CMS 3D CMS Logo

UrbanMscModel93.cc
Go to the documentation of this file.
1 // -------------------------------------------------------------------
2 //
3 // GEANT4 Class file
4 //
5 //
6 // File name: UrbanMscModel93
7 //
8 // Original author: Laszlo Urban,
9 //
10 // V.Ivanchenko have copied from G4UrbanMscModel93 class
11 // of Geant4 global tag geant4-09-06-ref-07
12 // and have adopted to CMSSW
13 //
14 // -------------------------------------------------------------------
15 //
16 
17 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
18 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
19 
21 #include "CLHEP/Units/PhysicalConstants.h"
22 #include "Randomize.hh"
23 #include "G4Electron.hh"
24 #include "G4LossTableManager.hh"
25 #include "G4ParticleChangeForMSC.hh"
26 
27 #include "G4Poisson.hh"
28 #include "globals.hh"
29 
30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
31 
32 using namespace std;
33 using namespace CLHEP;
34 
35 static const G4double kappa = 2.5;
36 static const G4double kappapl1 = 3.5;
37 static const G4double kappami1 = 1.5;
38 
40  : G4VMscModel(nam)
41 {
42  masslimite = 0.6*MeV;
43  lambdalimit = 1.*mm;
44  fr = 0.02;
45  taubig = 8.0;
46  tausmall = 1.e-16;
47  taulim = 1.e-6;
49  tlimitminfix = 1.e-6*mm;
51  smallstep = 1.e10;
52  currentRange = 0. ;
53  rangeinit = 0.;
54  tlimit = 1.e10*mm;
55  tlimitmin = 10.*tlimitminfix;
56  tgeom = 1.e50*mm;
57  geombig = 1.e50*mm;
58  geommin = 1.e-3*mm;
60  presafety = 0.*mm;
61 
62  y = 0.;
63 
64  Zold = 0.;
65  Zeff = 1.;
66  Z2 = 1.;
67  Z23 = 1.;
68  lnZ = 0.;
69  coeffth1 = 0.;
70  coeffth2 = 0.;
71  coeffc1 = 0.;
72  coeffc2 = 0.;
73  scr1ini = fine_structure_const*fine_structure_const*
74  electron_mass_c2*electron_mass_c2/(0.885*0.885*4.*pi);
75  scr2ini = 3.76*fine_structure_const*fine_structure_const;
76  scr1 = 0.;
77  scr2 = 0.;
78 
79  theta0max = pi/6.;
80  rellossmax = 0.50;
81  third = 1./3.;
82  particle = nullptr;
83  theManager = G4LossTableManager::Instance();
84  firstStep = true;
85  inside = false;
86  insideskin = false;
87 
88  numlim = 0.01;
89  xsi = 3.;
90  ea = G4Exp(-xsi);
91  eaa = 1.-ea ;
92 
93  skindepth = skin*stepmin;
94 
95  mass = proton_mass_c2;
96  charge = ChargeSquare = 1.0;
98  = zPathLength = par1 = par2 = par3 = 0;
99 
101  fParticleChange = nullptr;
102  couple = nullptr;
103  SetSampleZ(false);
104 }
105 
106 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
107 
109 {}
110 
111 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
112 
113 void UrbanMscModel93::Initialise(const G4ParticleDefinition* p,
114  const G4DataVector&)
115 {
116  skindepth = skin*stepmin;
117 
118  // set values of some data members
119  SetParticle(p);
120 
121  if(p->GetPDGMass() > MeV) {
122  G4cout << "### WARNING: UrbanMscModel93 model is used for "
123  << p->GetParticleName() << " !!! " << G4endl;
124  G4cout << "### This model should be used only for e+-"
125  << G4endl;
126  }
127 
128  fParticleChange = GetParticleChangeForMSC(p);
129 }
130 
131 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
132 
134  const G4ParticleDefinition* part,
135  G4double KineticEnergy,
136  G4double AtomicNumber,G4double,
137  G4double, G4double)
138 {
139  static const G4double sigmafactor =
140  twopi*classic_electr_radius*classic_electr_radius;
141  static const G4double epsfactor = 2.*electron_mass_c2*electron_mass_c2*
142  Bohr_radius*Bohr_radius/(hbarc*hbarc);
143  static const G4double epsmin = 1.e-4 , epsmax = 1.e10;
144 
145  static const G4double Zdat[15] = { 4., 6., 13., 20., 26., 29., 32., 38., 47.,
146  50., 56., 64., 74., 79., 82. };
147 
148  static const G4double Tdat[22] = { 100*eV, 200*eV, 400*eV, 700*eV,
149  1*keV, 2*keV, 4*keV, 7*keV,
150  10*keV, 20*keV, 40*keV, 70*keV,
151  100*keV, 200*keV, 400*keV, 700*keV,
152  1*MeV, 2*MeV, 4*MeV, 7*MeV,
153  10*MeV, 20*MeV};
154 
155  // corr. factors for e-/e+ lambda for T <= Tlim
156  static const G4double celectron[15][22] =
157  {{1.125,1.072,1.051,1.047,1.047,1.050,1.052,1.054,
158  1.054,1.057,1.062,1.069,1.075,1.090,1.105,1.111,
159  1.112,1.108,1.100,1.093,1.089,1.087 },
160  {1.408,1.246,1.143,1.096,1.077,1.059,1.053,1.051,
161  1.052,1.053,1.058,1.065,1.072,1.087,1.101,1.108,
162  1.109,1.105,1.097,1.090,1.086,1.082 },
163  {2.833,2.268,1.861,1.612,1.486,1.309,1.204,1.156,
164  1.136,1.114,1.106,1.106,1.109,1.119,1.129,1.132,
165  1.131,1.124,1.113,1.104,1.099,1.098 },
166  {3.879,3.016,2.380,2.007,1.818,1.535,1.340,1.236,
167  1.190,1.133,1.107,1.099,1.098,1.103,1.110,1.113,
168  1.112,1.105,1.096,1.089,1.085,1.098 },
169  {6.937,4.330,2.886,2.256,1.987,1.628,1.395,1.265,
170  1.203,1.122,1.080,1.065,1.061,1.063,1.070,1.073,
171  1.073,1.070,1.064,1.059,1.056,1.056 },
172  {9.616,5.708,3.424,2.551,2.204,1.762,1.485,1.330,
173  1.256,1.155,1.099,1.077,1.070,1.068,1.072,1.074,
174  1.074,1.070,1.063,1.059,1.056,1.052 },
175  {11.72,6.364,3.811,2.806,2.401,1.884,1.564,1.386,
176  1.300,1.180,1.112,1.082,1.073,1.066,1.068,1.069,
177  1.068,1.064,1.059,1.054,1.051,1.050 },
178  {18.08,8.601,4.569,3.183,2.662,2.025,1.646,1.439,
179  1.339,1.195,1.108,1.068,1.053,1.040,1.039,1.039,
180  1.039,1.037,1.034,1.031,1.030,1.036 },
181  {18.22,10.48,5.333,3.713,3.115,2.367,1.898,1.631,
182  1.498,1.301,1.171,1.105,1.077,1.048,1.036,1.033,
183  1.031,1.028,1.024,1.022,1.021,1.024 },
184  {14.14,10.65,5.710,3.929,3.266,2.453,1.951,1.669,
185  1.528,1.319,1.178,1.106,1.075,1.040,1.027,1.022,
186  1.020,1.017,1.015,1.013,1.013,1.020 },
187  {14.11,11.73,6.312,4.240,3.478,2.566,2.022,1.720,
188  1.569,1.342,1.186,1.102,1.065,1.022,1.003,0.997,
189  0.995,0.993,0.993,0.993,0.993,1.011 },
190  {22.76,20.01,8.835,5.287,4.144,2.901,2.219,1.855,
191  1.677,1.410,1.224,1.121,1.073,1.014,0.986,0.976,
192  0.974,0.972,0.973,0.974,0.975,0.987 },
193  {50.77,40.85,14.13,7.184,5.284,3.435,2.520,2.059,
194  1.837,1.512,1.283,1.153,1.091,1.010,0.969,0.954,
195  0.950,0.947,0.949,0.952,0.954,0.963 },
196  {65.87,59.06,15.87,7.570,5.567,3.650,2.682,2.182,
197  1.939,1.579,1.325,1.178,1.108,1.014,0.965,0.947,
198  0.941,0.938,0.940,0.944,0.946,0.954 },
199  {55.60,47.34,15.92,7.810,5.755,3.767,2.760,2.239,
200  1.985,1.609,1.343,1.188,1.113,1.013,0.960,0.939,
201  0.933,0.930,0.933,0.936,0.939,0.949 }};
202 
203  static const G4double cpositron[15][22] = {
204  {2.589,2.044,1.658,1.446,1.347,1.217,1.144,1.110,
205  1.097,1.083,1.080,1.086,1.092,1.108,1.123,1.131,
206  1.131,1.126,1.117,1.108,1.103,1.100 },
207  {3.904,2.794,2.079,1.710,1.543,1.325,1.202,1.145,
208  1.122,1.096,1.089,1.092,1.098,1.114,1.130,1.137,
209  1.138,1.132,1.122,1.113,1.108,1.102 },
210  {7.970,6.080,4.442,3.398,2.872,2.127,1.672,1.451,
211  1.357,1.246,1.194,1.179,1.178,1.188,1.201,1.205,
212  1.203,1.190,1.173,1.159,1.151,1.145 },
213  {9.714,7.607,5.747,4.493,3.815,2.777,2.079,1.715,
214  1.553,1.353,1.253,1.219,1.211,1.214,1.225,1.228,
215  1.225,1.210,1.191,1.175,1.166,1.174 },
216  {17.97,12.95,8.628,6.065,4.849,3.222,2.275,1.820,
217  1.624,1.382,1.259,1.214,1.202,1.202,1.214,1.219,
218  1.217,1.203,1.184,1.169,1.160,1.151 },
219  {24.83,17.06,10.84,7.355,5.767,3.707,2.546,1.996,
220  1.759,1.465,1.311,1.252,1.234,1.228,1.238,1.241,
221  1.237,1.222,1.201,1.184,1.174,1.159 },
222  {23.26,17.15,11.52,8.049,6.375,4.114,2.792,2.155,
223  1.880,1.535,1.353,1.281,1.258,1.247,1.254,1.256,
224  1.252,1.234,1.212,1.194,1.183,1.170 },
225  {22.33,18.01,12.86,9.212,7.336,4.702,3.117,2.348,
226  2.015,1.602,1.385,1.297,1.268,1.251,1.256,1.258,
227  1.254,1.237,1.214,1.195,1.185,1.179 },
228  {33.91,24.13,15.71,10.80,8.507,5.467,3.692,2.808,
229  2.407,1.873,1.564,1.425,1.374,1.330,1.324,1.320,
230  1.312,1.288,1.258,1.235,1.221,1.205 },
231  {32.14,24.11,16.30,11.40,9.015,5.782,3.868,2.917,
232  2.490,1.925,1.596,1.447,1.391,1.342,1.332,1.327,
233  1.320,1.294,1.264,1.240,1.226,1.214 },
234  {29.51,24.07,17.19,12.28,9.766,6.238,4.112,3.066,
235  2.602,1.995,1.641,1.477,1.414,1.356,1.342,1.336,
236  1.328,1.302,1.270,1.245,1.231,1.233 },
237  {38.19,30.85,21.76,15.35,12.07,7.521,4.812,3.498,
238  2.926,2.188,1.763,1.563,1.484,1.405,1.382,1.371,
239  1.361,1.330,1.294,1.267,1.251,1.239 },
240  {49.71,39.80,27.96,19.63,15.36,9.407,5.863,4.155,
241  3.417,2.478,1.944,1.692,1.589,1.480,1.441,1.423,
242  1.409,1.372,1.330,1.298,1.280,1.258 },
243  {59.25,45.08,30.36,20.83,16.15,9.834,6.166,4.407,
244  3.641,2.648,2.064,1.779,1.661,1.531,1.482,1.459,
245  1.442,1.400,1.354,1.319,1.299,1.272 },
246  {56.38,44.29,30.50,21.18,16.51,10.11,6.354,4.542,
247  3.752,2.724,2.116,1.817,1.692,1.554,1.499,1.474,
248  1.456,1.412,1.364,1.328,1.307,1.282 }};
249 
250  //data/corrections for T > Tlim
251  static const G4double Tlim = 10.*MeV;
252  static const G4double beta2lim = Tlim*(Tlim+2.*electron_mass_c2)/
253  ((Tlim+electron_mass_c2)*(Tlim+electron_mass_c2));
254  static const G4double bg2lim = Tlim*(Tlim+2.*electron_mass_c2)/
255  (electron_mass_c2*electron_mass_c2);
256 
257  static const G4double sig0[15] = {
258  0.2672*barn, 0.5922*barn, 2.653*barn, 6.235*barn,
259  11.69*barn , 13.24*barn , 16.12*barn, 23.00*barn ,
260  35.13*barn , 39.95*barn , 50.85*barn, 67.19*barn ,
261  91.15*barn , 104.4*barn , 113.1*barn};
262 
263  static const G4double hecorr[15] = {
264  120.70, 117.50, 105.00, 92.92, 79.23, 74.510, 68.29,
265  57.39, 41.97, 36.14, 24.53, 10.21, -7.855, -16.84,
266  -22.30};
267 
268  G4double sigma;
269  SetParticle(part);
270 
271  Z23 = pow(AtomicNumber,2./3.);
272 
273  // correction if particle .ne. e-/e+
274  // compute equivalent kinetic energy
275  // lambda depends on p*beta ....
276 
277  G4double eKineticEnergy = KineticEnergy;
278 
279  if(mass > electron_mass_c2)
280  {
281  G4double TAU = KineticEnergy/mass ;
282  G4double c = mass*TAU*(TAU+2.)/(electron_mass_c2*(TAU+1.)) ;
283  G4double w = c-2. ;
284  G4double tau = 0.5*(w+sqrt(w*w+4.*c)) ;
285  eKineticEnergy = electron_mass_c2*tau ;
286  }
287 
288  G4double eTotalEnergy = eKineticEnergy + electron_mass_c2 ;
289  G4double beta2 = eKineticEnergy*(eTotalEnergy+electron_mass_c2)
290  /(eTotalEnergy*eTotalEnergy);
291  G4double bg2 = eKineticEnergy*(eTotalEnergy+electron_mass_c2)
292  /(electron_mass_c2*electron_mass_c2);
293 
294  G4double eps = epsfactor*bg2/Z23;
295 
296  if (eps<epsmin) sigma = 2.*eps*eps;
297  else if(eps<epsmax) sigma = G4Log(1.+2.*eps)-2.*eps/(1.+2.*eps);
298  else sigma = G4Log(2.*eps)-1.+1./eps;
299 
300  sigma *= ChargeSquare*AtomicNumber*AtomicNumber/(beta2*bg2);
301 
302  // interpolate in AtomicNumber and beta2
303  G4double c1,c2,cc1,cc2,corr;
304 
305  // get bin number in Z
306  G4int iZ = 14;
307  while ((iZ>=0)&&(Zdat[iZ]>=AtomicNumber)) iZ -= 1;
308  if (iZ==14) iZ = 13;
309  if (iZ==-1) iZ = 0 ;
310 
311  G4double ZZ1 = Zdat[iZ];
312  G4double ZZ2 = Zdat[iZ+1];
313  G4double ratZ = (AtomicNumber-ZZ1)*(AtomicNumber+ZZ1)/
314  ((ZZ2-ZZ1)*(ZZ2+ZZ1));
315 
316  if(eKineticEnergy <= Tlim)
317  {
318  // get bin number in T (beta2)
319  G4int iT = 21;
320  while ((iT>=0)&&(Tdat[iT]>=eKineticEnergy)) iT -= 1;
321  if(iT==21) iT = 20;
322  if(iT==-1) iT = 0 ;
323 
324  // calculate betasquare values
325  G4double T = Tdat[iT], E = T + electron_mass_c2;
326  G4double b2small = T*(E+electron_mass_c2)/(E*E);
327 
328  T = Tdat[iT+1]; E = T + electron_mass_c2;
329  G4double b2big = T*(E+electron_mass_c2)/(E*E);
330  G4double ratb2 = (beta2-b2small)/(b2big-b2small);
331 
332  if (charge < 0.)
333  {
334  c1 = celectron[iZ][iT];
335  c2 = celectron[iZ+1][iT];
336  cc1 = c1+ratZ*(c2-c1);
337 
338  c1 = celectron[iZ][iT+1];
339  c2 = celectron[iZ+1][iT+1];
340  cc2 = c1+ratZ*(c2-c1);
341 
342  corr = cc1+ratb2*(cc2-cc1);
343 
344  sigma *= sigmafactor/corr;
345  }
346  else
347  {
348  c1 = cpositron[iZ][iT];
349  c2 = cpositron[iZ+1][iT];
350  cc1 = c1+ratZ*(c2-c1);
351 
352  c1 = cpositron[iZ][iT+1];
353  c2 = cpositron[iZ+1][iT+1];
354  cc2 = c1+ratZ*(c2-c1);
355 
356  corr = cc1+ratb2*(cc2-cc1);
357 
358  sigma *= sigmafactor/corr;
359  }
360  }
361  else
362  {
363  c1 = bg2lim*sig0[iZ]*(1.+hecorr[iZ]*(beta2-beta2lim))/bg2;
364  c2 = bg2lim*sig0[iZ+1]*(1.+hecorr[iZ+1]*(beta2-beta2lim))/bg2;
365  if((AtomicNumber >= ZZ1) && (AtomicNumber <= ZZ2))
366  sigma = c1+ratZ*(c2-c1) ;
367  else if(AtomicNumber < ZZ1)
368  sigma = AtomicNumber*AtomicNumber*c1/(ZZ1*ZZ1);
369  else if(AtomicNumber > ZZ2)
370  sigma = AtomicNumber*AtomicNumber*c2/(ZZ2*ZZ2);
371  }
372  return sigma;
373 
374 }
375 
376 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
377 
379 {
380  SetParticle(track->GetDynamicParticle()->GetDefinition());
381  firstStep = true;
382  inside = false;
383  insideskin = false;
384  tlimit = geombig;
386  tlimitmin = 10.*stepmin ;
387 }
388 
389 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
390 
392  const G4Track& track,
393  G4double& currentMinimalStep)
394 {
395  tPathLength = currentMinimalStep;
396  const G4DynamicParticle* dp = track.GetDynamicParticle();
397  G4StepPoint* sp = track.GetStep()->GetPreStepPoint();
398  G4StepStatus stepStatus = sp->GetStepStatus();
399  couple = track.GetMaterialCutsCouple();
400  SetCurrentCouple(couple);
401  currentMaterialIndex = couple->GetIndex();
402  currentKinEnergy = dp->GetKineticEnergy();
404  lambda0 = GetTransportMeanFreePath(particle,currentKinEnergy);
405 
406  // stop here if small range particle
407  if(inside || tPathLength < tlimitminfix) {
408  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
409  }
410 
412 
413  presafety = sp->GetSafety();
414 
415  // G4cout << "Urban2::StepLimit tPathLength= "
416  // <<tPathLength<<" safety= " << presafety
417  // << " range= " <<currentRange<< " lambda= "<<lambda0
418  // << " Alg: " << steppingAlgorithm <<G4endl;
419 
420  // far from geometry boundary
421  if(currentRange < presafety)
422  {
423  inside = true;
424  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
425  }
426 
427  // standard version
428  //
429  if (steppingAlgorithm == fUseDistanceToBoundary)
430  {
431  //compute geomlimit and presafety
432  geomlimit = ComputeGeomLimit(track, presafety, currentRange);
433 
434  // is it far from boundary ?
435  if(currentRange < presafety)
436  {
437  inside = true;
438  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
439  }
440 
441  smallstep += 1.;
442  insideskin = false;
443 
444  if(firstStep || stepStatus == fGeomBoundary)
445  {
447  if(firstStep) smallstep = 1.e10;
448  else smallstep = 1.;
449 
450  //define stepmin here (it depends on lambda!)
451  //rough estimation of lambda_elastic/lambda_transport
452  G4double rat = currentKinEnergy/MeV ;
453  rat = 1.e-3/(rat*(10.+rat)) ;
454  //stepmin ~ lambda_elastic
455  stepmin = rat*lambda0;
456  skindepth = skin*stepmin;
457  //define tlimitmin
458  tlimitmin = 10.*stepmin;
460  //G4cout << "rangeinit= " << rangeinit << " stepmin= " << stepmin
461  // << " tlimitmin= " << tlimitmin << " geomlimit= " << geomlimit <<G4endl;
462  // constraint from the geometry
463  if((geomlimit < geombig) && (geomlimit > geommin))
464  {
465  // geomlimit is a geometrical step length
466  // transform it to true path length (estimation)
467  if((1.-geomlimit/lambda0) > 0.)
468  geomlimit = -lambda0*G4Log(1.-geomlimit/lambda0)+tlimitmin ;
469 
470  if(stepStatus == fGeomBoundary)
471  tgeom = geomlimit/facgeom;
472  else
473  tgeom = 2.*geomlimit/facgeom;
474  }
475  else
476  tgeom = geombig;
477  }
478 
479 
480  //step limit
481  tlimit = facrange*rangeinit;
482  if(tlimit < facsafety*presafety)
483  tlimit = facsafety*presafety;
484 
485  //lower limit for tlimit
487 
488  if(tlimit > tgeom) tlimit = tgeom;
489 
490  //G4cout << "tgeom= " << tgeom << " geomlimit= " << geomlimit
491  // << " tlimit= " << tlimit << " presafety= " << presafety << G4endl;
492 
493  // shortcut
494  if((tPathLength < tlimit) && (tPathLength < presafety) &&
495  (smallstep >= skin) && (tPathLength < geomlimit-0.999*skindepth))
496  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
497 
498  // step reduction near to boundary
499  if(smallstep < skin)
500  {
501  tlimit = stepmin;
502  insideskin = true;
503  }
504  else if(geomlimit < geombig)
505  {
506  if(geomlimit > skindepth)
507  {
508  if(tlimit > geomlimit-0.999*skindepth)
509  tlimit = geomlimit-0.999*skindepth;
510  }
511  else
512  {
513  insideskin = true;
514  if(tlimit > stepmin) tlimit = stepmin;
515  }
516  }
517 
518  if(tlimit < stepmin) tlimit = stepmin;
519 
520  // randomize 1st step or 1st 'normal' step in volume
521  if(firstStep || ((smallstep == skin) && !insideskin))
522  {
523  G4double temptlimit = tlimit;
524  if(temptlimit > tlimitmin)
525  {
526  do {
527  temptlimit = G4RandGauss::shoot(tlimit,0.3*tlimit);
528  } while ((temptlimit < tlimitmin) ||
529  (temptlimit > 2.*tlimit-tlimitmin));
530  }
531  else
532  temptlimit = tlimitmin;
533  if(tPathLength > temptlimit) tPathLength = temptlimit;
534  }
535  else
536  {
538  }
539 
540  }
541  // for 'normal' simulation with or without magnetic field
542  // there no small step/single scattering at boundaries
543  else if(steppingAlgorithm == fUseSafety)
544  {
545  // compute presafety again if presafety <= 0 and no boundary
546  // i.e. when it is needed for optimization purposes
547  if((stepStatus != fGeomBoundary) && (presafety < tlimitminfix))
548  presafety = ComputeSafety(sp->GetPosition(),tPathLength);
549 
550  // is far from boundary
551  if(currentRange < presafety)
552  {
553  inside = true;
554  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
555  }
556 
557  if(firstStep || stepStatus == fGeomBoundary)
558  {
560  fr = facrange;
561  // 9.1 like stepping for e+/e- only (not for muons,hadrons)
562  if(mass < masslimite)
563  {
564  if(lambda0 > currentRange)
565  rangeinit = lambda0;
566  if(lambda0 > lambdalimit)
567  fr *= 0.75+0.25*lambda0/lambdalimit;
568  }
569 
570  //lower limit for tlimit
571  G4double rat = currentKinEnergy/MeV ;
572  rat = 1.e-3/(rat*(10.+rat)) ;
573  tlimitmin = 10.*lambda0*rat;
575  }
576  //step limit
577  tlimit = fr*rangeinit;
578 
579  if(tlimit < facsafety*presafety)
580  tlimit = facsafety*presafety;
581 
582  //lower limit for tlimit
584 
586 
587  }
588 
589  // version similar to 7.1 (needed for some experiments)
590  else
591  {
592  if (stepStatus == fGeomBoundary)
593  {
594  if (currentRange > lambda0) tlimit = facrange*currentRange;
595  else tlimit = facrange*lambda0;
596 
599  }
600  }
601  //G4cout << "tPathLength= " << tPathLength
602  // << " currentMinimalStep= " << currentMinimalStep << G4endl;
603  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
604 }
605 
606 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
607 
609 {
610  firstStep = false;
611  lambdaeff = lambda0;
612  par1 = -1. ;
613  par2 = par3 = 0. ;
614 
615  // do the true -> geom transformation
617 
618  // z = t for very small tPathLength
619  if(tPathLength < tlimitminfix) return zPathLength;
620 
621  // this correction needed to run MSC with eIoni and eBrem inactivated
622  // and makes no harm for a normal run
625 
626  G4double tau = tPathLength/lambda0 ;
627 
628  if ((tau <= tausmall) || insideskin) {
631  return zPathLength;
632  }
633 
634  G4double zmean;
635  if (tPathLength < currentRange*dtrl) {
636  if(tau < taulim) zmean = tPathLength*(1.-0.5*tau) ;
637  else zmean = lambda0*(1.-G4Exp(-tau));
638  } else if(currentKinEnergy < mass || tPathLength == currentRange) {
639  par1 = 1./currentRange ;
640  par2 = 1./(par1*lambda0) ;
641  par3 = 1.+par2 ;
643  zmean = (1.-G4Exp(par3*G4Log(1.-tPathLength/currentRange)))/(par1*par3) ;
644  else
645  zmean = 1./(par1*par3) ;
646  } else {
647  G4double T1 = GetEnergy(particle,currentRange-tPathLength,couple);
648  G4double lambda1 = GetTransportMeanFreePath(particle,T1);
649 
650  par1 = (lambda0-lambda1)/(lambda0*tPathLength) ;
651  par2 = 1./(par1*lambda0) ;
652  par3 = 1.+par2 ;
653  zmean = (1.-G4Exp(par3*G4Log(lambda1/lambda0)))/(par1*par3) ;
654  }
655 
656  zPathLength = zmean ;
657 
658  // sample z
659  if(samplez)
660  {
661  const G4double ztmax = 0.99 ;
662  G4double zt = zmean/tPathLength ;
663 
664  if (tPathLength > stepmin && zt < ztmax)
665  {
666  G4double u,cz1;
667  if(zt >= third)
668  {
669  G4double cz = 0.5*(3.*zt-1.)/(1.-zt) ;
670  cz1 = 1.+cz ;
671  G4double u0 = cz/cz1 ;
672  G4double grej ;
673  do {
674  u = G4Exp(G4Log(G4UniformRand())/cz1) ;
675  grej = G4Exp(cz*G4Log(u/u0))*(1.-u)/(1.-u0) ;
676  } while (grej < G4UniformRand()) ;
677  }
678  else
679  {
680  cz1 = 1./zt-1.;
681  u = 1.-G4Exp(G4Log(G4UniformRand())/cz1) ;
682  }
684  }
685  }
686 
688  //G4cout << "zPathLength= " << zPathLength << " lambda1= " << lambda0 << G4endl;
689  return zPathLength;
690 }
691 
692 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
693 
694 G4double UrbanMscModel93::ComputeTrueStepLength(G4double geomStepLength)
695 {
696  // step defined other than transportation
697  if(geomStepLength == zPathLength && tPathLength <= currentRange)
698  return tPathLength;
699 
700  // t = z for very small step
701  zPathLength = geomStepLength;
702  tPathLength = geomStepLength;
703  if(geomStepLength < tlimitminfix) return tPathLength;
704 
705  // recalculation
706  if((geomStepLength > lambda0*tausmall) && !insideskin)
707  {
708  if(par1 < 0.)
709  tPathLength = -lambda0*G4Log(1.-geomStepLength/lambda0) ;
710  else
711  {
712  if(par1*par3*geomStepLength < 1.)
713  tPathLength = (1.-G4Exp(G4Log(1.-par1*par3*geomStepLength)/par3))/par1 ;
714  else
716  }
717  }
718  if(tPathLength < geomStepLength) tPathLength = geomStepLength;
719 
720  //G4cout << "tPathLength= " << tPathLength << " step= " << geomStepLength << G4endl;
721 
722  return tPathLength;
723 }
724 
725 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
726 
727 G4ThreeVector&
728 UrbanMscModel93::SampleScattering(const G4ThreeVector& oldDirection,
729  G4double safety)
730 {
731  fDisplacement.set(0.0,0.0,0.0);
732  G4double kineticEnergy = currentKinEnergy;
733  if (tPathLength > currentRange*dtrl) {
734  kineticEnergy = GetEnergy(particle,currentRange-tPathLength,couple);
735  } else {
736  kineticEnergy -= tPathLength*GetDEDX(particle,currentKinEnergy,couple);
737  }
738  if((kineticEnergy <= eV) || (tPathLength <= tlimitminfix) ||
739  (tPathLength/tausmall < lambda0)) { return fDisplacement; }
740 
741  G4double cth = SampleCosineTheta(tPathLength,kineticEnergy);
742 
743  // protection against 'bad' cth values
744  if(std::fabs(cth) > 1.) { return fDisplacement; }
745 
746  // extra protection agaist high energy particles backscattered
747  // if(cth < 1.0 - 1000*tPathLength/lambda0 && kineticEnergy > 20*MeV) {
748  //G4cout << "Warning: large scattering E(MeV)= " << kineticEnergy
749  // << " s(mm)= " << tPathLength/mm
750  // << " 1-cosTheta= " << 1.0 - cth << G4endl;
751  // do Gaussian central scattering
752  // if(kineticEnergy > 0.5*GeV && cth < 0.9) {
753  /*
754  if(cth < 1.0 - 1000*tPathLength/lambda0 &&
755  cth < 0.9 && kineticEnergy > 500*MeV) {
756  G4ExceptionDescription ed;
757  ed << particle->GetParticleName()
758  << " E(MeV)= " << kineticEnergy/MeV
759  << " Step(mm)= " << tPathLength/mm
760  << " tau= " << tPathLength/lambda0
761  << " in " << CurrentCouple()->GetMaterial()->GetName()
762  << " CosTheta= " << cth
763  << " is too big";
764  G4Exception("UrbanMscModel93::SampleScattering","em0004",
765  JustWarning, ed,"");
766  }
767  */
768 
769  G4double sth = sqrt((1.0 - cth)*(1.0 + cth));
770  G4double phi = twopi*G4UniformRand();
771  G4double dirx = sth*cos(phi);
772  G4double diry = sth*sin(phi);
773 
774  G4ThreeVector newDirection(dirx,diry,cth);
775  newDirection.rotateUz(oldDirection);
776  fParticleChange->ProposeMomentumDirection(newDirection);
777 
778  if (latDisplasment && safety > tlimitminfix) {
779 
780  G4double r = SampleDisplacement();
781  /*
782  G4cout << "UrbanMscModel93::SampleSecondaries: e(MeV)= " << kineticEnergy
783  << " sinTheta= " << sth << " r(mm)= " << r
784  << " trueStep(mm)= " << tPathLength
785  << " geomStep(mm)= " << zPathLength
786  << G4endl;
787  */
788  if(r > 0.)
789  {
790  G4double latcorr = LatCorrelation();
791  if(latcorr > r) latcorr = r;
792 
793  // sample direction of lateral displacement
794  // compute it from the lateral correlation
795  G4double Phi = 0.;
796  if(std::abs(r*sth) < latcorr)
797  Phi = twopi*G4UniformRand();
798  else
799  {
800  G4double psi = std::acos(latcorr/(r*sth));
801  if(G4UniformRand() < 0.5)
802  Phi = phi+psi;
803  else
804  Phi = phi-psi;
805  }
806 
807  dirx = r*std::cos(Phi);
808  diry = r*std::sin(Phi);
809 
810  fDisplacement.set(dirx,diry,0.0);
811  fDisplacement.rotateUz(oldDirection);
812  }
813  }
814  return fDisplacement;
815 }
816 
817 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
818 
819 G4double UrbanMscModel93::SampleCosineTheta(G4double trueStepLength,
820  G4double KineticEnergy)
821 {
822  G4double cth = 1. ;
823  G4double tau = trueStepLength/lambda0 ;
824 
825  Zeff = couple->GetMaterial()->GetTotNbOfElectPerVolume()/
826  couple->GetMaterial()->GetTotNbOfAtomsPerVolume() ;
827 
828  if(Zold != Zeff)
829  UpdateCache();
830 
831  if(insideskin)
832  {
833  //no scattering, single or plural scattering
834  G4double mean = trueStepLength/stepmin ;
835 
836  G4int n = G4Poisson(mean);
837  if(n > 0)
838  {
839  //screening (Moliere-Bethe)
840  G4double mom2 = KineticEnergy*(2.*mass+KineticEnergy);
841  G4double beta2 = mom2/((KineticEnergy+mass)*(KineticEnergy+mass));
842  G4double ascr = scr1/mom2;
843  ascr *= 1.13+scr2/beta2;
844  G4double ascr1 = 1.+2.*ascr;
845  G4double bp1=ascr1+1.;
846  G4double bm1=ascr1-1.;
847 
848  // single scattering from screened Rutherford x-section
849  G4double ct,st,phi;
850  G4double sx=0.,sy=0.,sz=0.;
851  for(G4int i=1; i<=n; i++)
852  {
853  ct = ascr1-bp1*bm1/(2.*G4UniformRand()+bm1);
854  if(ct < -1.) ct = -1.;
855  if(ct > 1.) ct = 1.;
856  st = sqrt(1.-ct*ct);
857  phi = twopi*G4UniformRand();
858  sx += st*cos(phi);
859  sy += st*sin(phi);
860  sz += ct;
861  }
862  cth = sz/sqrt(sx*sx+sy*sy+sz*sz);
863  }
864  }
865  else
866  {
867  if(trueStepLength >= currentRange*dtrl)
868  {
869  if(par1*trueStepLength < 1.)
870  tau = -par2*G4Log(1.-par1*trueStepLength) ;
871  // for the case if ioni/brems are inactivated
872  // see the corresponding condition in ComputeGeomPathLength
873  else if(1.-KineticEnergy/currentKinEnergy > taulim)
874  tau = taubig ;
875  }
876  currentTau = tau ;
877  lambdaeff = trueStepLength/currentTau;
878  currentRadLength = couple->GetMaterial()->GetRadlen();
879 
880  if (tau >= taubig) cth = -1.+2.*G4UniformRand();
881  else if (tau >= tausmall)
882  {
883  G4double xmeanth, x2meanth;
884  if(tau < numlim) {
885  xmeanth = 1.0 - tau*(1.0 - 0.5*tau);
886  x2meanth= 1.0 - tau*(5.0 - 6.25*tau)*third;
887  } else {
888  xmeanth = G4Exp(-tau);
889  x2meanth = (1.+2.*G4Exp(-2.5*tau))*third;
890  }
891  G4double relloss = 1.-KineticEnergy/currentKinEnergy;
892 
893  if(relloss > rellossmax)
894  return SimpleScattering(xmeanth,x2meanth);
895 
896  G4double theta0 = ComputeTheta0(trueStepLength,KineticEnergy);
897 
898  //G4cout << "Theta0= " << theta0 << " theta0max= " << theta0max
899  // << " sqrt(tausmall)= " << sqrt(tausmall) << G4endl;
900 
901  // protection for very small angles
902  G4double theta2 = theta0*theta0;
903 
904  if(theta2 < tausmall) { return cth; }
905 
906  if(theta0 > theta0max) {
907  return SimpleScattering(xmeanth,x2meanth);
908  }
909 
910  G4double x = theta2*(1.0 - theta2/12.);
911  if(theta2 > numlim) {
912  G4double sth = 2.*sin(0.5*theta0);
913  x = sth*sth;
914  }
915 
916  G4double xmean1 = 1.-(1.-(1.+xsi)*ea)*x/eaa;
917  G4double x0 = 1. - xsi*x;
918 
919  // G4cout << " xmean1= " << xmean1 << " xmeanth= " << xmeanth << G4endl;
920 
921  if(xmean1 <= 0.999*xmeanth) {
922  return SimpleScattering(xmeanth,x2meanth);
923  }
924  // from e- and muon scattering data
925  G4double c = coeffc1+coeffc2*y;
926 
927  // tail should not be too big
928  if(c < 1.9) {
929  /*
930  if(KineticEnergy > 200*MeV && c < 1.6) {
931  G4cout << "UrbanMscModel93::SampleCosineTheta: E(GeV)= "
932  << KineticEnergy/GeV
933  << " !!** c= " << c
934  << " **!! length(mm)= " << trueStepLength << " Zeff= " << Zeff
935  << " " << couple->GetMaterial()->GetName()
936  << " tau= " << tau << G4endl;
937  }
938  */
939  c = 1.9;
940  }
941 
942  if(fabs(c-3.) < 0.001) { c = 3.001; }
943  else if(fabs(c-2.) < 0.001) { c = 2.001; }
944 
945  G4double c1 = c-1.;
946 
947  //from continuity of derivatives
948  G4double b = 1.+(c-xsi)*x;
949 
950  G4double b1 = b+1.;
951  G4double bx = c*x;
952 
953  G4double eb1 = pow(b1,c1);
954  G4double ebx = pow(bx,c1);
955  G4double d = ebx/eb1;
956 
957  // G4double xmean2 = (x0*eb1+ebx-(eb1*bx-b1*ebx)/(c-2.))/(eb1-ebx);
958  G4double xmean2 = (x0 + d - (bx - b1*d)/(c-2.))/(1. - d);
959 
960  G4double f1x0 = ea/eaa;
961  G4double f2x0 = c1/(c*(1. - d));
962  G4double prob = f2x0/(f1x0+f2x0);
963 
964  G4double qprob = xmeanth/(prob*xmean1+(1.-prob)*xmean2);
965 
966  // sampling of costheta
967  //G4cout << "c= " << c << " qprob= " << qprob << " eb1= " << eb1
968  // << " c1= " << c1 << " b1= " << b1 << " bx= " << bx << " eb1= " << eb1
969  // << G4endl;
970  if(G4UniformRand() < qprob)
971  {
972  G4double var = 0;
973  if(G4UniformRand() < prob) {
974  cth = 1.+G4Log(ea+G4UniformRand()*eaa)*x;
975  } else {
976  var = (1.0 - d)*G4UniformRand();
977  if(var < numlim*d) {
978  var /= (d*c1);
979  cth = -1.0 + var*(1.0 - 0.5*var*c)*(2. + (c - xsi)*x);
980  } else {
981  cth = 1. + x*(c - xsi - c*pow(var + d, -1.0/c1));
982  //b-b1*bx/G4Exp(log(ebx+(eb1-ebx)*G4UniformRand())/c1) ;
983  }
984  }
985  if(KineticEnergy > 5*GeV && cth < 0.9) {
986  G4cout << "UrbanMscModel93::SampleCosineTheta: E(GeV)= "
987  << KineticEnergy/GeV
988  << " 1-cosT= " << 1 - cth
989  << " length(mm)= " << trueStepLength << " Zeff= " << Zeff
990  << " tau= " << tau
991  << " prob= " << prob << " var= " << var << G4endl;
992  G4cout << " c= " << c << " qprob= " << qprob << " eb1= " << eb1
993  << " ebx= " << ebx
994  << " c1= " << c1 << " b= " << b << " b1= " << b1
995  << " bx= " << bx << " d= " << d
996  << " ea= " << ea << " eaa= " << eaa << G4endl;
997  }
998  }
999  else {
1000  cth = -1.+2.*G4UniformRand();
1001  if(KineticEnergy > 5*GeV) {
1002  G4cout << "UrbanMscModel93::SampleCosineTheta: E(GeV)= "
1003  << KineticEnergy/GeV
1004  << " length(mm)= " << trueStepLength << " Zeff= " << Zeff
1005  << " qprob= " << qprob << G4endl;
1006  }
1007  }
1008  }
1009  }
1010  return cth ;
1011 }
1012 
1013 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1014 
1016 {
1017  // Compute rmean = sqrt(<r**2>) from theory
1018  G4double rmean = 0.0;
1019  if ((currentTau >= tausmall) && !insideskin) {
1020  if (currentTau < taulim) {
1022  (1.-kappapl1*currentTau*0.25)/6. ;
1023 
1024  } else {
1025  G4double etau = 0.0;
1026  if (currentTau<taubig) etau = G4Exp(-currentTau);
1027  rmean = -kappa*currentTau;
1028  rmean = -G4Exp(rmean)/(kappa*kappami1);
1029  rmean += currentTau-kappapl1/kappa+kappa*etau/kappami1;
1030  }
1031  if (rmean>0.) rmean = 2.*lambdaeff*sqrt(rmean*third);
1032  else rmean = 0.;
1033  }
1034 
1035  if(rmean == 0.) return rmean;
1036 
1037  // protection against z > t ...........................
1038  G4double rmax = (tPathLength-zPathLength)*(tPathLength+zPathLength);
1039  if(rmax <= 0.)
1040  rmax = 0.;
1041  else
1042  rmax = sqrt(rmax);
1043 
1044  if(rmean >= rmax) return rmax;
1045 
1046  return rmean;
1047  // VI comment out for the time being
1048  /*
1049  //sample r (Gaussian distribution with a mean of rmean )
1050  G4double r = 0.;
1051  G4double sigma = min(rmean,rmax-rmean);
1052  sigma /= 3.;
1053  G4double rlow = rmean-3.*sigma;
1054  G4double rhigh = rmean+3.*sigma;
1055  do {
1056  r = G4RandGauss::shoot(rmean,sigma);
1057  } while ((r < rlow) || (r > rhigh));
1058 
1059  return r;
1060  */
1061 }
1062 
1063 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1064 
1066 {
1067  G4double latcorr = 0.;
1068  if((currentTau >= tausmall) && !insideskin)
1069  {
1070  if(currentTau < taulim)
1073  else
1074  {
1075  G4double etau = 0.;
1076  if(currentTau < taubig) etau = G4Exp(-currentTau);
1077  latcorr = -kappa*currentTau;
1078  latcorr = G4Exp(latcorr)/kappami1;
1079  latcorr += 1.-kappa*etau/kappami1 ;
1080  latcorr *= 2.*lambdaeff*third ;
1081  }
1082  }
1083 
1084  return latcorr;
1085 }
1086 
1087 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
const G4ParticleDefinition * particle
void StartTracking(G4Track *) override
const G4MaterialCutsCouple * couple
const double GeV
Definition: MathUtil.h:16
G4ParticleChangeForMSC * fParticleChange
const double hbarc
Definition: MathUtil.h:18
const double w
Definition: UKUtility.cc:23
static const G4double kappami1
G4double ComputeTheta0(G4double truePathLength, G4double KineticEnergy)
Sin< T >::type sin(const T &t)
Definition: Sin.h:22
G4ThreeVector & SampleScattering(const G4ThreeVector &, G4double safety) override
G4double currentRadLength
void SetParticle(const G4ParticleDefinition *)
std::map< std::string, int, std::less< std::string > > psi
G4double ComputeGeomPathLength(G4double truePathLength) override
G4double ComputeTruePathLengthLimit(const G4Track &track, G4double &currentMinimalStep) override
G4double LatCorrelation()
const Double_t pi
UrbanMscModel93(const G4String &nam="UrbanMsc93")
const double MeV
G4LossTableManager * theManager
T sqrt(T t)
Definition: SSEVec.h:18
G4double currentKinEnergy
Cos< T >::type cos(const T &t)
Definition: Cos.h:22
G4double SimpleScattering(G4double xmeanth, G4double x2meanth)
G4double SampleDisplacement()
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
~UrbanMscModel93() override
JetCorrectorParameters corr
Definition: classes.h:5
static const G4double kappapl1
G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *particle, G4double KineticEnergy, G4double AtomicNumber, G4double AtomicWeight=0., G4double cut=0., G4double emax=DBL_MAX) override
part
Definition: HCALResponse.h:20
double b
Definition: hdecay.h:120
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
G4double ComputeTrueStepLength(G4double geomStepLength) override
G4double SampleCosineTheta(G4double trueStepLength, G4double KineticEnergy)
static const G4double kappa
long double T
Power< A, B >::type pow(const A &a, const B &b)
Definition: Power.h:40