CMS 3D CMS Logo

approx_exp.h
Go to the documentation of this file.
1 #ifndef DataFormatsMathAPPROX_EXP_H
2 #define DataFormatsMathAPPROX_EXP_H
3 /* Quick and not that dirty vectorizable exp implementations
4  Author: Florent de Dinechin, Aric, ENS-Lyon
5  with advice from Vincenzo Innocente, CERN
6  All right reserved
7 
8 Warning + disclaimers:
9 
10 Feel free to distribute or insert in other programs etc, as long as this notice is attached.
11  Comments, requests etc: Florent.de.Dinechin@ens-lyon.fr
12 
13 Polynomials were obtained using Sollya scripts (in comments):
14 please also keep these comments attached to the code.
15 
16 If a derivative of this code ends up in the glibc I am too happy: the version with MANAGE_SUBNORMALS=1 and DEGREE=6 is faithful-accurate over the full 2^32 binary32 numbers and behaves well WRT exceptional cases. It is about 4 times faster than the stock expf on this PC, when compiled with gcc -O2.
17 
18 This code is FMA-safe (i.e. accelerated and more accurate with an FMA) as long as my parentheses are respected.
19 
20 A remaining TODO is to try and manage the over/underflow using only integer tests as per Astasiev et al, RNC conf.
21 Not sure it makes that much sense in the vector context.
22 
23 */
24 
25 // #define MANAGE_SUBNORMALS 1 // No measurable perf difference, so let's be clean.
26 // If set to zero we flush to zero the subnormal outputs, ie for x<-88 or so
27 
28 // DEGREE
29 // 6 is perfect.
30 // 5 provides max 2-ulp error,
31 // 4 loses 44 ulps (6 bits) for an acceleration of 10% WRT 6
32 // (I don't subtract the loop and call overhead, so it would be more for constexprd code)
33 
34 // see the comments in the code for the accuracy you get from a given degree
35 
37 
38 template<int DEGREE>
39 constexpr float approx_expf_P(float p);
40 
41 // degree = 2 => absolute accuracy is 8 bits
42 template<>
44  return float(0x2.p0) + y * (float(0x2.07b99p0) + y * float(0x1.025b84p0)) ;
45 }
46 // degree = 3 => absolute accuracy is 12 bits
47 template<>
49 #ifdef HORNER // HORNER
50  return float(0x2.p0) + y * (float(0x1.fff798p0) + y * (float(0x1.02249p0) + y * float(0x5.62042p-4))) ;
51 #else // ESTRIN
52  float p23 = (float(0x1.02249p0) + y * float(0x5.62042p-4)) ;
53  float p01 = float(0x2.p0) + y * float(0x1.fff798p0);
54  return p01 + y*y*p23;
55 #endif
56 }
57 // degree = 4 => absolute accuracy is 17 bits
58 template<>
60  return float(0x2.p0) + y * (float(0x1.fffb1p0) + y * (float(0xf.ffe84p-4) + y * (float(0x5.5f9c1p-4) + y * float(0x1.57755p-4)))) ;
61 }
62 // degree = 5 => absolute accuracy is 22 bits
63 template<>
65  return float(0x2.p0) + y * (float(0x2.p0) + y * (float(0xf.ffed8p-4) + y * (float(0x5.5551cp-4) + y * (float(0x1.5740d8p-4) + y * float(0x4.49368p-8))))) ;
66 }
67 // degree = 6 => absolute accuracy is 27 bits
68 template<>
70 #ifdef HORNER // HORNER
71  float p = float(0x2.p0) + y * (float(0x2.p0) + y * (float(0x1.p0) + y * (float(0x5.55523p-4) + y * (float(0x1.5554dcp-4) + y * (float(0x4.48f41p-8) + y * float(0xb.6ad4p-12)))))) ;
72 #else // ESTRIN does seem to save a cycle or two
73  float p56 = float(0x4.48f41p-8) + y * float(0xb.6ad4p-12);
74  float p34 = float(0x5.55523p-4) + y * float(0x1.5554dcp-4);
75  float y2 = y*y;
76  float p12 = float(0x2.p0) + y; // By chance we save one operation here! Funny.
77  float p36 = p34 + y2*p56;
78  float p16 = p12 + y2*p36;
79  float p = float(0x2.p0) + y*p16;
80 #endif
81  return p;
82 }
83 
84 // degree = 7 => absolute accuracy is 31 bits
85 template<>
87  return float(0x2.p0) + y * (float(0x2.p0) + y * (float(0x1.p0) + y * (float(0x5.55555p-4) + y * (float(0x1.5554e4p-4) + y * (float(0x4.444adp-8) + y * (float(0xb.6a8a6p-12) + y * float(0x1.9ec814p-12))))))) ;
88 }
89 
90 /* The Sollya script that computes the polynomials above
91 
92 
93 f= 2*exp(y);
94 I=[-log(2)/2;log(2)/2];
95 filename="/tmp/polynomials";
96 print("") > filename;
97 for deg from 2 to 8 do begin
98  p = fpminimax(f, deg,[|1,23...|],I, floating, absolute);
99  display=decimal;
100  acc=floor(-log2(sup(supnorm(p, f, I, absolute, 2^(-40)))));
101  print( " // degree = ", deg,
102  " => absolute accuracy is ", acc, "bits" ) >> filename;
103  print("#if ( DEGREE ==", deg, ")") >> filename;
104  display=hexadecimal;
105  print(" float p = ", horner(p) , ";") >> filename;
106  print("#endif") >> filename;
107 end;
108 
109 */
110 
111 
112 // valid for -87.3365 < x < 88.7228
113 template<int DEGREE>
115  using namespace approx_math;
116  /* Sollya for the following constants:
117  display=hexadecimal;
118  1b23+1b22;
119  single(1/log(2));
120  log2H=round(log(2), 16, RN);
121  log2L = single(log(2)-log2H);
122  log2H; log2L;
123 
124  */
125  // constexpr float rnd_cst = float(0xc.p20);
126  constexpr float inv_log2f = float(0x1.715476p0);
127  constexpr float log2H = float(0xb.172p-4);
128  constexpr float log2L = float(0x1.7f7d1cp-20);
129 
130 
131  float y = x;
132  // This is doing round(x*inv_log2f) to the nearest integer
133  float z = fpfloor((x*inv_log2f) +0.5f);
134  // Cody-and-Waite accurate range reduction. FMA-safe.
135  y -= z*log2H;
136  y -= z*log2L;
137  // exponent
138  int32_t e = z;
139 
140 
141  // we want RN above because it centers the interval around zero
142  // but then we could have 2^e = below being infinity when it shouldn't
143  // (when e=128 but p<1)
144  // so we avoid this case by reducing e and evaluating a polynomial for 2*exp
145  e -=1;
146 
147  // NaN inputs will propagate to the output as expected
148 
149  float p = approx_expf_P<DEGREE>(y);
150 
151  // cout << "x=" << x << " e=" << e << " y=" << y << " p=" << p <<"\n";
152  binary32 ef;
153  uint32_t biased_exponent= e+127;
154  ef.ui32=(biased_exponent<<23);
155 
156  return p * ef.f;
157 }
158 
159 
160 #ifndef NO_APPROX_MATH
161 
162 template<int DEGREE>
163 constexpr float unsafe_expf(float x) {
164  return unsafe_expf_impl<DEGREE>(x);
165 }
166 
167 template<int DEGREE>
168 constexpr float approx_expf(float x) {
169 
170  constexpr float inf_threshold =float(0x5.8b90cp4);
171  // log of the smallest normal
172  constexpr float zero_threshold_ftz =-float(0x5.75628p4); // sollya: single(log(1b-126));
173  // flush to zero on the output
174  // manage infty output:
175  // faster than directly on output!
176  x = std::min(std::max(x,zero_threshold_ftz),inf_threshold);
177  float r = unsafe_expf<DEGREE>(x);
178 
179  return r;
180 }
181 
182 
183 #else
184 template<int DEGREE>
185 constexpr float unsafe_expf(float x) {
186  return std::exp(x);
187 }
188 template<int DEGREE>
189 constexpr float approx_expf(float x) {
190  return std::exp(x);
191 }
192 #endif // NO_APPROX_MATH
193 
194 
195 
196 #endif
constexpr float approx_expf_P(float p)
constexpr float fpfloor(float x)
Definition: approx_math.h:28
constexpr float approx_expf_P< 5 >(float y)
Definition: approx_exp.h:64
constexpr float approx_expf_P< 2 >(float y)
Definition: approx_exp.h:43
double f[11][100]
T min(T a, T b)
Definition: MathUtil.h:58
constexpr float approx_expf_P< 6 >(float y)
Definition: approx_exp.h:69
constexpr float approx_expf(float x)
Definition: approx_exp.h:168
constexpr float approx_expf_P< 3 >(float y)
Definition: approx_exp.h:48
constexpr float unsafe_expf(float x)
Definition: approx_exp.h:163
constexpr float approx_expf_P< 4 >(float y)
Definition: approx_exp.h:59
constexpr float unsafe_expf_impl(float x)
Definition: approx_exp.h:114
#define constexpr
constexpr float approx_expf_P< 7 >(float y)
Definition: approx_exp.h:86