CMS 3D CMS Logo

ECalSD.cc
Go to the documentation of this file.
1 // File: ECalSD.cc
3 // Description: Sensitive Detector class for electromagnetic calorimeters
18 
23 
24 #include "G4LogicalVolumeStore.hh"
25 #include "G4LogicalVolume.hh"
26 #include "G4Step.hh"
27 #include "G4Track.hh"
28 #include "G4VProcess.hh"
29 
30 #include "G4SystemOfUnits.hh"
31 
32 #include<algorithm>
33 
34 //#define EDM_ML_DEBUG
35 
36 template <class T>
37 bool any(const std::vector<T> & v, const T &what) {
38  return std::find(v.begin(), v.end(), what) != v.end();
39 }
40 
42  const SensitiveDetectorCatalog & clg,
43  edm::ParameterSet const & p, const SimTrackManager* manager) :
44  CaloSD(name, cpv, clg, p, manager,
45  (float)(p.getParameter<edm::ParameterSet>("ECalSD").getParameter<double>("TimeSliceUnit")),
46  p.getParameter<edm::ParameterSet>("ECalSD").getParameter<bool>("IgnoreTrackID")),
48 
49  // static SimpleConfigurable<bool> on1(false, "ECalSD:UseBirkLaw");
50  // static SimpleConfigurable<double> bk1(0.00463,"ECalSD:BirkC1");
51  // static SimpleConfigurable<double> bk2(-0.03, "ECalSD:BirkC2");
52  // static SimpleConfigurable<double> bk3(1.0, "ECalSD:BirkC3");
53  // Values from NIM A484 (2002) 239-244: as implemented in Geant3
54  // useBirk = on1.value();
55  // birk1 = bk1.value()*(g/(MeV*cm2));
56  // birk2 = bk2.value()*(g/(MeV*cm2))*(g/(MeV*cm2));
57 
59  useBirk = m_EC.getParameter<bool>("UseBirkLaw");
60  useBirkL3 = m_EC.getParameter<bool>("BirkL3Parametrization");
61  birk1 = m_EC.getParameter<double>("BirkC1")*(g/(MeV*cm2));
62  birk2 = m_EC.getParameter<double>("BirkC2");
63  birk3 = m_EC.getParameter<double>("BirkC3");
64  birkSlope = m_EC.getParameter<double>("BirkSlope");
65  birkCut = m_EC.getParameter<double>("BirkCut");
66  slopeLY = m_EC.getParameter<double>("SlopeLightYield");
67  storeTrack = m_EC.getParameter<bool>("StoreSecondary");
68  crystalMat = m_EC.getUntrackedParameter<std::string>("XtalMat","E_PbWO4");
69  bool isItTB = m_EC.getUntrackedParameter<bool>("TestBeam", false);
70  bool nullNS = m_EC.getUntrackedParameter<bool>("NullNumbering", false);
71  storeRL = m_EC.getUntrackedParameter<bool>("StoreRadLength", false);
72  scaleRL = m_EC.getUntrackedParameter<double>("ScaleRadLength",1.0);
73 
74  //Changes for improved timing simulation
75  storeLayerTimeSim = m_EC.getUntrackedParameter<bool>("StoreLayerTimeSim", false);
76 
77  ageingWithSlopeLY = m_EC.getUntrackedParameter<bool>("AgeingWithSlopeLY", false);
78  if(ageingWithSlopeLY) ageing.setLumies(p.getParameter<edm::ParameterSet>("ECalSD").getParameter<double>("DelivLuminosity"),
79  p.getParameter<edm::ParameterSet>("ECalSD").getParameter<double>("InstLuminosity"));
80 
81  //Material list for HB/HE/HO sensitive detectors
82  std::string attribute = "ReadOutName";
83  DDSpecificsMatchesValueFilter filter{DDValue(attribute,name,0)};
84  DDFilteredView fv(cpv,filter);
85  fv.firstChild();
87  // Use of Weight
88  useWeight= true;
89  std::vector<double> tempD = getDDDArray("EnergyWeight",sv);
90  if (!tempD.empty()) { if (tempD[0] < 0.1) useWeight = false; }
91 #ifdef EDM_ML_DEBUG
92  edm::LogVerbatim("EcalSim") << "ECalSD:: useWeight " << tempD.size() << ":"
93  << useWeight << std::endl;
94 #endif
95  std::vector<std::string> tempS = getStringArray("Depth1Name",sv);
96  if (!tempS.empty()) depth1Name = tempS[0];
97  else depth1Name = " ";
98  tempS = getStringArray("Depth2Name",sv);
99  if (!tempS.empty()) depth2Name = tempS[0];
100  else depth2Name = " ";
101 #ifdef EDM_ML_DEBUG
102  edm::LogVerbatim("EcalSim") << "Names (Depth 1):" << depth1Name << " (Depth 2):"
103  << depth2Name << std::endl;
104 #endif
105  EcalNumberingScheme* scheme=nullptr;
106  if (nullNS) {
107  scheme = nullptr;
108  } else if (name == "EcalHitsEB") {
109  scheme = dynamic_cast<EcalNumberingScheme*>(new EcalBarrelNumberingScheme());
110  isEB=true;
111  } else if (name == "EcalHitsEE") {
112  scheme = dynamic_cast<EcalNumberingScheme*>(new EcalEndcapNumberingScheme());
113  isEE=true;
114  } else if (name == "EcalHitsES") {
115  if (isItTB) scheme = dynamic_cast<EcalNumberingScheme*>(new ESTBNumberingScheme());
116  else scheme = dynamic_cast<EcalNumberingScheme*>(new EcalPreshowerNumberingScheme());
117  useWeight = false;
118  } else {
119  edm::LogWarning("EcalSim") << "ECalSD: ReadoutName not supported";
120  }
121 
122  if (scheme) setNumberingScheme(scheme);
123 #ifdef EDM_ML_DEBUG
124  edm::LogVerbatim("EcalSim") << "Constructing a ECalSD with name " << GetName();
125 #endif
126  if (useWeight) {
127  edm::LogVerbatim("EcalSim") << "ECalSD:: Use of Birks law is set to "
128  << useBirk << " with three constants kB = "
129  << birk1 << ", C1 = " << birk2 << ", C2 = "
130  << birk3 <<"\n Use of L3 parametrization "
131  << useBirkL3 << " with slope " << birkSlope
132  << " and cut off " << birkCut << "\n"
133  << " Slope for Light yield is set to "
134  << slopeLY;
135  } else {
136  edm::LogVerbatim("EcalSim") << "ECalSD:: energy deposit is not corrected "
137  << " by Birk or light yield curve";
138  }
139 
140  edm::LogVerbatim("EcalSim") << "ECalSD:: Suppression Flag " << suppressHeavy
141  << "\tprotons below " << kmaxProton << " MeV,"
142  << "\tneutrons below " << kmaxNeutron << " MeV"
143  << "\tions below " << kmaxIon << " MeV"
144  << "\n\tDepth1 Name = " << depth1Name
145  << "\tDepth2 Name = " << depth2Name
146  << "\n\tstoreRL" << storeRL << ":" << scaleRL
147  << "\tstoreLayerTimeSim " << storeLayerTimeSim
148  << "\n\ttime Granularity "
149  << p.getParameter<edm::ParameterSet>("ECalSD").getParameter<double>("TimeSliceUnit")
150  << " ns";
151  if (useWeight) initMap(name,cpv);
152 #ifdef plotDebug
154  if ( tfile.isAvailable() ) {
155  TFileDirectory ecDir = tfile->mkdir("ProfileFromECalSD");
156  static const std::string ctype[4] = {"EB","EBref","EE","EERef"};
157  for (int k=0; k<4; ++k) {
158  std::string name = "ECLL_"+ctype[k];
159  std::string title= "Local vs Global for "+ctype[k];
160  double xmin = (k > 1) ? 3000.0 : 1000.0;
161  g2L_[k] = ecDir.make<TH2F>(name.c_str(),title.c_str(),100,xmin,
162  xmin+1000.,100,0.0,3000.);
163  }
164  } else {
165  for (int k=0; k<4; ++k) g2L_[k] = 0;
166  }
167 #endif
168 
169 }
170 
172  delete numberingScheme;
173 }
174 
175 double ECalSD::getEnergyDeposit(const G4Step * aStep) {
176 
177  const G4StepPoint* preStepPoint = aStep->GetPreStepPoint();
178  const G4Track* theTrack = aStep->GetTrack();
179  double edep = aStep->GetTotalEnergyDeposit();
180 
181  // take into account light collection curve for crystals
182  double weight = 1.;
183  if (suppressHeavy) {
184  TrackInformation * trkInfo = (TrackInformation *)(theTrack->GetUserInformation());
185  if (trkInfo) {
186  int pdg = theTrack->GetDefinition()->GetPDGEncoding();
187  if (!(trkInfo->isPrimary())) { // Only secondary particles
188  double ke = theTrack->GetKineticEnergy();
189  if (((pdg/1000000000 == 1 && ((pdg/10000)%100) > 0 &&
190  ((pdg/10)%100) > 0)) && (ke<kmaxIon)) weight = 0;
191  if ((pdg == 2212) && (ke < kmaxProton)) weight = 0;
192  if ((pdg == 2112) && (ke < kmaxNeutron)) weight = 0;
193  }
194  }
195  }
196  const G4LogicalVolume* lv = preStepPoint->GetTouchable()->GetVolume(0)->GetLogicalVolume();
197  double wt1 = 1.0;
198  if (useWeight && !any(noWeight,lv)) {
199  weight *= curve_LY(lv);
200  if (useBirk) {
201  if (useBirkL3) weight *= getBirkL3(aStep);
202  else weight *= getAttenuation(aStep, birk1, birk2, birk3);
203  }
204  wt1 = getResponseWt(theTrack);
205  }
206  edep *= weight*wt1;
207  // Russian Roulette
208  double wt2 = theTrack->GetWeight();
209  if(wt2 > 0.0) { edep *= wt2; }
210 #ifdef EDM_ML_DEBUG
211  edm::LogVerbatim("EcalSim") << lv->GetName()
212  << " Light Collection Efficiency " << weight << ":"
213  << wt1 << " wt2= " << wt2
214  << " Weighted Energy Deposit " << edep/MeV << " MeV";
215 #endif
216  return edep;
217 }
218 
219 int ECalSD::getTrackID(const G4Track* aTrack) {
220  int primaryID(0);
221  if (storeTrack && depth > 0) {
222  forceSave = true;
223  primaryID = aTrack->GetTrackID();
224  } else {
225  primaryID = CaloSD::getTrackID(aTrack);
226  }
227  return primaryID;
228 }
229 
230 uint16_t ECalSD::getDepth(const G4Step * aStep) {
231 
232  // this method should be called first at a step
233  const G4StepPoint* hitPoint = aStep->GetPreStepPoint();
234  currentLocalPoint = setToLocal(hitPoint->GetPosition(), hitPoint->GetTouchable());
235  const G4LogicalVolume* lv = hitPoint->GetTouchable()->GetVolume(0)->GetLogicalVolume();
236 
237  auto ite = xtalLMap.find(lv);
238  crystalLength = (ite == xtalLMap.end()) ? 230.0 : std::abs(ite->second);
239  crystalDepth = (ite == xtalLMap.end())
240  ? 0.0 : (std::abs(0.5*(ite->second)+currentLocalPoint.z()));
241  depth = any(useDepth1,lv) ? 1 : (any(useDepth2,lv) ? 2 : 0);
242 
243  if (storeRL) {
244  uint16_t depth1 = (ite == xtalLMap.end()) ? 0 : (((ite->second) >= 0) ? 0 :
246  uint16_t depth2 = getRadiationLength(hitPoint, lv);
247  depth |= (((depth2&PCaloHit::kEcalDepthMask) << PCaloHit::kEcalDepthOffset) | depth1);
248  } else if (storeLayerTimeSim) {
249  uint16_t depth2 = getLayerIDForTimeSim();
251  }
252 #ifdef EDM_ML_DEBUG
253  edm::LogVerbatim("EcalSim") << "ECalSD::Depth " << std::hex << depth1 << ":"
254  << depth2 << ":" << depth << std::dec << " L "
255  << (ite == xtalLMap.end()) << ":" <<ite->second;
256 #endif
257  return depth;
258 }
259 
260 uint16_t ECalSD::getRadiationLength(const G4StepPoint* hitPoint, const G4LogicalVolume* lv) {
261 
262  uint16_t thisX0 = 0;
263  if (useWeight) {
264  double radl = hitPoint->GetMaterial()->GetRadlen();
265  thisX0 = (uint16_t)floor(scaleRL*crystalDepth/radl);
266 #ifdef plotDebug
267  const std::string& lvname = lv->GetName();
268  int k1 = (lvname.find("EFRY")!=std::string::npos) ? 2 : 0;
269  int k2 = (lvname.find("refl")!=std::string::npos) ? 1 : 0;
270  int kk = k1+k2;
271  double rz = (k1 == 0) ? (hitPoint->GetPosition()).rho() :
272  std::abs((hitPoint->GetPosition()).z());
273  edm::LogVerbatim("EcalSim") << lvname << " # " << k1 << ":" << k2 << ":"
274  << kk << " rz " << rz << " D " << thisX0;
275  g2L_[kk]->Fill(rz,thisX0);
276 #endif
277 #ifdef EDM_ML_DEBUG
278  edm::LogVerbatim("EcalSim") << lv->GetName() << " Global "
279  << hitPoint->GetPosition() << ":"
280  << (hitPoint->GetPosition()).rho()
281  << " Local " << localPoint
282  << " Crystal Length " << crlength
283  << " Radl " << radl << " DetZ " << detz
284  << " Index " << thisX0
285  << " : " << getLayerIDForTimeSim();
286 #endif
287  }
288  return thisX0;
289 }
290 
292 {
293  const double invLayerSize = 0.1; //layer size in 1/mm
294  return (int)crystalDepth*invLayerSize;
295 }
296 
297 uint32_t ECalSD::setDetUnitId(const G4Step * aStep) {
298  if (numberingScheme == nullptr) {
299  return EBDetId(1,1)();
300  } else {
301  getBaseNumber(aStep);
303  }
304 }
305 
307  if (scheme != nullptr) {
308  edm::LogVerbatim("EcalSim") << "EcalSD: updates numbering scheme for "
309  << GetName();
310  if (numberingScheme) delete numberingScheme;
311  numberingScheme = scheme;
312  }
313 }
314 
315 void ECalSD::initMap(const G4String& sd, const DDCompactView & cpv) {
316 
317  G4String attribute = "ReadOutName";
319  DDFilteredView fv(cpv,filter);
320  fv.firstChild();
321 
322  std::vector<const G4LogicalVolume*> lvused;
323  const G4LogicalVolumeStore * lvs = G4LogicalVolumeStore::GetInstance();
324  std::map<const std::string, const G4LogicalVolume *> nameMap;
325  for (auto lvi = lvs->begin(), lve = lvs->end(); lvi != lve; ++lvi)
326  nameMap.emplace((*lvi)->GetName(), *lvi);
327 
328  bool dodet=true;
329  while (dodet) {
330  const std::string &matname = fv.logicalPart().material().name().name();
331  const std::string &lvname = fv.logicalPart().name().name();
332  const G4LogicalVolume* lv = nameMap[lvname];
333  int ibec = (lvname.find("EFRY") == std::string::npos) ? 0 : 1;
334  int iref = (lvname.find("refl") == std::string::npos) ? 0 : 1;
335  int type = (ibec+iref == 1) ? 1 : -1;
336  if (depth1Name != " ") {
337  if (strncmp(lvname.c_str(), depth1Name.c_str(), 4) == 0) {
338  if (!any(useDepth1, lv)) {
339  useDepth1.push_back(lv);
340 #ifdef EDM_ML_DEBUG
341  edm::LogVerbatim("EcalSim") << "ECalSD::initMap Logical Volume "
342  << lvname <<" in Depth 1 volume list";
343 #endif
344  }
345  const G4LogicalVolume* lvr = nameMap[lvname + "_refl"];
346  if (lvr != nullptr && !any(useDepth1, lvr)) {
347  useDepth1.push_back(lvr);
348 #ifdef EDM_ML_DEBUG
349  edm::LogVerbatim("EcalSim") << "ECalSD::initMap Logical Volume "
350  << lvname << "_refl"
351  <<" in Depth 1 volume list";
352 #endif
353  }
354  }
355  }
356  if (depth2Name != " ") {
357  if (strncmp(lvname.c_str(), depth2Name.c_str(), 4) == 0) {
358  if (!any(useDepth2, lv)) {
359  useDepth2.push_back(lv);
360 #ifdef EDM_ML_DEBUG
361  edm::LogVerbatim("EcalSim") << "ECalSD::initMap Logical Volume "
362  << lvname <<" in Depth 2 volume list";
363 #endif
364  }
365  const G4LogicalVolume* lvr = nameMap[lvname + "_refl"];
366  if (lvr != nullptr && !any(useDepth2,lvr)) {
367  useDepth2.push_back(lvr);
368 #ifdef EDM_ML_DEBUG
369  edm::LogVerbatim("EcalSim") << "ECalSD::initMap Logical Volume "
370  << lvname << "_refl"
371  <<" in Depth 2 volume list";
372 #endif
373  }
374  }
375  }
376  if (lv != nullptr) {
377  if (crystalMat.size() == matname.size() && !strcmp(crystalMat.c_str(), matname.c_str())) {
378  if (!any(lvused,lv)) {
379  lvused.push_back(lv);
380  const DDSolid & sol = fv.logicalPart().solid();
381  const std::vector<double> & paras = sol.parameters();
382 #ifdef EDM_ML_DEBUG
383  edm::LogVerbatim("EcalSim") << "ECalSD::initMap (for " << sd
384  << "): Solid " << lvname << " Shape "
385  << sol.shape() << " Parameter 0 = "
386  << paras[0] << " Logical Volume " << lv;
387 #endif
388  if (sol.shape() == DDSolidShape::ddtrap) {
389  double dz = 2*paras[0];
390  xtalLMap.insert(std::pair<const G4LogicalVolume*,double>(lv,dz*type));
391  lv = nameMap[lvname + "_refl"];
392  if (lv != nullptr) {
393  xtalLMap.insert(std::pair<const G4LogicalVolume*,double>(lv,-dz*type));
394  }
395  }
396  }
397  } else {
398  if (!any(noWeight,lv)) {
399  noWeight.push_back(lv);
400 #ifdef EDM_ML_DEBUG
401  edm::LogVerbatim("EcalSim") << "ECalSD::initMap Logical Volume "
402  << lvname << " Material " << matname
403  << " in noWeight list";
404 #endif
405  }
406  lv = nameMap[lvname];
407  if (lv != nullptr && !any(noWeight,lv)) {
408  noWeight.push_back(lv);
409 #ifdef EDM_ML_DEBUG
410  edm::LogVerbatim("EcalSim") << "ECalSD::initMap Logical Volume "
411  << lvname << " Material " << matname
412  << " in noWeight list";
413 #endif
414  }
415  }
416  }
417  dodet = fv.next();
418  }
419 #ifdef EDM_ML_DEBUG
420  edm::LogVerbatim("EcalSim") << "ECalSD: Length Table for " << attribute << " = "
421  << sd << ":";
422  int i=0;
423  for (auto ite : xtalLMap) {
424  G4String name("Unknown");
425  if (ite.first != 0) name = (ite.first)->GetName();
426  edm::LogVerbatim("EcalSim") << " " << i << " " << ite.first << " " << name
427  << " L = " << ite.second;
428  ++i;
429  }
430 #endif
431 }
432 
433 double ECalSD::curve_LY(const G4LogicalVolume* lv) {
434 
435  double weight = 1.;
436  if (ageingWithSlopeLY) {
437  //position along the crystal in mm from 0 to 230 (in EB)
438  if (crystalDepth >= -0.1 || crystalDepth <= crystalLength+0.1)
441  } else {
442  double dapd = crystalLength - crystalDepth;
443  if (dapd >= -0.1 || dapd <= crystalLength+0.1) {
444  if (dapd <= 100.)
445  weight = 1.0 + slopeLY - dapd * 0.01 * slopeLY;
446  } else {
447  edm::LogWarning("EcalSim") << "ECalSD: light coll curve : wrong distance "
448  << "to APD " << dapd << " crlength = "
449  << crystalLength <<" crystal name = " <<lv->GetName()
450  << " z of localPoint = " << currentLocalPoint.z()
451  << " take weight = " << weight;
452  }
453  }
454  return weight;
455 }
456 
457 void ECalSD::getBaseNumber(const G4Step* aStep) {
458 
460  const G4VTouchable* touch = aStep->GetPreStepPoint()->GetTouchable();
461  int theSize = touch->GetHistoryDepth()+1;
462  if ( theBaseNumber.getCapacity() < theSize ) theBaseNumber.setSize(theSize);
463  //Get name and copy numbers
464  if ( theSize > 1 ) {
465  for (int ii = 0; ii < theSize ; ii++) {
466  theBaseNumber.addLevel(touch->GetVolume(ii)->GetName(),touch->GetReplicaNumber(ii));
467 #ifdef EDM_ML_DEBUG
468  edm::LogVerbatim("EcalSim") << "ECalSD::getBaseNumber(): Adding level " << ii
469  << ": " << touch->GetVolume(ii)->GetName() << "["
470  << touch->GetReplicaNumber(ii) << "]";
471 #endif
472  }
473  }
474 }
475 
476 double ECalSD::getBirkL3(const G4Step* aStep) {
477 
478  double weight = 1.;
479  const G4StepPoint* preStepPoint = aStep->GetPreStepPoint();
480  double charge = preStepPoint->GetCharge();
481 
482  if (charge != 0. && aStep->GetStepLength() > 0.) {
483  const G4Material* mat = preStepPoint->GetMaterial();
484  double density = mat->GetDensity();
485  double dedx = aStep->GetTotalEnergyDeposit()/aStep->GetStepLength();
486  double rkb = birk1/density;
487  if (dedx > 0) {
488  weight = 1. - birkSlope*log(rkb*dedx);
489  if (weight < birkCut) weight = birkCut;
490  else if (weight > 1.) weight = 1.;
491  }
492 #ifdef EDM_ML_DEBUG
493  edm::LogVerbatim("EcalSim") << "ECalSD::getBirkL3 in " << mat->GetName()
494  << " Charge " << charge << " dE/dx " << dedx
495  << " Birk Const " << rkb << " Weight = " << weight
496  << " dE " << aStep->GetTotalEnergyDeposit();
497 #endif
498  }
499  return weight;
500 }
501 
502 std::vector<double> ECalSD::getDDDArray(const std::string & str,
503  const DDsvalues_type & sv) {
504 
505 #ifdef EDM_ML_DEBUG
506  edm::LogVerbatim("EcalSim") << "ECalSD:getDDDArray called for " << str;
507 #endif
508  DDValue value(str);
509  if (DDfetch(&sv,value)) {
510 #ifdef EDM_ML_DEBUG
511  edm::LogVerbatim("EcalSim") << value;
512 #endif
513  const std::vector<double> & fvec = value.doubles();
514  return fvec;
515  } else {
516  std::vector<double> fvec;
517  return fvec;
518  }
519 }
520 
521 std::vector<std::string> ECalSD::getStringArray(const std::string & str,
522  const DDsvalues_type & sv) {
523 
524 #ifdef EDM_ML_DEBUG
525  edm::LogVerbatim("EcalSim") << "ECalSD:getStringArray called for " << str;
526 #endif
527  DDValue value(str);
528  if (DDfetch(&sv,value)) {
529 #ifdef EDM_ML_DEBUG
530  edm::LogVerbatim("EcalSim") << value;
531 #endif
532  const std::vector<std::string> & fvec = value.strings();
533  return fvec;
534  } else {
535  std::vector<std::string> fvec;
536  return fvec;
537  }
538 }
type
Definition: HCALResponse.h:21
T getParameter(std::string const &) const
T getUntrackedParameter(std::string const &, T const &) const
double crystalLength
Definition: ECalSD.h:79
const std::vector< double > & parameters(void) const
Give the parameters of the solid.
Definition: DDSolid.cc:144
bool useBirkL3
Definition: ECalSD.h:67
const DDLogicalPart & logicalPart() const
The logical-part of the current node in the filtered-view.
const std::vector< double > & doubles() const
a reference to the double-valued values stored in the given instance of DDValue
Definition: DDValue.cc:140
double kmaxNeutron
Definition: CaloSD.h:139
const N & name() const
Definition: DDBase.h:74
std::vector< std::string > getStringArray(const std::string &, const DDsvalues_type &)
Definition: ECalSD.cc:521
double birkSlope
Definition: ECalSD.h:68
double slopeLY
Definition: ECalSD.h:69
void setLumies(double x, double y)
Definition: CaloSD.h:37
std::vector< const G4LogicalVolume * > noWeight
Definition: ECalSD.h:72
void getBaseNumber(const G4Step *)
Definition: ECalSD.cc:457
static const int kEcalDepthRefz
Definition: PCaloHit.h:70
bool any(const std::vector< T > &v, const T &what)
Definition: ECalSD.cc:37
double birk1
Definition: ECalSD.h:68
std::vector< const G4LogicalVolume * > useDepth2
Definition: ECalSD.h:72
double getEnergyDeposit(const G4Step *) override
Definition: ECalSD.cc:175
bool useWeight
Definition: ECalSD.h:66
Definition: weight.py:1
virtual int getTrackID(const G4Track *)
Definition: CaloSD.cc:599
double crystalDepth
Definition: ECalSD.h:80
const DDSolid & solid(void) const
Returns a reference object of the solid being the shape of this LogicalPart.
#define nullptr
void find(edm::Handle< EcalRecHitCollection > &hits, DetId thisDet, std::vector< EcalRecHitCollection::const_iterator > &hit, bool debug=false)
Definition: FindCaloHit.cc:20
Compact representation of the geometrical detector hierarchy.
Definition: DDCompactView.h:80
double kmaxProton
Definition: CaloSD.h:139
bool DDfetch(const DDsvalues_type *, DDValue &)
helper for retrieving DDValues from DDsvalues_type *.
Definition: DDsvalues.cc:81
bool storeLayerTimeSim
Definition: ECalSD.h:66
The Signals That Services Can Subscribe To This is based on ActivityRegistry and is current per Services can connect to the signals distributed by the ActivityRegistry in order to monitor the activity of the application Each possible callback has some defined which we here list in angle e g
Definition: Activities.doc:4
bool storeRL
Definition: ECalSD.h:66
A DDSolid represents the shape of a part.
Definition: DDSolid.h:39
static TrackerG4SimHitNumberingScheme & numberingScheme(const DDCompactView &cpv, const GeometricDet &det)
~ECalSD() override
Definition: ECalSD.cc:171
double getBirkL3(const G4Step *)
Definition: ECalSD.cc:476
int getTrackID(const G4Track *) override
Definition: ECalSD.cc:219
const double MeV
bool forceSave
Definition: CaloSD.h:141
std::string depth1Name
Definition: ECalSD.h:70
void addLevel(const std::string &name, const int &copyNumber)
EcalBaseNumber theBaseNumber
Definition: ECalSD.h:73
bool storeTrack
Definition: ECalSD.h:66
double kmaxIon
Definition: CaloSD.h:139
bool suppressHeavy
Definition: CaloSD.h:138
bool next()
set current node to the next node in the filtered tree
static const int kEcalDepthMask
Definition: PCaloHit.h:68
double scaleRL
Definition: ECalSD.h:69
bool isAvailable() const
Definition: Service.h:46
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
uint16_t getLayerIDForTimeSim()
Definition: ECalSD.cc:291
DDSolidShape shape(void) const
The type of the solid.
Definition: DDSolid.cc:138
static const int kEcalDepthOffset
Definition: PCaloHit.h:69
T * make(const Args &...args) const
make new ROOT object
ii
Definition: cuy.py:590
const std::vector< std::string > & strings() const
a reference to the std::string-valued values stored in the given instance of DDValue ...
Definition: DDValue.h:61
int k[5][pyjets_maxn]
std::string depth2Name
Definition: ECalSD.h:70
G4ThreeVector setToLocal(const G4ThreeVector &, const G4VTouchable *) const
Definition: CaloSD.cc:307
G4ThreeVector currentLocalPoint
Definition: ECalSD.h:78
uint16_t getRadiationLength(const G4StepPoint *hitPoint, const G4LogicalVolume *lv)
Definition: ECalSD.cc:260
void initMap(const G4String &, const DDCompactView &)
Definition: ECalSD.cc:315
bool ageingWithSlopeLY
Definition: ECalSD.h:75
bool useBirk
Definition: ECalSD.h:67
bool isEE
Definition: ECalSD.h:64
TFileDirectory mkdir(const std::string &dir, const std::string &descr="")
create a new subdirectory
Definition: TFileService.h:69
virtual uint32_t getUnitID(const EcalBaseNumber &baseNumber) const =0
std::vector< double > getDDDArray(const std::string &, const DDsvalues_type &)
Definition: ECalSD.cc:502
CaloHitID currentID
Definition: CaloSD.h:132
double sd
int ke
bool isPrimary() const
double calcLightCollectionEfficiencyWeighted(DetId id, double z)
DDsvalues_type mergedSpecifics() const
std::map< const G4LogicalVolume *, double > xtalLMap
Definition: ECalSD.h:71
double getAttenuation(const G4Step *aStep, double birk1, double birk2, double birk3) const
Definition: CaloSD.cc:462
bool isEB
Definition: ECalSD.h:63
HLT enums.
double birk2
Definition: ECalSD.h:68
std::vector< const G4LogicalVolume * > useDepth1
Definition: ECalSD.h:72
std::vector< std::pair< unsigned int, DDValue > > DDsvalues_type
Definition: DDsvalues.h:12
ECalSD(const std::string &, const DDCompactView &, const SensitiveDetectorCatalog &, edm::ParameterSet const &p, const SimTrackManager *)
Definition: ECalSD.cc:41
bool firstChild()
set the current node to the first child ...
uint16_t depth
Definition: ECalSD.h:81
double curve_LY(const G4LogicalVolume *)
Definition: ECalSD.cc:433
EcalNumberingScheme * numberingScheme
Definition: ECalSD.h:65
EnergyResolutionVsLumi ageing
Definition: ECalSD.h:74
uint32_t unitID() const
Definition: CaloHitID.h:22
void setNumberingScheme(EcalNumberingScheme *)
Definition: ECalSD.cc:306
uint32_t setDetUnitId(const G4Step *) override
Definition: ECalSD.cc:297
double getResponseWt(const G4Track *)
Definition: CaloSD.cc:652
void setSize(const int &size)
#define str(s)
long double T
double birkCut
Definition: ECalSD.h:68
const std::string & name() const
Returns the name.
Definition: DDName.cc:53
const DDMaterial & material(void) const
Returns a reference object of the material this LogicalPart is made of.
std::string crystalMat
Definition: ECalSD.h:70
double birk3
Definition: ECalSD.h:68
uint16_t getDepth(const G4Step *) override
Definition: ECalSD.cc:230