaseRef& baseRef,
797  const GenAssociations& genMatches,
798  const IsoDepositMaps& deposits,
799  const bool pfId,
802  ) const {
803 
804  //COLIN: might want to use the PFCandidate 4-mom. Which one is in use now?
805  // if (useParticleFlow_)
806  // aMuon.setP4( aMuon.pfCandidateRef()->p4() );
807 
808  //COLIN:
809  //In the embedding case, the reference cannot be used to look into a value map.
810  //therefore, one has to had the PFCandidateRef to this function, which becomes a bit
811  //too much specific.
812 
813  // in fact, this function needs a baseref or ptr for genmatch
814  // and a baseref or ptr for isodeposits and isolationvalues.
815  // baseref is not needed
816  // the ptrForIsolation and ptrForMatching should be defined upstream.
817 
818  // is the concrete elecRef needed for the efficiency loader? what is this loader?
819  // how can we make it compatible with the particle flow electrons?
820 
822  if (embedGsfTrack_) anElectron.embedGsfTrack();
823  if (embedSuperCluster_) anElectron.embedSuperCluster();
825  if (embedSeedCluster_) anElectron.embedSeedCluster();
826  if (embedBasicClusters_) anElectron.embedBasicClusters();
830  if (embedTrack_) anElectron.embedTrack();
831 
832  // store the match to the generated final state muons
833  if (addGenMatch_) {
834  for(size_t i = 0, n = genMatches.size(); i < n; ++i) {
835  if(useParticleFlow_) {
836  reco::GenParticleRef genElectron = (*genMatches[i])[anElectron.pfCandidateRef()];
837  anElectron.addGenParticleRef(genElectron);
838  }
839  else {
840  reco::GenParticleRef genElectron = (*genMatches[i])[elecRef];
841  anElectron.addGenParticleRef(genElectron);
842  }
843  }
844  if (embedGenMatch_) anElectron.embedGenParticle();
845  }
846 
847  if (efficiencyLoader_.enabled()) {
848  efficiencyLoader_.setEfficiencies( anElectron, elecRef );
849  }
850 
851  if (resolutionLoader_.enabled()) {
852  resolutionLoader_.setResolutions(anElectron);
853  }
854 
855  for (size_t j = 0, nd = deposits.size(); j < nd; ++j) {
856  if(useParticleFlow_) {
857 
858  reco::PFCandidateRef pfcandref = anElectron.pfCandidateRef();
859  assert(!pfcandref.isNull());
860  reco::CandidatePtr source = pfcandref->sourceCandidatePtr(0);
861  anElectron.setIsoDeposit(isoDepositLabels_[j].first,
862  (*deposits[j])[source]);
863  }
864  else
865  anElectron.setIsoDeposit(isoDepositLabels_[j].first,
866  (*deposits[j])[elecRef]);
867  }
868 
869  for (size_t j = 0; j<isolationValues.size(); ++j) {
870  if(useParticleFlow_) {
871  reco::CandidatePtr source = anElectron.pfCandidateRef()->sourceCandidatePtr(0);
873  (*isolationValues[j])[source]);
874  }
875  else
876  if(pfId){
877  anElectron.setIsolation(isolationValueLabels_[j].first,(*isolationValues[j])[elecRef]);
878  }
879  }
880 
881  //for electrons not identified as PF electrons
882  for (size_t j = 0; j<isolationValuesNoPFId.size(); ++j) {
883  if( !pfId) {
884  anElectron.setIsolation(isolationValueLabelsNoPFId_[j].first,(*isolationValuesNoPFId[j])[elecRef]);
885  }
886  }
887 
888 }
889 
891  const reco::CandidatePtr& candPtrForIsolation,
892  const reco::CandidatePtr& candPtrForGenMatch,
893  const reco::CandidatePtr& candPtrForLoader,
894  const GenAssociations& genMatches,
895  const IsoDepositMaps& deposits,
896  const IsolationValueMaps& isolationValues) const {
897 
898  //COLIN/Florian: use the PFCandidate 4-mom.
899  anElectron.setEcalDrivenMomentum(anElectron.p4()) ;
900  anElectron.setP4( anElectron.pfCandidateRef()->p4() );
901 
902 
903  // is the concrete elecRef needed for the efficiency loader? what is this loader?
904  // how can we make it compatible with the particle flow electrons?
905 
907  if (embedGsfTrack_) anElectron.embedGsfTrack();
908  if (embedSuperCluster_) anElectron.embedSuperCluster();
910  if (embedSeedCluster_) anElectron.embedSeedCluster();
911  if (embedBasicClusters_) anElectron.embedBasicClusters();
915  if (embedTrack_) anElectron.embedTrack();
916 
917  // store the match to the generated final state muons
918 
919  if (addGenMatch_) {
920  for(size_t i = 0, n = genMatches.size(); i < n; ++i) {
921  reco::GenParticleRef genElectron = (*genMatches[i])[candPtrForGenMatch];
922  anElectron.addGenParticleRef(genElectron);
923  }
924  if (embedGenMatch_) anElectron.embedGenParticle();
925  }
926 
927  //COLIN what's this? does it have to be GsfElectron specific?
928  if (efficiencyLoader_.enabled()) {
929  efficiencyLoader_.setEfficiencies( anElectron, candPtrForLoader );
930  }
931 
932  if (resolutionLoader_.enabled()) {
933  resolutionLoader_.setResolutions(anElectron);
934  }
935 
936  for (size_t j = 0, nd = deposits.size(); j < nd; ++j) {
940  deposits[j]->contains(candPtrForGenMatch.id())) {
941  anElectron.setIsoDeposit(isoDepositLabels_[j].first,
942  (*deposits[j])[candPtrForGenMatch]);
943  }
944  else if (deposits[j]->contains(candPtrForIsolation.id())) {
945  anElectron.setIsoDeposit(isoDepositLabels_[j].first,
946  (*deposits[j])[candPtrForIsolation]);
947  }
948  else {
949  anElectron.setIsoDeposit(isoDepositLabels_[j].first,
950  (*deposits[j])[candPtrForIsolation->sourceCandidatePtr(0)]);
951  }
952  }
953 
954  for (size_t j = 0; j<isolationValues.size(); ++j) {
958  isolationValues[j]->contains(candPtrForGenMatch.id())) {
960  (*isolationValues[j])[candPtrForGenMatch]);
961  }
962  else if (isolationValues[j]->contains(candPtrForIsolation.id())) {
964  (*isolationValues[j])[candPtrForIsolation]);
965  }
966  else {
968  (*isolationValues[j])[candPtrForIsolation->sourceCandidatePtr(0)]);
969  }
970  }
971 }
972 
974 {
975  pat::PFIsolation miniiso;
976  if(anElectron.isEE())
977  miniiso = pat::getMiniPFIsolation(pc, anElectron.polarP4(),
978  miniIsoParamsE_[0], miniIsoParamsE_[1], miniIsoParamsE_[2],
979  miniIsoParamsE_[3], miniIsoParamsE_[4], miniIsoParamsE_[5],
980  miniIsoParamsE_[6], miniIsoParamsE_[7], miniIsoParamsE_[8]);
981  else
982  miniiso = pat::getMiniPFIsolation(pc, anElectron.polarP4(),
983  miniIsoParamsB_[0], miniIsoParamsB_[1], miniIsoParamsB_[2],
984  miniIsoParamsB_[3], miniIsoParamsB_[4], miniIsoParamsB_[5],
985  miniIsoParamsB_[6], miniIsoParamsB_[7], miniIsoParamsB_[8]);
986  anElectron.setMiniPFIsolation(miniiso);
987 
988 }
989 
990 // ParameterSet description for module
992 {
994  iDesc.setComment("PAT electron producer module");
995 
996  // input source
997  iDesc.add<edm::InputTag>("pfCandidateMap", edm::InputTag("no default"))->setComment("input collection");
998  iDesc.add<edm::InputTag>("electronSource", edm::InputTag("no default"))->setComment("input collection");
999 
1000  iDesc.ifValue(edm::ParameterDescription<bool>("addPFClusterIso", false, true),
1001  true >> (edm::ParameterDescription<edm::InputTag>("ecalPFClusterIsoMap", edm::InputTag("electronEcalPFClusterIsolationProducer"), true) and
1002  edm::ParameterDescription<edm::InputTag>("hcalPFClusterIsoMap", edm::InputTag("electronHcalPFClusterIsolationProducer"),true)) or
1003  false >> (edm::ParameterDescription<edm::InputTag>("ecalPFClusterIsoMap", edm::InputTag(""), true) and
1004  edm::ParameterDescription<edm::InputTag>("hcalPFClusterIsoMap", edm::InputTag(""),true)));
1005 
1006  iDesc.ifValue(edm::ParameterDescription<bool>("addPuppiIsolation", false, true),
1007  true >> (edm::ParameterDescription<edm::InputTag>("puppiIsolationChargedHadrons", edm::InputTag("egmElectronPUPPIIsolation","h+-DR030-BarVeto000-EndVeto001"), true) and
1008  edm::ParameterDescription<edm::InputTag>("puppiIsolationNeutralHadrons", edm::InputTag("egmElectronPUPPIIsolation","h0-DR030-BarVeto000-EndVeto000"), true) and
1009  edm::ParameterDescription<edm::InputTag>("puppiIsolationPhotons", edm::InputTag("egmElectronPUPPIIsolation","gamma-DR030-BarVeto000-EndVeto008"), true) and
1010  edm::ParameterDescription<edm::InputTag>("puppiNoLeptonsIsolationChargedHadrons", edm::InputTag("egmElectronPUPPINoLeptonsIsolation","gamma-DR030-BarVeto000-EndVeto008"), true) and
1011  edm::ParameterDescription<edm::InputTag>("puppiNoLeptonsIsolationNeutralHadrons", edm::InputTag("egmElectronPUPPINoLeptonsIsolation","gamma-DR030-BarVeto000-EndVeto008"), true) and
1012  edm::ParameterDescription<edm::InputTag>("puppiNoLeptonsIsolationPhotons", edm::InputTag("egmElectronPUPPINoLeptonsIsolation","gamma-DR030-BarVeto000-EndVeto008"), true)) or
1013  false >> edm::EmptyGroupDescription());
1014 
1015 
1016  // embedding
1017  iDesc.add<bool>("embedGsfElectronCore", true)->setComment("embed external gsf electron core");
1018  iDesc.add<bool>("embedGsfTrack", true)->setComment("embed external gsf track");
1019  iDesc.add<bool>("embedSuperCluster", true)->setComment("embed external super cluster");
1020  iDesc.add<bool>("embedPflowSuperCluster", true)->setComment("embed external super cluster");
1021  iDesc.add<bool>("embedSeedCluster", true)->setComment("embed external seed cluster");
1022  iDesc.add<bool>("embedBasicClusters", true)->setComment("embed external basic clusters");
1023  iDesc.add<bool>("embedPreshowerClusters", true)->setComment("embed external preshower clusters");
1024  iDesc.add<bool>("embedPflowBasicClusters", true)->setComment("embed external pflow basic clusters");
1025  iDesc.add<bool>("embedPflowPreshowerClusters", true)->setComment("embed external pflow preshower clusters");
1026  iDesc.add<bool>("embedTrack", false)->setComment("embed external track");
1027  iDesc.add<bool>("embedRecHits", true)->setComment("embed external RecHits");
1028 
1029  // pf specific parameters
1030  iDesc.add<edm::InputTag>("pfElectronSource", edm::InputTag("pfElectrons"))->setComment("particle flow input collection");
1031  auto && usePfCandidateMultiMap = edm::ParameterDescription<bool>("usePfCandidateMultiMap", false, true);
1032  usePfCandidateMultiMap.setComment("take ParticleFlow candidates from pfCandidateMultiMap instead of matching to pfElectrons by Gsf track reference");
1034  true >> edm::ParameterDescription<edm::InputTag>("pfCandidateMultiMap", true) or
1035  false >> edm::EmptyGroupDescription());
1036  iDesc.add<bool>("useParticleFlow", false)->setComment("whether to use particle flow or not");
1037  iDesc.add<bool>("embedPFCandidate", false)->setComment("embed external particle flow object");
1038 
1039  // MC matching configurables
1040  iDesc.add<bool>("addGenMatch", true)->setComment("add MC matching");
1041  iDesc.add<bool>("embedGenMatch", false)->setComment("embed MC matched MC information");
1042  std::vector<edm::InputTag> emptySourceVector;
1043  iDesc.addNode( edm::ParameterDescription<edm::InputTag>("genParticleMatch", edm::InputTag(), true) xor
1044  edm::ParameterDescription<std::vector<edm::InputTag> >("genParticleMatch", emptySourceVector, true)
1045  )->setComment("input with MC match information");
1046 
1047  // electron ID configurables
1048  iDesc.add<bool>("addElectronID",true)->setComment("add electron ID variables");
1049  edm::ParameterSetDescription electronIDSourcesPSet;
1050  electronIDSourcesPSet.setAllowAnything();
1051  iDesc.addNode( edm::ParameterDescription<edm::InputTag>("electronIDSource", edm::InputTag(), true) xor
1052  edm::ParameterDescription<edm::ParameterSetDescription>("electronIDSources", electronIDSourcesPSet, true)
1053  )->setComment("input with electron ID variables");
1054 
1055 
1056  // mini-iso
1057  iDesc.add<bool>("computeMiniIso", false)->setComment("whether or not to compute and store electron mini-isolation");
1058  iDesc.add<edm::InputTag>("pfCandsForMiniIso", edm::InputTag("packedPFCandidates"))->setComment("collection to use to compute mini-iso");
1059  iDesc.add<std::vector<double> >("miniIsoParamsE", std::vector<double>())->setComment("mini-iso parameters to use for endcap electrons");
1060  iDesc.add<std::vector<double> >("miniIsoParamsB", std::vector<double>())->setComment("mini-iso parameters to use for barrel electrons");
1061 
1062  // IsoDeposit configurables
1063  edm::ParameterSetDescription isoDepositsPSet;
1064  isoDepositsPSet.addOptional<edm::InputTag>("tracker");
1065  isoDepositsPSet.addOptional<edm::InputTag>("ecal");
1066  isoDepositsPSet.addOptional<edm::InputTag>("hcal");
1067  isoDepositsPSet.addOptional<edm::InputTag>("pfAllParticles");
1068  isoDepositsPSet.addOptional<edm::InputTag>("pfChargedHadrons");
1069  isoDepositsPSet.addOptional<edm::InputTag>("pfChargedAll");
1070  isoDepositsPSet.addOptional<edm::InputTag>("pfPUChargedHadrons");
1071  isoDepositsPSet.addOptional<edm::InputTag>("pfNeutralHadrons");
1072  isoDepositsPSet.addOptional<edm::InputTag>("pfPhotons");
1073  isoDepositsPSet.addOptional<std::vector<edm::InputTag> >("user");
1074  iDesc.addOptional("isoDeposits", isoDepositsPSet);
1075 
1076  // isolation values configurables
1077  edm::ParameterSetDescription isolationValuesPSet;
1078  isolationValuesPSet.addOptional<edm::InputTag>("tracker");
1079  isolationValuesPSet.addOptional<edm::InputTag>("ecal");
1080  isolationValuesPSet.addOptional<edm::InputTag>("hcal");
1081  isolationValuesPSet.addOptional<edm::InputTag>("pfAllParticles");
1082  isolationValuesPSet.addOptional<edm::InputTag>("pfChargedHadrons");
1083  isolationValuesPSet.addOptional<edm::InputTag>("pfChargedAll");
1084  isolationValuesPSet.addOptional<edm::InputTag>("pfPUChargedHadrons");
1085  isolationValuesPSet.addOptional<edm::InputTag>("pfNeutralHadrons");
1086  isolationValuesPSet.addOptional<edm::InputTag>("pfPhotons");
1087  isolationValuesPSet.addOptional<std::vector<edm::InputTag> >("user");
1088  iDesc.addOptional("isolationValues", isolationValuesPSet);
1089 
1090  // isolation values configurables
1091  edm::ParameterSetDescription isolationValuesNoPFIdPSet;
1092  isolationValuesNoPFIdPSet.addOptional<edm::InputTag>("tracker");
1093  isolationValuesNoPFIdPSet.addOptional<edm::InputTag>("ecal");
1094  isolationValuesNoPFIdPSet.addOptional<edm::InputTag>("hcal");
1095  isolationValuesNoPFIdPSet.addOptional<edm::InputTag>("pfAllParticles");
1096  isolationValuesNoPFIdPSet.addOptional<edm::InputTag>("pfChargedHadrons");
1097  isolationValuesNoPFIdPSet.addOptional<edm::InputTag>("pfChargedAll");
1098  isolationValuesNoPFIdPSet.addOptional<edm::InputTag>("pfPUChargedHadrons");
1099  isolationValuesNoPFIdPSet.addOptional<edm::InputTag>("pfNeutralHadrons");
1100  isolationValuesNoPFIdPSet.addOptional<edm::InputTag>("pfPhotons");
1101  isolationValuesNoPFIdPSet.addOptional<std::vector<edm::InputTag> >("user");
1102  iDesc.addOptional("isolationValuesNoPFId", isolationValuesNoPFIdPSet);
1103 
1104  // Efficiency configurables
1105  edm::ParameterSetDescription efficienciesPSet;
1106  efficienciesPSet.setAllowAnything(); // TODO: the pat helper needs to implement a description.
1107  iDesc.add("efficiencies", efficienciesPSet);
1108  iDesc.add<bool>("addEfficiencies", false);
1109 
1110  // Check to see if the user wants to add user data
1111  edm::ParameterSetDescription userDataPSet;
1113  iDesc.addOptional("userData", userDataPSet);
1114 
1115 
1116  // electron shapes
1117  iDesc.add<bool>("addMVAVariables", true)->setComment("embed extra variables in pat::Electron : sip3d, sigmaIEtaIPhi");
1118  iDesc.add<edm::InputTag>("reducedBarrelRecHitCollection", edm::InputTag("reducedEcalRecHitsEB"));
1119  iDesc.add<edm::InputTag>("reducedEndcapRecHitCollection", edm::InputTag("reducedEcalRecHitsEE"));
1120 
1121  edm::ParameterSetDescription isolationPSet;
1122  isolationPSet.setAllowAnything(); // TODO: the pat helper needs to implement a description.
1123  iDesc.add("userIsolation", isolationPSet);
1124 
1125  // Resolution configurables
1127 
1128  iDesc.add<bool>("embedHighLevelSelection", true)->setComment("embed high level selection");
1129  edm::ParameterSetDescription highLevelPSet;
1130  highLevelPSet.setAllowAnything();
1131  iDesc.addNode( edm::ParameterDescription<edm::InputTag>("beamLineSrc", edm::InputTag(), true)
1132  )->setComment("input with high level selection");
1134  )->setComment("input with high level selection");
1135  iDesc.add<bool>("getdBFromTrack", false)->setComment("switch IP2D computation to use the GSF track instead of IPTools");
1136 
1137  descriptions.add("PATElectronProducer", iDesc);
1138 
1139 }
1140 
1141 
1142 // embed various impact parameters with errors
1143 // embed high level selection
1148  bool primaryVertexIsValid,
1150  bool beamspotIsValid
1151  )
1152 {
1153  // Correct to PV
1154  std::pair<bool,Measurement1D> result;
1155  double d0_corr, d0_err;
1156 
1157  // PV2D
1158  if (getdBFromTrack_)
1159  anElectron.setDB(track->dxy(primaryVertex.position()),
1160  track->dxyError(primaryVertex.position(), primaryVertex.covariance()),
1162  else {
1163  result = IPTools::signedTransverseImpactParameter(tt, GlobalVector(track->px(), track->py(), track->pz()), primaryVertex);
1164  d0_corr = result.second.value();
1165  d0_err = primaryVertexIsValid ? result.second.error() : -1.0;
1166  anElectron.setDB(d0_corr, d0_err, pat::Electron::PV2D);
1167  }
1168 
1169  // PV3D
1170  result = IPTools::signedImpactParameter3D(tt, GlobalVector(track->px(), track->py(), track->pz()), primaryVertex);
1171  d0_corr = result.second.value();
1172  d0_err = primaryVertexIsValid ? result.second.error() : -1.0;
1173  anElectron.setDB(d0_corr, d0_err, pat::Electron::PV3D);
1174 
1175  // Correct to beam spot
1176  // make a fake vertex out of beam spot
1177  reco::Vertex vBeamspot(beamspot.position(), beamspot.covariance3D());
1178 
1179  // BS2D
1180  if (getdBFromTrack_)
1181  anElectron.setDB(track->dxy(beamspot), track->dxyError(beamspot), pat::Electron::BS2D);
1182  else {
1183  result = IPTools::signedTransverseImpactParameter(tt, GlobalVector(track->px(), track->py(), track->pz()), vBeamspot);
1184  d0_corr = result.second.value();
1185  d0_err = beamspotIsValid ? result.second.error() : -1.0;
1186  anElectron.setDB(d0_corr, d0_err, pat::Electron::BS2D);
1187  }
1188 
1189  // BS3D
1190  result = IPTools::signedImpactParameter3D(tt, GlobalVector(track->px(), track->py(), track->pz()), vBeamspot);
1191  d0_corr = result.second.value();
1192  d0_err = beamspotIsValid ? result.second.error() : -1.0;
1193  anElectron.setDB(d0_corr, d0_err, pat::Electron::BS3D);
1194 
1195  // PVDZ
1196  anElectron.setDB(track->dz(primaryVertex.position()), std::hypot(track->dzError(), primaryVertex.zError()), pat::Electron::PVDZ);
1197 }
1198 
1200 
const PflowIsolationVariables & pfIsolationVariables() const
Definition: GsfElectron.h:687
void readIsolationLabels(const edm::ParameterSet &iConfig, const char *psetName, IsolationLabels &labels, std::vector< edm::EDGetTokenT< edm::ValueMap< T > > > &tokens)
void setMvaVariables(double sigmaIetaIphi, double ip3d)
set missing mva input variables
bool enabled() const
&#39;true&#39; if this there is at least one efficiency configured
bool isAvailable() const
Definition: Ref.h:575
T getParameter(std::string const &) const
void setComment(std::string const &value)
Assists in assimilating all pat::UserData into pat objects.
ParameterDescriptionNode * ifValue(ParameterDescription< T > const &switchParameter, std::unique_ptr< ParameterDescriptionCases< T >> cases)
void embedRecHits(const EcalRecHitCollection *rechits)
method to store the RecHits internally - can be called from the PATElectronProducer ...
void newEvent(const edm::Event &event)
To be called for each new event, reads in the ValueMaps for efficiencies.
void setP4(P4Kind kind, const LorentzVector &p4, float p4Error, bool setCandidate)
Definition: GsfElectron.cc:199
OrphanHandle< PROD > put(std::unique_ptr< PROD > product)
Put a new product.
Definition: Event.h:125
ParameterDescriptionBase * addOptional(U const &iLabel, T const &value)
const edm::EDGetTokenT< reco::ConversionCollection > hConversionsToken_
bool isNonnull() const
Checks for non-null.
Definition: Ref.h:251
edm::EDGetTokenT< edm::ValueMap< float > > PUPPINoLeptonsIsolation_charged_hadrons_
void setIsolation(IsolationKeys key, float value)
Definition: Lepton.h:99
const PolarLorentzVector & polarP4() const final
four-momentum Lorentz vector
const GreaterByPt< Electron > pTComparator_
bool existsAs(std::string const &parameterName, bool trackiness=true) const
checks if a parameter exists as a given type
Definition: ParameterSet.h:161
bool contains(EventRange const &lh, EventID const &rh)
Definition: EventRange.cc:38
edm::EDGetTokenT< edm::ValueMap< float > > PUPPIIsolation_charged_hadrons_
const bool useParticleFlow_
pflow specific
void setElectronIDs(const std::vector< IdPair > &ids)
Store multiple electron ID values, discarding existing ones. The first one in the list becomes the &#39;d...
Definition: Electron.h:146
Covariance3DMatrix covariance3D() const
return only 3D position covariance matrix
Definition: BeamSpot.h:118
const LorentzVector & p4(P4Kind kind) const
Definition: GsfElectron.cc:225
const edm::EDGetTokenT< reco::PFCandidateCollection > pfElecToken_
std::vector< double > miniIsoParamsE_
bool getByToken(EDGetToken token, Handle< PROD > &result) const
Definition: Event.h:517
void setAllowAnything()
allow any parameter label/value pairs
double zError() const
error on z
Definition: Vertex.h:123
edm::EDGetTokenT< edm::ValueMap< float > > PUPPIIsolation_neutral_hadrons_
const edm::EDGetTokenT< edm::ValueMap< float > > ecalPFClusterIsoT_
std::pair< bool, Measurement1D > signedTransverseImpactParameter(const reco::TransientTrack &track, const GlobalVector &direction, const reco::Vertex &vertex)
Definition: IPTools.cc:50
void embedSuperCluster()
method to store the electron&#39;s SuperCluster internally
std::vector< pat::PackedCandidate > PackedCandidateCollection
void embedHighLevel(pat::Electron &anElectron, reco::GsfTrackRef track, reco::TransientTrack &tt, reco::Vertex &primaryVertex, bool primaryVertexIsValid, reco::BeamSpot &beamspot, bool beamspotIsValid)
std::vector< EcalRecHit >::const_iterator const_iterator
reco::TransientTrack build(const reco::Track *p) const
std::pair< bool, Measurement1D > absoluteImpactParameter3D(const reco::TransientTrack &transientTrack, const reco::Vertex &vertex)
Definition: IPTools.cc:37
void setPFCandidateRef(const reco::PFCandidateRef &ref)
add a reference to the source IsolatedPFCandidate
Definition: Electron.h:188
void fillElectron(Electron &aElectron, const ElectronBaseRef &electronRef, const reco::CandidateBaseRef &baseRef, const GenAssociations &genMatches, const IsoDepositMaps &deposits, const bool pfId, const IsolationValueMaps &isolationValues, const IsolationValueMaps &isolationValuesNoPFId) const
common electron filling, for both the standard and PF2PAT case
void push_back(T const &t)
ParameterDescriptionNode * addNode(ParameterDescriptionNode const &node)
std::pair< bool, Measurement1D > signedImpactParameter3D(const reco::TransientTrack &track, const GlobalVector &direction, const reco::Vertex &vertex)
Definition: IPTools.cc:71
void embedGsfElectronCore()
method to store the electron&#39;s core internally
void setPassConversionVeto(bool flag)
Definition: Electron.h:262
const edm::EDGetTokenT< edm::ValueMap< float > > hcalPFClusterIsoT_
double covariance(int i, int j) const
(i, j)-th element of error matrix, i, j = 0, ... 2
Definition: Vertex.h:130
PFCandidateCollection::const_iterator PFCandidateConstIterator
iterator
void setEcalDrivenMomentum(const Candidate::LorentzVector &mom)
Definition: Electron.h:215
void setResolutions(pat::PATObject< T > &obj) const
Sets the efficiencies for this object, using the reference to the original objects.
std::vector< edm::EDGetTokenT< edm::ValueMap< float > > > elecIDTokens_
void setPfIsolationVariables(const PflowIsolationVariables &iso)
Definition: GsfElectron.h:696
bool isRealData() const
Definition: EventBase.h:62
const Point & position() const
position
Definition: Vertex.h:109
const std::string names[nVars_]
bool isEE() const
Definition: GsfElectron.h:357
const edm::EDGetTokenT< edm::View< reco::GsfElectron > > electronToken_
const bool addMVAVariables_
mva input variables
std::vector< double > miniIsoParamsB_
void embedPflowSuperCluster()
method to store the electron&#39;s PflowSuperCluster internally
bool enabled() const
&#39;true&#39; if this there is at least one efficiency configured
void setIsoDeposit(IsolationKeys key, const IsoDeposit &dep)
Sets the IsoDeposit associated with some key; if it is already existent, it is overwritten.
Definition: Lepton.h:176
Definition: HeavyIon.h:7
static void fillDescription(edm::ParameterSetDescription &iDesc)
std::vector< std::string > getParameterNamesForType(bool trackiness=true) const
Definition: ParameterSet.h:169
const edm::EDGetTokenT< std::vector< reco::Vertex > > pvToken_
bool enabled() const
True if it has a non null configuration.
Definition: MultiIsolator.h:50
const edm::EDGetTokenT< edm::ValueMap< reco::PFCandidatePtr > > pfCandidateMapToken_
void setComment(std::string const &value)
pat::helper::MultiIsolator isolator_
std::vector< edm::Handle< edm::Association< reco::GenParticleCollection > > > GenAssociations
void setDB(double dB, double edB, IPTYPE type)
Set impact parameter of a certain type and its uncertainty.
edm::EDGetTokenT< edm::ValueMap< float > > PUPPIIsolation_photons_
int iEvent
Definition: GenABIO.cc:224
#define DEFINE_FWK_MODULE(type)
Definition: MakerMacros.h:16
void beginEvent(const edm::Event &event, const edm::EventSetup &eventSetup)
Produces pat::Electron&#39;s.
void embedSeedCluster()
method to store the electron&#39;s seedcluster internally
PATElectronProducer(const edm::ParameterSet &iConfig)
const bool embedHighLevelSelection_
embed high level selection variables?
reco::PFCandidateRef pfCandidateRef() const
reference to the source PFCandidates; null if this has been built from a standard electron ...
void embedGenParticle()
Definition: PATObject.h:694
void newEvent(const edm::Event &event, const edm::EventSetup &setup)
To be called for each new event, reads in the EventSetup object.
std::vector< edm::EDGetTokenT< edm::Association< reco::GenParticleCollection > > > genMatchTokens_
static bool hasMatchedConversion(const reco::GsfElectron &ele, const reco::ConversionCollection &convCol, const math::XYZPoint &beamspot, bool allowCkfMatch=true, float lxyMin=2.0, float probMin=1e-6, unsigned int nHitsBeforeVtxMax=0)
The Signals That Services Can Subscribe To This is based on ActivityRegistry and is current per Services can connect to the signals distributed by the ActivityRegistry in order to monitor the activity of the application Each possible callback has some defined which we here list in angle e< void, edm::EventID const &, edm::Timestamp const & > We also list in braces which AR_WATCH_USING_METHOD_ is used for those or
Definition: Activities.doc:12
def unique(seq, keepstr=True)
Definition: tier0.py:25
void setIsolationPUPPINoLeptons(float chargedhadrons_, float neutralhadrons_, float photons_)
sets PUPPINoLeptons isolations
Definition: Electron.h:174
std::vector< edm::EDGetTokenT< edm::ValueMap< IsoDeposit > > > isoDepositTokens_
edm::EDGetTokenT< edm::ValueMap< float > > PUPPINoLeptonsIsolation_neutral_hadrons_
const edm::EDGetTokenT< EcalRecHitCollection > reducedEndcapRecHitCollectionToken_
math::XYZPoint Point
point in the space
Definition: TrackBase.h:83
std::vector< edm::Handle< edm::ValueMap< double > > > IsolationValueMaps
void embedPflowBasicClusters()
method to store the electron&#39;s pflow basic clusters
edm::Ref< PFCandidateCollection > PFCandidateRef
persistent reference to a PFCandidate
ParameterDescriptionBase * add(U const &iLabel, T const &value)
void embedBasicClusters()
method to store the electron&#39;s basic clusters
bool isValid() const
Definition: HandleBase.h:74
std::pair< std::string, edm::InputTag > NameTag
edm::EDGetTokenT< edm::ValueMap< float > > PUPPINoLeptonsIsolation_photons_
bool isNull() const
Checks for null.
Definition: Ref.h:248
void embedGsfTrack()
method to store the electron&#39;s GsfTrack internally
static void fillDescriptions(edm::ConfigurationDescriptions &descriptions)
void produce(edm::Event &iEvent, const edm::EventSetup &iSetup) override
bool isNonnull() const
Checks for non-null.
Definition: Ptr.h:168
std::vector< Conversion > ConversionCollection
Definition: Conversion.h:13
const_iterator end() const
Definition: DetId.h:18
std::vector< reco::PFCandidate > PFCandidateCollection
collection of PFCandidates
const edm::EDGetTokenT< reco::BeamSpot > beamLineToken_
void fillElectron2(Electron &anElectron, const reco::CandidatePtr &candPtrForIsolation, const reco::CandidatePtr &candPtrForGenMatch, const reco::CandidatePtr &candPtrForLoader, const GenAssociations &genMatches, const IsoDepositMaps &deposits, const IsolationValueMaps &isolationValues) const
void addGenParticleRef(const reco::GenParticleRef &ref)
Definition: PATObject.h:678
auto vector_transform(std::vector< InputType > const &input, Function predicate) -> std::vector< typename std::remove_cv< typename std::remove_reference< decltype(predicate(input.front()))>::type >::type >
Definition: transform.h:11
std::vector< edm::EDGetTokenT< edm::ValueMap< double > > > isolationValueNoPFIdTokens_
virtual std::vector< DetId > getWindow(const DetId &id, const int &northSouthSize, const int &eastWestSize) const
T const * product() const
Definition: Handle.h:74
static void fillDescription(edm::ParameterSetDescription &iDesc)
Method for documentation and validation of PSet.
pat::helper::EfficiencyLoader efficiencyLoader_
const edm::EDGetTokenT< EcalRecHitCollection > reducedBarrelRecHitCollectionToken_
void setIsPF(bool hasPFCandidate)
Definition: Electron.h:183
const edm::EDGetTokenT< edm::ValueMap< std::vector< reco::PFCandidateRef > > > pfCandidateMultiMapToken_
pat::PATUserDataHelper< pat::Electron > userDataHelper_
void setEfficiencies(pat::PATObject< T > &obj, const R &originalRef) const
Sets the efficiencies for this object, using the reference to the original objects.
Analysis-level electron class.
Definition: Electron.h:52
const CaloTopology * ecalTopology_
void add(std::string const &label, ParameterSetDescription const &psetDescription)
const CaloSubdetectorTopology * getSubdetectorTopology(const DetId &id) const
access the subdetector Topology for the given subdetector directly
Definition: CaloTopology.cc:20
void setMiniPFIsolation(PFIsolation const &iso)
Definition: Lepton.h:197
ProductID id() const
Accessor for product ID.
Definition: Ptr.h:180
IsolationLabels isolationValueLabelsNoPFId_
void setElectronMiniIso(pat::Electron &anElectron, const pat::PackedCandidateCollection *pc)
void embedPreshowerClusters()
method to store the electron&#39;s preshower clusters
std::vector< std::pair< pat::IsolationKeys, float > > IsolationValuePairs
Definition: MultiIsolator.h:16
iterator find(key_type k)
fixed size matrix
HLT enums.
boost::indirect_iterator< typename seq_t::const_iterator > const_iterator
Definition: View.h:86
IsolationLabels isolationValueLabels_
size_type size() const
T get() const
Definition: EventSetup.h:71
pat::helper::KinResolutionsLoader resolutionLoader_
const Point & position() const
position
Definition: BeamSpot.h:62
PFIsolation getMiniPFIsolation(const pat::PackedCandidateCollection *pfcands, const reco::Candidate::PolarLorentzVector &p4, float mindr=0.05, float maxdr=0.2, float kt_scale=10.0, float ptthresh=0.5, float deadcone_ch=0.0001, float deadcone_pu=0.01, float deadcone_ph=0.01, float deadcone_nh=0.01, float dZ_cut=0.0)
void embedPflowPreshowerClusters()
method to store the electron&#39;s pflow preshower clusters
std::vector< edm::EDGetTokenT< edm::ValueMap< double > > > isolationValueTokens_
void embedTrack()
method to store the electron&#39;s Track internally
pat::helper::MultiIsolator::IsolationValuePairs isolatorTmpStorage_
edm::Ptr< PFCandidate > PFCandidatePtr
persistent Ptr to a PFCandidate
void setIsolationPUPPI(float chargedhadrons_, float neutralhadrons_, float photons_)
sets PUPPI isolations
Definition: Electron.h:166
static std::string const source
Definition: EdmProvDump.cc:47
edm::EDGetTokenT< pat::PackedCandidateCollection > pcToken_
def move(src, dest)
Definition: eostools.py:511
void embedPFCandidate()
embed the PFCandidate pointed to by pfCandidateRef_
Global3DVector GlobalVector
Definition: GlobalVector.h:10
std::vector< NameTag > elecIDSrcs_
void fill(const edm::View< T > &coll, int idx, IsolationValuePairs &isolations) const
Definition: MultiIsolator.h:82
std::vector< edm::Handle< edm::ValueMap< IsoDeposit > > > IsoDepositMaps