CMS 3D CMS Logo

CSCUpgradeMotherboardLUT.cc
Go to the documentation of this file.
2 
4 {
5  // Keep in mind that ME1A is considered an extension of ME1B
6  // This means that ME1A half-strips start at 128 and end at 223
8  {128,223},{128,223},{128,223},{128,223},{128,223},
9  {128,223},{128,223},{128,223},{128,223},{128,223},
10  {128,223},{128,223},{128,205},{128,189},{128,167},
11  {128,150},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
12  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
13  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
14  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
15  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
16  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
17  {-1,-1},{-1,-1},{-1,-1}
18  };
19  // When the half-strips are triple-ganged, (Run-1)
20  // ME1A half-strips go from 128 to 159
22  {128,159},{128,159},{128,159},{128,159},{128,159},
23  {128,159},{128,159},{128,159},{128,159},{128,159},
24  {128,159},{128,159},{128,159},{128,159},{128,159},
25  {128,150},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
26  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
27  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
28  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
29  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
30  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
31  {-1,-1},{-1,-1},{-1,-1}
32  };
33  // ME1B half-strips start at 0 and end at 127
35  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
36  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
37  {100, 127},{73, 127},{47, 127},{22, 127},{0, 127},
38  {0, 127},{0, 127},{0, 127},{0, 127},{0, 127},
39  {0, 127},{0, 127},{0, 127},{0, 127},{0, 127},
40  {0, 127},{0, 127},{0, 127},{0, 127},{0, 127},
41  {0, 127},{0, 127},{0, 127},{0, 127},{0, 127},
42  {0, 127},{0, 127},{0, 127},{0, 127},{0, 127},
43  {0, 127},{0, 127},{0, 127},{0, 127},{0, 105},
44  {0, 93},{0, 78},{0, 63}
45  };
46 }
47 
48 bool
50  int theEndcap, bool gangedME1a) const
51  {
52  if ( !c.isValid() || !a.isValid() ) return false;
53  int key_hs = c.getKeyStrip();
54  int key_wg = a.getKeyWG();
55  return doesWiregroupCrossStrip(key_wg, key_hs, theEndcap, gangedME1a);
56  }
57 
58 
59 bool
61  int theEndcap, bool gangedME1a) const
62  {
63  // ME1/a half-strip starts at 128
64  if ( key_hs > CSCConstants::MAX_HALF_STRIP_ME1B )
65  {
66  if ( !gangedME1a )
67  {
68  // wrap around ME11 HS number for -z endcap
69  if (theEndcap==2) {
70  // first subtract 128
72  // flip the HS
74  // then add 128 again
76  }
77  if ( key_hs >= lut_wg_vs_hs_me1a[key_wg][0] &&
78  key_hs <= lut_wg_vs_hs_me1a[key_wg][1] ) return true;
79  return false;
80  }
81  else
82  {
83  // wrap around ME11 HS number for -z endcap
84  if (theEndcap==2) {
85  // first subtract 128
87  // flip the HS
89  // then add 128 again
91  }
92  if ( key_hs >= lut_wg_vs_hs_me1ag[key_wg][0] &&
93  key_hs <= lut_wg_vs_hs_me1ag[key_wg][1] ) return true;
94  return false;
95  }
96  }
97  // ME1/b half-strip ends at 127
98  if ( key_hs <= CSCConstants::MAX_HALF_STRIP_ME1B )
99  {
100  if (theEndcap==2) key_hs = CSCConstants::MAX_HALF_STRIP_ME1B - key_hs;
101  if ( key_hs >= lut_wg_vs_hs_me1b[key_wg][0] &&
102  key_hs <= lut_wg_vs_hs_me1b[key_wg][1] ) return true;
103  }
104  return false;
105  }
106 
108  : lut_wg_eta_odd(0)
109  , lut_wg_eta_even(0)
110  , lut_pt_vs_dphi_gemcsc(0)
111 
112  , gem_roll_eta_limits_odd_l1(0)
113  , gem_roll_eta_limits_odd_l2(0)
114  , gem_roll_eta_limits_even_l1(0)
115  , gem_roll_eta_limits_even_l2(0)
116 
117  , csc_wg_to_gem_roll_odd_l1(0)
118  , csc_wg_to_gem_roll_odd_l2(0)
119  , csc_wg_to_gem_roll_even_l1(0)
120  , csc_wg_to_gem_roll_even_l2(0)
121 {
122 }
123 
124 std::vector<std::pair<int,int> >
126 {
127  if (par==Parity::Even){ return layer==1 ? csc_wg_to_gem_roll_even_l1 : csc_wg_to_gem_roll_even_l2; }
128  else { return layer==1 ? csc_wg_to_gem_roll_odd_l1 : csc_wg_to_gem_roll_odd_l2; }
129 }
130 
131 std::vector<int>
133 {
134  if (par==Parity::Even){ return layer==1 ? gem_roll_to_csc_wg_even_l1 : gem_roll_to_csc_wg_even_l2; }
135  else { return layer==1 ? gem_roll_to_csc_wg_odd_l1 : gem_roll_to_csc_wg_odd_l2; }
136 }
137 
138 std::vector<int>
140 {
141  if (p==CSCPart::ME1A) { return par==Parity::Even ? gem_pad_to_csc_hs_me1a_even : gem_pad_to_csc_hs_me1a_odd; }
142  else { return par==Parity::Even ? gem_pad_to_csc_hs_me1b_even : gem_pad_to_csc_hs_me1b_odd; }
143 }
144 
145 std::vector<int>
147 {
148  return par==Parity::Even ? gem_pad_to_csc_hs_even : gem_pad_to_csc_hs_odd;
149 }
150 
151 std::vector<std::pair<int,int> >
153 {
154  return par==Parity::Even ? csc_hs_to_gem_pad_even : csc_hs_to_gem_pad_odd;
155 }
156 
157 std::vector<std::pair<int,int> >
159 {
160  if (p==CSCPart::ME1A) { return par==Parity::Even ? csc_hs_to_gem_pad_me1a_even : csc_hs_to_gem_pad_me1a_odd; }
161  else { return par==Parity::Even ? csc_hs_to_gem_pad_me1b_even : csc_hs_to_gem_pad_me1b_odd; }
162 }
163 
165 {
166 }
167 
168 
171 {
172  lut_wg_eta_odd = {
173  {2.4466, 2.45344},
174  {2.33403, 2.43746}, {2.28122, 2.38447}, {2.23122, 2.33427}, {2.18376, 2.2866}, {2.1386, 2.24124},
175  {2.09556, 2.19796}, {2.05444, 2.15662}, {2.01511, 2.11704}, {1.97741, 2.07909}, {1.94124, 2.04266},
176  {1.90649, 2.00764}, {1.87305, 1.97392}, {1.84084, 1.94143}, {1.80978, 1.91008}, {1.77981, 1.87981},
177  {1.75086, 1.85055}, {1.72286, 1.82225}, {1.69577, 1.79484}, {1.66954, 1.76828}, {1.64412, 1.74253},
178  {1.61946, 1.71754}, {1.60584, 1.69328}, {1.60814, 1.6697}
179  };
180 
181  lut_wg_eta_even = {
182  {2.3981, 2.40492},
183  {2.28578, 2.38883}, {2.23311, 2.33595}, {2.18324, 2.28587}, {2.13592, 2.23831}, {2.09091, 2.19306},
184  {2.048, 2.14991}, {2.00704, 2.10868}, {1.96785, 2.06923}, {1.93031, 2.03141}, {1.8943, 1.9951},
185  {1.8597, 1.96021}, {1.82642, 1.92663}, {1.79438, 1.89427}, {1.76349, 1.86306}, {1.73369, 1.83293},
186  {1.70491, 1.80382}, {1.67709, 1.77566}, {1.65018, 1.7484}, {1.62413, 1.72199}, {1.59889, 1.69639},
187  {1.57443, 1.67155}, {1.56088, 1.64745}, {1.5631, 1.62403}
188  };
189 
190  /*
191  98% acceptance cuts of the GEM-CSC bending angle in ME1b
192  for various pT thresholds and for even/odd chambers
193  */
195  {3, 0.03971647, 0.01710244},
196  {5, 0.02123785, 0.00928431},
197  {7, 0.01475524, 0.00650928},
198  {10, 0.01023299, 0.00458796},
199  {15, 0.00689220, 0.00331313},
200  {20, 0.00535176, 0.00276152},
201  {30, 0.00389050, 0.00224959},
202  {40, 0.00329539, 0.00204670}
203  };
204 
206  {1.61082, 1.67865},
207  {1.67887, 1.7528},
208  {1.75303, 1.82091},
209  {1.82116, 1.89486},
210  {1.89513, 1.96311},
211  {1.9634, 2.037},
212  {2.03732, 2.10527},
213  {2.10562, 2.17903}
214  };
215 
217  {1.61705, 1.68494},
218  {1.68515, 1.75914},
219  {1.75938, 1.8273},
220  {1.82756, 1.9013},
221  {1.90158, 1.96959},
222  {1.96988, 2.04352},
223  {2.04384, 2.11181},
224  {2.11216, 2.1856}
225  };
226 
228  {1.55079, 1.62477},
229  {1.62497, 1.70641},
230  {1.70663, 1.78089},
231  {1.78113, 1.86249},
232  {1.86275, 1.9371},
233  {1.93739, 2.01855},
234  {2.01887, 2.09324},
235  {2.09358, 2.17456}
236  };
237 
239  {1.55698, 1.63103},
240  {1.63123, 1.71275},
241  {1.71297, 1.78728},
242  {1.78752, 1.86894},
243  {1.86921, 1.94359},
244  {1.94388, 2.02509},
245  {2.02541, 2.09981},
246  {2.10015, 2.18115}
247  };
248 
250  {-99, -99},
251  {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {8, -99}, {8, -99}, {8, -99},
252  {7, -99}, {7, -99}, {7, 8}, {7, 8}, {6, 8}, {6, 7}, {6, 7}, {6, 7}, {5, 7}, {5, 6},
253  {5, 6}, {4, 6}, {4, 6}, {4, 5}, {4, 5}, {4, 5}, {3, 5}, {3, 5}, {3, 4}, {3, 4},
254  {2, 4}, {2, 4}, {2, 4}, {2, 3}, {2, 3}, {2, 3}, {1, 3}, {1, 3}, {1, 2}, {1, 2},
255  {1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 1}, {1, 1}, {1, 1}
256  };
257 
259  {-99, -99},
260  {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {8, -99}, {8, -99}, {8, -99},
261  {7, -99}, {7, -99}, {7, 8}, {7, 8}, {6, 8}, {6, 7}, {6, 7}, {6, 7}, {5, 7}, {5, 6},
262  {5, 6}, {4, 6}, {4, 6}, {4, 5}, {4, 5}, {4, 5}, {3, 5}, {3, 5}, {3, 4}, {3, 4},
263  {2, 4}, {2, 4}, {2, 4}, {2, 3}, {2, 3}, {2, 3}, {1, 3}, {1, 3}, {1, 2}, {1, 2},
264  {1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 1}, {1, 1}, {1, 1}
265  };
266 
268  {-99, -99},
269  {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {8, -99}, {8, -99}, {8, -99}, {8, -99}, {7, -99},
270  {7, 8}, {7, 8}, {6, 8}, {6, 8}, {6, 7}, {6, 7}, {5, 7}, {5, 6}, {5, 6}, {5, 6},
271  {5, 6}, {4, 6}, {4, 5}, {4, 5}, {4, 5}, {4, 5}, {3, 5}, {3, 4}, {3, 4}, {3, 4},
272  {2, 4}, {2, 4}, {2, 3}, {2, 3}, {2, 3}, {2, 3}, {1, 3}, {1, 3}, {1, 2}, {1, 2},
273  {1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 1}, {1, 1}, {1, 1}
274  };
275 
277  {-99, -99},
278  {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {8, -99}, {8, -99}, {8, -99}, {8, -99}, {7, -99},
279  {7, 8}, {7, 8}, {6, 8}, {6, 8}, {6, 7}, {6, 7}, {5, 7}, {5, 6}, {5, 6}, {5, 6},
280  {5, 6}, {4, 6}, {4, 5}, {4, 5}, {4, 5}, {4, 5}, {3, 5}, {3, 4}, {3, 4}, {3, 4},
281  {2, 4}, {2, 4}, {2, 3}, {2, 3}, {2, 3}, {2, 3}, {1, 3}, {1, 3}, {1, 2}, {1, 2},
282  {1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 1}, {1, 1}, {1, 1}
283  };
284 
289 
291  93,
292  92, 92, 92, 91, 91, 90, 90, 89, 89, 88,
293  88, 87, 87, 86, 86, 85, 85, 84, 84, 83,
294  83, 83, 82, 82, 81, 81, 80, 80, 79, 79,
295  78, 78, 77, 77, 76, 76, 75, 75, 74, 74,
296  73, 73, 73, 72, 72, 71, 71, 70, 70, 69,
297  69, 68, 68, 67, 67, 66, 66, 65, 65, 64,
298  64, 63, 63, 63, 62, 62, 61, 61, 60, 60,
299  59, 59, 58, 58, 57, 57, 56, 56, 55, 55,
300  54, 54, 53, 53, 53, 52, 52, 51, 51, 50,
301  50, 49, 49, 48, 48, 47, 47, 46, 46, 45,
302  45, 44, 44, 43, 43, 43, 42, 42, 41, 41,
303  40, 40, 39, 39, 38, 38, 37, 37, 36, 36,
304  35, 35, 34, 34, 33, 33, 33, 32, 32, 31,
305  31, 30, 30, 29, 29, 28, 28, 27, 27, 26,
306  26, 25, 25, 24, 24, 23, 23, 23, 22, 22,
307  21, 21, 20, 20, 19, 19, 18, 18, 17, 17,
308  16, 16, 15, 15, 14, 14, 13, 13, 13, 12,
309  12, 11, 11, 10, 10, 9, 9, 8, 8, 7,
310  7, 6, 6, 5, 5, 4, 4, 4, 3, 3,
311  2
312  };
313 
315  123,
316  123, 122, 121, 121, 120, 119, 119, 118, 118, 117,
317  116, 116, 115, 114, 114, 113, 113, 112, 111, 111,
318  110, 110, 109, 108, 108, 107, 106, 106, 105, 105,
319  104, 103, 103, 102, 101, 101, 100, 100, 99, 98,
320  98, 97, 96, 96, 95, 95, 94, 93, 93, 92,
321  91, 91, 90, 90, 89, 88, 88, 87, 86, 86,
322  85, 85, 84, 83, 83, 82, 81, 81, 80, 80,
323  79, 78, 78, 77, 76, 76, 75, 75, 74, 73,
324  73, 72, 71, 71, 70, 70, 69, 68, 68, 67,
325  66, 66, 65, 65, 64, 63, 63, 62, 61, 61,
326  60, 60, 59, 58, 58, 57, 56, 56, 55, 55,
327  54, 53, 53, 52, 51, 51, 50, 50, 49, 48,
328  48, 47, 46, 46, 45, 45, 44, 43, 43, 42,
329  41, 41, 40, 40, 39, 38, 38, 37, 36, 36,
330  35, 35, 34, 33, 33, 32, 31, 31, 30, 30,
331  29, 28, 28, 27, 26, 26, 25, 25, 24, 23,
332  23, 22, 21, 21, 20, 20, 19, 18, 18, 17,
333  16, 16, 15, 15, 14, 13, 13, 12, 11, 11,
334  10, 10, 9, 8, 8, 7, 7, 6, 5, 5,
335  4
336  };
337 
339  2,
340  3, 3, 3, 4, 4, 5, 5, 6, 6, 7,
341  7, 8, 8, 9, 9, 10, 10, 11, 11, 12,
342  12, 12, 13, 13, 14, 14, 15, 15, 16, 16,
343  17, 17, 18, 18, 19, 19, 20, 20, 21, 21,
344  22, 22, 22, 23, 23, 24, 24, 25, 25, 26,
345  26, 27, 27, 28, 28, 29, 29, 30, 30, 31,
346  31, 32, 32, 32, 33, 33, 34, 34, 35, 35,
347  36, 36, 37, 37, 38, 38, 39, 39, 40, 40,
348  41, 41, 42, 42, 42, 43, 43, 44, 44, 45,
349  45, 46, 46, 47, 47, 48, 48, 49, 49, 50,
350  50, 51, 51, 52, 52, 52, 53, 53, 54, 54,
351  55, 55, 56, 56, 57, 57, 58, 58, 59, 59,
352  60, 60, 61, 61, 62, 62, 63, 63, 63, 64,
353  64, 65, 65, 66, 66, 67, 67, 68, 68, 69,
354  69, 70, 70, 71, 71, 72, 72, 73, 73, 73,
355  74, 74, 75, 75, 76, 76, 77, 77, 78, 78,
356  79, 79, 80, 80, 81, 81, 82, 82, 82, 83,
357  83, 84, 84, 85, 85, 86, 86, 87, 87, 88,
358  88, 89, 89, 90, 90, 91, 91, 91, 92, 92,
359  93
360  };
361 
363  4,
364  4, 5, 6, 6, 7, 7, 8, 9, 9, 10,
365  11, 11, 12, 12, 13, 14, 14, 15, 16, 16,
366  17, 17, 18, 19, 19, 20, 20, 21, 22, 22,
367  23, 24, 24, 25, 25, 26, 27, 27, 28, 29,
368  29, 30, 30, 31, 32, 32, 33, 34, 34, 35,
369  35, 36, 37, 37, 38, 39, 39, 40, 40, 41,
370  42, 42, 43, 44, 44, 45, 45, 46, 47, 47,
371  48, 49, 49, 50, 50, 51, 52, 52, 53, 54,
372  54, 55, 55, 56, 57, 57, 58, 59, 59, 60,
373  60, 61, 62, 62, 63, 64, 64, 65, 65, 66,
374  67, 67, 68, 69, 69, 70, 70, 71, 72, 72,
375  73, 74, 74, 75, 75, 76, 77, 77, 78, 79,
376  79, 80, 80, 81, 82, 82, 83, 84, 84, 85,
377  85, 86, 87, 87, 88, 89, 89, 90, 90, 91,
378  92, 92, 93, 94, 94, 95, 95, 96, 97, 97,
379  98, 99, 99, 100, 100, 101, 102, 102, 103, 104,
380  104, 105, 105, 106, 107, 107, 108, 109, 109, 110,
381  110, 111, 112, 112, 113, 114, 114, 115, 115, 116,
382  117, 117, 118, 119, 119, 120, 120, 121, 122, 122,
383  123
384  };
385 
387  {192, 192},
388  {192, 192}, {192, 192}, {190, 191}, {188, 188}, {185, 186}, {183, 184}, {181, 182}, {179, 180}, {177, 178}, {175, 176},
389  {173, 174}, {171, 172}, {169, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155},
390  {152, 153}, {150, 151}, {148, 148}, {145, 146}, {143, 144}, {141, 142}, {139, 140}, {137, 138}, {135, 136}, {133, 134},
391  {131, 132}, {129, 130}, {127, 127}, {124, 125}, {122, 123}, {120, 121}, {118, 119}, {116, 117}, {114, 115}, {112, 113},
392  {110, 111}, {108, 109}, {106, 106}, {103, 104}, {101, 102}, {99, 100}, {97, 98}, {95, 96}, {93, 94}, {91, 92},
393  {89, 90}, {87, 88}, {85, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71},
394  {68, 69}, {66, 67}, {64, 64}, {61, 62}, {59, 60}, {57, 58}, {55, 56}, {53, 54}, {51, 52}, {49, 50},
395  {47, 48}, {45, 46}, {43, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {30, 31}, {28, 29},
396  {26, 27}, {24, 25}, {22, 22}, {19, 20}, {17, 18}, {15, 16}, {13, 14}, {11, 12}, {9, 10}, {7, 8},
397  {5, 6}, {3, 3}, {1, 1}, {1, 1}, {1, 1}
398  };
399 
401  {1, 1},
402  {1, 1}, {1, 1}, {2, 3}, {4, 5}, {7, 7}, {9, 10}, {11, 12}, {13, 14}, {15, 16}, {17, 18},
403  {19, 20}, {21, 22}, {23, 24}, {26, 26}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39},
404  {40, 41}, {42, 43}, {44, 45}, {47, 47}, {49, 50}, {51, 52}, {53, 54}, {55, 56}, {57, 58}, {59, 60},
405  {61, 62}, {63, 64}, {65, 66}, {68, 68}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81},
406  {82, 83}, {84, 85}, {86, 87}, {88, 89}, {91, 91}, {93, 94}, {95, 96}, {97, 98}, {99, 100}, {101, 102},
407  {103, 104}, {105, 106}, {107, 108}, {109, 110}, {112, 112}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123},
408  {124, 125}, {126, 127}, {128, 129}, {130, 131}, {133, 133}, {135, 136}, {137, 138}, {139, 140}, {141, 142}, {143, 144},
409  {145, 146}, {147, 148}, {149, 150}, {151, 152}, {154, 154}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165},
410  {166, 167}, {168, 169}, {170, 171}, {172, 173}, {175, 175}, {177, 178}, {179, 180}, {181, 182}, {183, 184}, {185, 186},
411  {187, 188}, {189, 190}, {191, 192}, {192, 192}, {192, 192}
412  };
413 
415  {192, 192},
416  {192, 192}, {192, 192}, {192, 192}, {192, 192}, {190, 191}, {189, 189}, {187, 188}, {185, 186}, {184, 184}, {182, 183},
417  {180, 181}, {179, 179}, {177, 178}, {176, 176}, {174, 175}, {172, 173}, {171, 171}, {169, 170}, {168, 168}, {166, 167},
418  {164, 165}, {163, 163}, {161, 162}, {160, 160}, {158, 159}, {156, 157}, {155, 155}, {153, 154}, {152, 152}, {150, 151},
419  {148, 149}, {147, 147}, {145, 146}, {144, 144}, {142, 143}, {140, 141}, {139, 139}, {137, 138}, {136, 136}, {134, 135},
420  {132, 133}, {131, 131}, {129, 130}, {128, 128}, {126, 127}, {124, 125}, {123, 123}, {121, 122}, {120, 120}, {118, 119},
421  {116, 117}, {115, 115}, {113, 114}, {112, 112}, {110, 111}, {108, 109}, {107, 107}, {105, 106}, {104, 104}, {102, 103},
422  {100, 101}, {99, 99}, {97, 98}, {96, 96}, {94, 95}, {92, 93}, {91, 91}, {89, 90}, {88, 88}, {86, 87},
423  {84, 85}, {83, 83}, {81, 82}, {80, 80}, {78, 79}, {76, 77}, {75, 75}, {73, 74}, {72, 72}, {70, 71},
424  {68, 69}, {67, 67}, {65, 66}, {64, 64}, {62, 63}, {60, 61}, {59, 59}, {57, 58}, {56, 56}, {54, 55},
425  {52, 53}, {51, 51}, {49, 50}, {48, 48}, {46, 47}, {44, 45}, {43, 43}, {41, 42}, {40, 40}, {38, 39},
426  {36, 37}, {35, 35}, {33, 34}, {32, 32}, {30, 31}, {28, 29}, {27, 27}, {25, 26}, {24, 24}, {22, 23},
427  {20, 21}, {19, 19}, {17, 18}, {15, 16}, {14, 14}, {12, 13}, {11, 11}, {9, 10}, {7, 8}, {6, 6},
428  {4, 5}, {3, 3}, {1, 2}, {1, 1}, {1, 1}, {1, 1}, {1, 1}
429  };
430 
432  {1, 1},
433  {1, 1}, {1, 1}, {1, 1}, {1, 2}, {3, 4}, {5, 5}, {6, 7}, {8, 8}, {9, 10}, {11, 12},
434  {13, 13}, {14, 15}, {16, 16}, {17, 18}, {19, 20}, {21, 21}, {22, 23}, {24, 24}, {25, 26}, {27, 28},
435  {29, 29}, {30, 31}, {32, 32}, {33, 34}, {35, 36}, {37, 37}, {38, 39}, {40, 40}, {41, 42}, {43, 44},
436  {45, 45}, {46, 47}, {48, 48}, {49, 50}, {51, 52}, {53, 53}, {54, 55}, {56, 56}, {57, 58}, {59, 60},
437  {61, 61}, {62, 63}, {64, 64}, {65, 66}, {67, 68}, {69, 69}, {70, 71}, {72, 72}, {73, 74}, {75, 76},
438  {77, 77}, {78, 79}, {80, 80}, {81, 82}, {83, 84}, {85, 85}, {86, 87}, {88, 88}, {89, 90}, {91, 92},
439  {93, 93}, {94, 95}, {96, 96}, {97, 98}, {99, 100}, {101, 101}, {102, 103}, {104, 104}, {105, 106}, {107, 108},
440  {109, 109}, {110, 111}, {112, 112}, {113, 114}, {115, 116}, {117, 117}, {118, 119}, {120, 120}, {121, 122}, {123, 124},
441  {125, 125}, {126, 127}, {128, 128}, {129, 130}, {131, 132}, {133, 133}, {134, 135}, {136, 136}, {137, 138}, {139, 140},
442  {141, 141}, {142, 143}, {144, 144}, {145, 146}, {147, 148}, {149, 149}, {150, 151}, {152, 152}, {153, 154}, {155, 156},
443  {157, 157}, {158, 159}, {160, 160}, {161, 162}, {163, 164}, {165, 165}, {166, 167}, {168, 169}, {170, 170}, {171, 172},
444  {173, 173}, {174, 175}, {176, 177}, {178, 178}, {179, 180}, {181, 181}, {182, 183}, {184, 185}, {186, 186}, {187, 188},
445  {189, 189}, {190, 191}, {192, 192}, {192, 192}, {192, 192}, {192, 192}, {192, 192}
446  };
447 }
448 
450 {
451 }
452 
453 
455 {
456  lut_wg_eta_odd = {
457  {-2.43106, -2.43106},
458  {-2.41441, -2.41441}, {-2.39399, -2.39399}, {-2.374, -2.374}, {-2.35442, -2.35442}, {-2.33524, -2.33524},
459  {-2.31644, -2.31644}, {-2.29801, -2.29801}, {-2.27993, -2.27993}, {-2.26219, -2.26219}, {-2.24478, -2.24478},
460  {-2.22768, -2.22768}, {-2.2109, -2.2109}, {-2.19441, -2.19441}, {-2.17821, -2.17821}, {-2.16228, -2.16228},
461  {-2.14663, -2.14663}, {-2.13123, -2.13123}, {-2.11609, -2.11609}, {-2.1012, -2.1012}, {-2.08654, -2.08654},
462  {-2.07211, -2.07211}, {-2.06002, -2.06002}, {-2.04392, -2.04392}, {-2.03015, -2.03015}, {-2.01659, -2.01659},
463  {-2.00322, -2.00322}, {-1.99005, -1.99005}, {-1.97707, -1.97707}, {-1.96428, -1.96428}, {-1.95166, -1.95166},
464  {-1.93922, -1.93922}, {-1.92696, -1.92696}, {-1.91306, -1.91306}, {-1.89878, -1.89878}, {-1.88474, -1.88474},
465  {-1.87091, -1.87091}, {-1.8573, -1.8573}, {-1.8439, -1.8439}, {-1.8307, -1.8307}, {-1.81931, -1.81931},
466  {-1.80489, -1.80489}, {-1.79227, -1.79227}, {-1.77984, -1.77984}, {-1.76758, -1.76758}, {-1.7555, -1.7555},
467  {-1.74359, -1.74359}, {-1.73184, -1.73184}, {-1.72026, -1.72026}, {-1.70883, -1.70883}, {-1.69756, -1.69756},
468  {-1.68644, -1.68644}, {-1.67546, -1.67546}, {-1.66463, -1.66463}, {-1.65394, -1.65394}, {-1.64339, -1.64339}
469  };
470 
471  lut_wg_eta_even = {
472  {-2.40118, -2.40118},
473  {-2.38455, -2.38455}, {-2.36416, -2.36416}, {-2.3442, -2.3442}, {-2.32465, -2.32465}, {-2.3055, -2.3055},
474  {-2.28673, -2.28673}, {-2.26833, -2.26833}, {-2.25028, -2.25028}, {-2.23257, -2.23257}, {-2.21519, -2.21519},
475  {-2.19813, -2.19813}, {-2.18138, -2.18138}, {-2.16492, -2.16492}, {-2.14875, -2.14875}, {-2.13286, -2.13286},
476  {-2.11723, -2.11723}, {-2.10187, -2.10187}, {-2.08676, -2.08676}, {-2.0719, -2.0719}, {-2.05727, -2.05727},
477  {-2.04288, -2.04288}, {-2.03082, -2.03082}, {-2.01476, -2.01476}, {-2.00102, -2.00102}, {-1.98749, -1.98749},
478  {-1.97416, -1.97416}, {-1.96102, -1.96102}, {-1.94808, -1.94808}, {-1.93532, -1.93532}, {-1.92274, -1.92274},
479  {-1.91033, -1.91033}, {-1.8981, -1.8981}, {-1.88424, -1.88424}, {-1.87001, -1.87001}, {-1.85601, -1.85601},
480  {-1.84222, -1.84222}, {-1.82866, -1.82866}, {-1.8153, -1.8153}, {-1.80215, -1.80215}, {-1.7908, -1.7908},
481  {-1.77643, -1.77643}, {-1.76385, -1.76385}, {-1.75146, -1.75146}, {-1.73925, -1.73925}, {-1.72722, -1.72722},
482  {-1.71535, -1.71535}, {-1.70365, -1.70365}, {-1.69211, -1.69211}, {-1.68073, -1.68073}, {-1.66951, -1.66951},
483  {-1.65843, -1.65843}, {-1.64751, -1.64751}, {-1.63672, -1.63672}, {-1.62608, -1.62608}, {-1.61558, -1.61558}
484  };
485 
486  /*
487  98% acceptance cuts of the GEM-CSC bending angle in ME21
488  for various pT thresholds and for even/odd chambers
489  */
491  {3, 0.01832829, 0.01003643 },
492  {5, 0.01095490, 0.00631625 },
493  {7, 0.00786026, 0.00501017 },
494  {10, 0.00596349, 0.00414560 },
495  {15, 0.00462411, 0.00365550 },
496  {20, 0.00435298, 0.00361550 },
497  {30, 0.00465160, 0.00335700 },
498  {40, 0.00372145, 0.00366262 }
499  };
500 
501  // roll 1 through 12
503  {1.64258, 1.70821},
504  {1.70837, 1.77962},
505  {1.77979, 1.84546},
506  {1.84565, 1.91671},
507  {1.91691, 1.98263},
508  {1.98285, 2.05379},
509  {2.05402, 2.11977},
510  {2.12002, 2.19085},
511  {2.19112, 2.25688},
512  {2.25717, 2.32792},
513  {2.32823, 2.39406},
514  {2.39439, 2.46514}
515  };
516 
518  {1.64671, 1.71238},
519  {1.71254, 1.78382},
520  {1.784, 1.8497},
521  {1.84988, 1.92097},
522  {1.92117, 1.98692},
523  {1.98713, 2.05809},
524  {2.05833, 2.12409},
525  {2.12434, 2.19519},
526  {2.19546, 2.26124},
527  {2.26153, 2.33228},
528  {2.33259, 2.39844},
529  {2.39877, 2.46953}
530  };
531 
533  {1.63978, 1.70538},
534  {1.70554, 1.77677},
535  {1.77694, 1.84259},
536  {1.84277, 1.91382},
537  {1.91402, 1.97972},
538  {1.97994, 2.05086},
539  {2.0511, 2.11683},
540  {2.11708, 2.18791},
541  {2.18818, 2.25393},
542  {2.25422, 2.32495},
543  {2.32526, 2.39109},
544  {2.39142, 2.46216}
545  };
546 
548  {1.64392, 1.70956},
549  {1.70972, 1.78098},
550  {1.78115, 1.84684},
551  {1.84702, 1.91809},
552  {1.91829, 1.98402},
553  {1.98424, 2.05518},
554  {2.05541, 2.12117},
555  {2.12142, 2.19226},
556  {2.19253, 2.25829},
557  {2.25858, 2.32933},
558  {2.32964, 2.39547},
559  {2.39581, 2.46656}
560  };
561 
563  {12, 12},
564  {12, 12}, {12, 12}, {12, 12}, {12, 12}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11},
565  {11, 11}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {9, 9},
566  {9, 9}, {9, 9}, {9, 9}, {9, 9}, {9, 9}, {9, 9}, {9, 9}, {8, 8}, {8, 8}, {8, 8},
567  {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {7, 7}, {7, 7}, {7, 7}, {7, 7},
568  {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6},
569  {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {5, 5}, {5, 5}, {5, 5}, {5, 5},
570  {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {4, 4}, {4, 4}, {4, 4}, {4, 4},
571  {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {3, 3}, {3, 3}, {3, 3}, {3, 3},
572  {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {2, 2}, {2, 2}, {2, 2}, {2, 2},
573  {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {1, 1},
574  {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1},
575  {1, 1}
576  };
577 
579  {12, 12},
580  {12, 12}, {12, 12}, {12, 12}, {12, 12}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11},
581  {11, 11}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {9, 9},
582  {9, 9}, {9, 9}, {9, 9}, {9, 9}, {9, 9}, {9, 9}, {9, 9}, {8, 8}, {8, 8}, {8, 8},
583  {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {7, 7}, {7, 7}, {7, 7}, {7, 7},
584  {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6},
585  {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {5, 5}, {5, 5}, {5, 5}, {5, 5},
586  {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {4, 4}, {4, 4}, {4, 4}, {4, 4},
587  {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {3, 3}, {3, 3}, {3, 3}, {3, 3},
588  {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {2, 2}, {2, 2}, {2, 2}, {2, 2},
589  {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {1, 1},
590  {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1},
591  {1, 1}
592  };
593 
595  {12, 12},
596  {12, 12}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {10, 10}, {10, 10},
597  {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {9, 9}, {9, 9}, {9, 9}, {9, 9},
598  {9, 9}, {9, 9}, {9, 9}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8},
599  {8, 8}, {8, 8}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7},
600  {7, 7}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6},
601  {6, 6}, {6, 6}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5},
602  {5, 5}, {5, 5}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4},
603  {4, 4}, {4, 4}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3},
604  {3, 3}, {3, 3}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2},
605  {2, 2}, {2, 2}, {2, 2}, {2, 2}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1},
606  {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1},
607  {1, 1}
608  };
609 
611  {12, 12},
612  {12, 12}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {10, 10}, {10, 10},
613  {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {9, 9}, {9, 9}, {9, 9}, {9, 9},
614  {9, 9}, {9, 9}, {9, 9}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8},
615  {8, 8}, {8, 8}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7},
616  {7, 7}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6},
617  {6, 6}, {6, 6}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5},
618  {5, 5}, {5, 5}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4},
619  {4, 4}, {4, 4}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3},
620  {3, 3}, {3, 3}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2},
621  {2, 2}, {2, 2}, {2, 2}, {2, 2}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1},
622  {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1},
623  {1, 1}
624  };
625 
627  157,
628  157, 156, 156, 156, 155, 155, 154, 154, 154, 153,
629  153, 152, 152, 152, 151, 151, 150, 150, 150, 149,
630  149, 148, 148, 148, 147, 147, 146, 146, 146, 145,
631  145, 144, 144, 144, 143, 143, 142, 142, 142, 141,
632  141, 140, 140, 140, 139, 139, 138, 138, 138, 137,
633  137, 136, 136, 135, 135, 135, 134, 134, 133, 133,
634  133, 132, 132, 131, 131, 131, 130, 130, 129, 129,
635  129, 128, 128, 127, 127, 127, 126, 126, 125, 125,
636  125, 124, 124, 123, 123, 122, 122, 122, 121, 121,
637  120, 120, 120, 119, 119, 118, 118, 118, 117, 117,
638  116, 116, 116, 115, 115, 114, 114, 113, 113, 113,
639  112, 112, 111, 111, 111, 110, 110, 109, 109, 109,
640  108, 108, 107, 107, 107, 106, 106, 105, 105, 104,
641  104, 104, 103, 103, 102, 102, 102, 101, 101, 100,
642  100, 100, 99, 99, 98, 98, 97, 97, 97, 96,
643  96, 95, 95, 95, 94, 94, 93, 93, 93, 92,
644  92, 91, 91, 90, 90, 90, 89, 89, 88, 88,
645  88, 87, 87, 86, 86, 86, 85, 85, 84, 84,
646  83, 83, 83, 82, 82, 81, 81, 81, 80, 80,
647  79, 79, 79, 78, 78, 77, 77, 76, 76, 76,
648  75, 75, 74, 74, 74, 73, 73, 72, 72, 72,
649  71, 71, 70, 70, 69, 69, 69, 68, 68, 67,
650  67, 67, 66, 66, 65, 65, 65, 64, 64, 63,
651  63, 62, 62, 62, 61, 61, 60, 60, 60, 59,
652  59, 58, 58, 58, 57, 57, 56, 56, 55, 55,
653  55, 54, 54, 53, 53, 53, 52, 52, 51, 51,
654  51, 50, 50, 49, 49, 48, 48, 48, 47, 47,
655  46, 46, 46, 45, 45, 44, 44, 44, 43, 43,
656  42, 42, 42, 41, 41, 40, 40, 39, 39, 39,
657  38, 38, 37, 37, 37, 36, 36, 35, 35, 35,
658  34, 34, 33, 33, 33, 32, 32, 31, 31, 31,
659  30, 30, 29, 29, 28, 28, 28, 27, 27, 26,
660  26, 26, 25, 25, 24, 24, 24, 23, 23, 22,
661  22, 22, 21, 21, 20, 20, 20, 19, 19, 18,
662  18, 18, 17, 17, 16, 16, 16, 15, 15, 14,
663  14, 14, 13, 13, 12, 12, 11, 11, 11, 10,
664  10, 9, 9, 9, 8, 8, 7, 7, 7, 6,
665  6, 5, 5, 5, 4, 4, 3, 3, 3, 2,
666  2, 1, 1
667  };
668 
670  1,
671  1, 2, 2, 2, 3, 3, 4, 4, 4, 5,
672  5, 6, 6, 6, 7, 7, 8, 8, 8, 9,
673  9, 10, 10, 10, 11, 11, 12, 12, 12, 13,
674  13, 14, 14, 14, 15, 15, 16, 16, 17, 17,
675  17, 18, 18, 19, 19, 19, 20, 20, 21, 21,
676  21, 22, 22, 23, 23, 23, 24, 24, 25, 25,
677  25, 26, 26, 27, 27, 27, 28, 28, 29, 29,
678  29, 30, 30, 31, 31, 32, 32, 32, 33, 33,
679  34, 34, 34, 35, 35, 36, 36, 36, 37, 37,
680  38, 38, 38, 39, 39, 40, 40, 40, 41, 41,
681  42, 42, 43, 43, 43, 44, 44, 45, 45, 45,
682  46, 46, 47, 47, 47, 48, 48, 49, 49, 50,
683  50, 50, 51, 51, 52, 52, 52, 53, 53, 54,
684  54, 54, 55, 55, 56, 56, 56, 57, 57, 58,
685  58, 59, 59, 59, 60, 60, 61, 61, 61, 62,
686  62, 63, 63, 63, 64, 64, 65, 65, 66, 66,
687  66, 67, 67, 68, 68, 68, 69, 69, 70, 70,
688  70, 71, 71, 72, 72, 73, 73, 73, 74, 74,
689  75, 75, 75, 76, 76, 77, 77, 77, 78, 78,
690  79, 79, 80, 80, 80, 81, 81, 82, 82, 82,
691  83, 83, 84, 84, 84, 85, 85, 86, 86, 87,
692  87, 87, 88, 88, 89, 89, 89, 90, 90, 91,
693  91, 92, 92, 92, 93, 93, 94, 94, 94, 95,
694  95, 96, 96, 96, 97, 97, 98, 98, 98, 99,
695  99, 100, 100, 101, 101, 101, 102, 102, 103, 103,
696  103, 104, 104, 105, 105, 105, 106, 106, 107, 107,
697  108, 108, 108, 109, 109, 110, 110, 110, 111, 111,
698  112, 112, 112, 113, 113, 114, 114, 115, 115, 115,
699  116, 116, 117, 117, 117, 118, 118, 119, 119, 119,
700  120, 120, 121, 121, 121, 122, 122, 123, 123, 124,
701  124, 124, 125, 125, 126, 126, 126, 127, 127, 128,
702  128, 128, 129, 129, 130, 130, 130, 131, 131, 132,
703  132, 132, 133, 133, 134, 134, 134, 135, 135, 136,
704  136, 137, 137, 137, 138, 138, 139, 139, 139, 140,
705  140, 141, 141, 141, 142, 142, 143, 143, 143, 144,
706  144, 145, 145, 145, 146, 146, 147, 147, 147, 148,
707  148, 149, 149, 149, 150, 150, 151, 151, 151, 152,
708  152, 153, 153, 153, 154, 154, 155, 155, 155, 156,
709  156, 157, 157
710  };
711 
713  {384, 384},
714  {384, 384}, {381, 382}, {378, 380}, {376, 377}, {373, 375}, {371, 372}, {368, 370}, {366, 367}, {363, 365}, {361, 362},
715  {358, 360}, {356, 357}, {354, 355}, {351, 353}, {349, 350}, {346, 348}, {344, 345}, {341, 343}, {339, 340}, {336, 338},
716  {334, 335}, {331, 333}, {329, 330}, {326, 328}, {324, 325}, {321, 323}, {319, 320}, {316, 318}, {314, 315}, {312, 313},
717  {309, 311}, {307, 308}, {304, 306}, {302, 303}, {299, 301}, {297, 298}, {294, 296}, {292, 293}, {289, 291}, {287, 288},
718  {285, 286}, {282, 284}, {280, 281}, {277, 279}, {275, 276}, {272, 274}, {270, 271}, {267, 269}, {265, 266}, {263, 264},
719  {260, 262}, {258, 259}, {255, 257}, {253, 254}, {250, 252}, {248, 249}, {246, 247}, {243, 245}, {241, 242}, {238, 240},
720  {236, 237}, {233, 235}, {231, 232}, {229, 230}, {226, 228}, {224, 225}, {221, 223}, {219, 220}, {216, 218}, {214, 215},
721  {212, 213}, {209, 211}, {207, 208}, {204, 206}, {202, 203}, {199, 201}, {197, 198}, {195, 196}, {192, 194}, {190, 191},
722  {187, 189}, {185, 186}, {182, 184}, {180, 181}, {178, 179}, {175, 177}, {173, 174}, {170, 172}, {168, 169}, {165, 167},
723  {163, 164}, {161, 162}, {158, 160}, {156, 157}, {153, 155}, {151, 152}, {148, 150}, {146, 147}, {144, 145}, {141, 143},
724  {139, 140}, {136, 138}, {134, 135}, {131, 133}, {129, 130}, {127, 128}, {124, 126}, {122, 123}, {119, 121}, {117, 118},
725  {114, 116}, {112, 113}, {109, 111}, {107, 108}, {105, 106}, {102, 104}, {100, 101}, {97, 99}, {95, 96}, {92, 94},
726  {90, 91}, {87, 89}, {85, 86}, {83, 84}, {80, 82}, {78, 79}, {75, 77}, {73, 74}, {70, 72}, {68, 69},
727  {65, 67}, {63, 64}, {60, 62}, {58, 59}, {55, 57}, {53, 54}, {51, 52}, {48, 50}, {46, 47}, {43, 45},
728  {41, 42}, {38, 40}, {36, 37}, {33, 35}, {31, 32}, {28, 30}, {26, 27}, {23, 25}, {21, 22}, {18, 20},
729  {16, 17}, {13, 15}, {11, 12}, {8, 10}, {6, 7}, {3, 5}, {1, 2}, {1, 1}, {1, 1}
730  };
731 
733  {1, 2},
734  {1, 2}, {3, 5}, {6, 7}, {8, 10}, {11, 12}, {13, 15}, {16, 17}, {18, 20}, {21, 22}, {23, 25},
735  {26, 27}, {28, 30}, {31, 32}, {33, 35}, {36, 37}, {38, 39}, {40, 42}, {43, 44}, {45, 47}, {48, 49},
736  {50, 52}, {53, 54}, {55, 57}, {58, 59}, {60, 62}, {63, 64}, {65, 67}, {68, 69}, {70, 72}, {73, 74},
737  {75, 76}, {77, 79}, {80, 81}, {82, 84}, {85, 86}, {87, 89}, {90, 91}, {92, 94}, {95, 96}, {97, 99},
738  {100, 101}, {102, 103}, {104, 106}, {107, 108}, {109, 111}, {112, 113}, {114, 116}, {117, 118}, {119, 120}, {121, 123},
739  {124, 125}, {126, 128}, {129, 130}, {131, 133}, {134, 135}, {136, 138}, {139, 140}, {141, 142}, {143, 145}, {146, 147},
740  {148, 150}, {151, 152}, {153, 155}, {156, 157}, {158, 159}, {160, 162}, {163, 164}, {165, 167}, {168, 169}, {170, 172},
741  {173, 174}, {175, 176}, {177, 179}, {180, 181}, {182, 184}, {185, 186}, {187, 189}, {190, 191}, {192, 193}, {194, 196},
742  {197, 198}, {199, 201}, {202, 203}, {204, 206}, {207, 208}, {209, 210}, {211, 213}, {214, 215}, {216, 218}, {219, 220},
743  {221, 222}, {223, 225}, {226, 227}, {228, 230}, {231, 232}, {233, 235}, {236, 237}, {238, 240}, {241, 242}, {243, 244},
744  {245, 247}, {248, 249}, {250, 252}, {253, 254}, {255, 257}, {258, 259}, {260, 261}, {262, 264}, {265, 266}, {267, 269},
745  {270, 271}, {272, 274}, {275, 276}, {277, 278}, {279, 281}, {282, 283}, {284, 286}, {287, 288}, {289, 291}, {292, 293},
746  {294, 296}, {297, 298}, {299, 300}, {301, 303}, {304, 305}, {306, 308}, {309, 310}, {311, 313}, {314, 315}, {316, 318},
747  {319, 320}, {321, 323}, {324, 325}, {326, 328}, {329, 330}, {331, 332}, {333, 335}, {336, 337}, {338, 340}, {341, 342},
748  {343, 345}, {346, 347}, {348, 350}, {351, 352}, {353, 355}, {356, 357}, {358, 360}, {361, 362}, {363, 365}, {366, 367},
749  {368, 370}, {371, 372}, {373, 375}, {376, 377}, {378, 380}, {381, 382}, {383, 384}, {384, 384}, {384, 384}
750  };
751 }
752 
753 
755 {
756 }
std::vector< int > get_gem_pad_to_csc_hs(Parity par, enum CSCPart) const override
std::vector< int > get_gem_pad_to_csc_hs(Parity par, enum CSCPart) const override
std::vector< std::pair< int, int > > get_csc_hs_to_gem_pad(Parity par, enum CSCPart) const override
bool isValid() const
check ALCT validity (1 - valid ALCT)
Definition: CSCALCTDigi.h:32
std::vector< std::pair< int, int > > csc_wg_to_gem_roll_even_l1
std::vector< int > gem_pad_to_csc_hs_me1b_even
std::vector< int > gem_roll_to_csc_wg_odd_l1
std::vector< int > get_gem_roll_to_csc_wg(Parity par, int layer=1) const
std::vector< std::vector< double > > lut_wg_vs_hs_me1ag
std::vector< int > gem_pad_to_csc_hs_even
std::vector< std::pair< int, int > > csc_hs_to_gem_pad_odd
std::vector< std::pair< double, double > > gem_roll_eta_limits_odd_l1
std::vector< int > gem_pad_to_csc_hs_me1b_odd
std::vector< std::pair< int, int > > csc_hs_to_gem_pad_me1b_even
std::vector< int > gem_pad_to_csc_hs_me1a_odd
std::vector< int > gem_pad_to_csc_hs_me1a_even
std::vector< int > gem_roll_to_csc_wg_even_l1
std::vector< std::pair< int, int > > csc_wg_to_gem_roll_odd_l2
std::vector< int > gem_roll_to_csc_wg_even_l2
bool isValid() const
check CLCT validity (1 - valid CLCT)
Definition: CSCCLCTDigi.h:35
std::vector< std::vector< double > > lut_wg_vs_hs_me1a
std::vector< std::pair< int, int > > csc_hs_to_gem_pad_even
std::vector< std::pair< int, int > > csc_wg_to_gem_roll_odd_l1
std::vector< std::pair< double, double > > gem_roll_eta_limits_odd_l2
std::vector< std::vector< double > > lut_wg_eta_odd
std::vector< std::pair< double, double > > gem_roll_eta_limits_even_l1
std::vector< std::pair< int, int > > get_csc_hs_to_gem_pad(Parity par, enum CSCPart) const override
std::vector< int > gem_pad_to_csc_hs_odd
std::vector< std::pair< double, double > > gem_roll_eta_limits_even_l2
std::vector< int > gem_roll_to_csc_wg_odd_l2
std::vector< std::vector< double > > lut_wg_vs_hs_me1b
std::vector< std::pair< int, int > > csc_wg_to_gem_roll_even_l2
std::vector< std::vector< double > > lut_wg_eta_even
double a
Definition: hdecay.h:121
std::vector< std::pair< int, int > > csc_hs_to_gem_pad_me1a_odd
std::vector< std::vector< double > > lut_pt_vs_dphi_gemcsc
std::vector< std::pair< int, int > > csc_hs_to_gem_pad_me1a_even
std::vector< std::pair< int, int > > csc_hs_to_gem_pad_me1b_odd
int getKeyStrip() const
Definition: CSCCLCTDigi.h:94
bool doesWiregroupCrossStrip(int wg, int keystrip, int theEndcap, bool gangedME1a=false) const
int getKeyWG() const
return key wire group
Definition: CSCALCTDigi.h:59
std::vector< std::pair< int, int > > get_csc_wg_to_gem_roll(Parity par, int layer=1) const
bool doesALCTCrossCLCT(const CSCALCTDigi &a, const CSCCLCTDigi &c, int theEndcap, bool gangedME1a=false) const