CMS 3D CMS Logo

GsfElectronAlgo.cc
Go to the documentation of this file.
1 
9 
12 
25 
29 
32 
33 
35 
38 
41 
42 
45 
46 
47 #include <Math/Point3D.h>
48 #include <sstream>
49 #include <algorithm>
50 
51 
52 using namespace edm ;
53 using namespace std ;
54 using namespace reco ;
55 
56 
57 //===================================================================
58 // GsfElectronAlgo::GeneralData
59 //===================================================================
60 
61 // general data and helpers
63  {
64  // constructors
66  ( const InputTagsConfiguration &,
67  const StrategyConfiguration &,
68  const CutsConfiguration & cutsCfg,
69  const CutsConfiguration & cutsCfgPflow,
70  const ElectronHcalHelper::Configuration & hcalCfg,
71  const ElectronHcalHelper::Configuration & hcalCfgPflow,
72  const IsolationConfiguration &,
76  const SoftElectronMVAEstimator::Configuration & mva_NIso_Cfg ,
77  const ElectronMVAEstimator::Configuration & mva_Iso_Cfg ,
79  ~GeneralData() ;
80 
81  // configurables
88 
89  // additional configuration and helpers
93  //SoftElectronMVAEstimator *sElectronMVAEstimator;
94  //ElectronMVAEstimator *iElectronMVAEstimator;
97  } ;
98 
100  ( const InputTagsConfiguration & inputConfig,
101  const StrategyConfiguration & strategyConfig,
102  const CutsConfiguration & cutsConfig,
103  const CutsConfiguration & cutsConfigPflow,
104  const ElectronHcalHelper::Configuration & hcalConfig,
105  const ElectronHcalHelper::Configuration & hcalConfigPflow,
106  const IsolationConfiguration & isoConfig,
107  const EcalRecHitsConfiguration & recHitsConfig,
108  EcalClusterFunctionBaseClass * superClusterErrorFunc,
109  EcalClusterFunctionBaseClass * crackCorrectionFunc,
110  const SoftElectronMVAEstimator::Configuration & /*mva_NIso_Config*/,
111  const ElectronMVAEstimator::Configuration & /*mva_Iso_Config*/,
112  const RegressionHelper::Configuration & regConfig
113  )
114  : inputCfg(inputConfig),
115  strategyCfg(strategyConfig),
116  cutsCfg(cutsConfig),
117  cutsCfgPflow(cutsConfigPflow),
118  isoCfg(isoConfig),
119  recHitsCfg(recHitsConfig),
120  hcalHelper(new ElectronHcalHelper(hcalConfig)),
121  hcalHelperPflow(new ElectronHcalHelper(hcalConfigPflow)),
122  superClusterErrorFunction(superClusterErrorFunc),
123  crackCorrectionFunction(crackCorrectionFunc),
124  //sElectronMVAEstimator(new SoftElectronMVAEstimator(mva_NIso_Config)),
125  //iElectronMVAEstimator(new ElectronMVAEstimator(mva_Iso_Config)),
126  regCfg(regConfig),
127  regHelper(new RegressionHelper(regConfig))
128  {}
129 
131  {
132  delete hcalHelper ;
133  delete hcalHelperPflow ;
134  //delete sElectronMVAEstimator;
135  //delete iElectronMVAEstimator;
136  delete regHelper;
137  }
138 
139 //===================================================================
140 // GsfElectronAlgo::EventSetupData
141 //===================================================================
142 
144  {
145  EventSetupData() ;
146  ~EventSetupData() ;
147 
148  unsigned long long cacheIDGeom ;
149  unsigned long long cacheIDTopo ;
150  unsigned long long cacheIDTDGeom ;
151  unsigned long long cacheIDMagField ;
152  //unsigned long long cacheChStatus ;
153  unsigned long long cacheSevLevel ;
154 
159  //edm::ESHandle<EcalChannelStatus> chStatus ;
161 
165 } ;
166 
168  : cacheIDGeom(0), cacheIDTopo(0), cacheIDTDGeom(0), cacheIDMagField(0),/*cacheChStatus(0),*/
169  cacheSevLevel(0), mtsTransform(nullptr), constraintAtVtx(nullptr), mtsMode(new MultiTrajectoryStateMode)
170  {}
171 
173  {
174  delete mtsMode ;
175  delete constraintAtVtx ;
176  delete mtsTransform ;
177  }
178 
179 
180 //===================================================================
181 // GsfElectronAlgo::EventData
182 //===================================================================
183 
185  {
186  // general
190 
191  EventData() ;
192  ~EventData() ;
193 
194  // utilities
195  void retreiveOriginalTrackCollections
196  ( const reco::TrackRef &, const reco::GsfTrackRef & ) ;
197 
198  // input collections
214 
215  // isolation helpers
216  EgammaTowerIsolation * hadDepth1Isolation03, * hadDepth1Isolation04 ;
217  EgammaTowerIsolation * hadDepth2Isolation03, * hadDepth2Isolation04 ;
218  EgammaTowerIsolation * hadDepth1Isolation03Bc, * hadDepth1Isolation04Bc ;
219  EgammaTowerIsolation * hadDepth2Isolation03Bc, * hadDepth2Isolation04Bc ;
220  EgammaRecHitIsolation * ecalBarrelIsol03, * ecalBarrelIsol04 ;
221  EgammaRecHitIsolation * ecalEndcapIsol03, * ecalEndcapIsol04 ;
222 
223  //Isolation Value Maps for PF and EcalDriven electrons
224  typedef std::vector< edm::Handle< edm::ValueMap<double> > > IsolationValueMaps;
225  IsolationValueMaps pfIsolationValues;
226  IsolationValueMaps edIsolationValues;
227  } ;
228 
231  originalCtfTrackCollectionRetreived(false),
232  originalGsfTrackCollectionRetreived(false),
233  hadDepth1Isolation03(nullptr), hadDepth1Isolation04(nullptr),
234  hadDepth2Isolation03(nullptr), hadDepth2Isolation04(nullptr),
235  hadDepth1Isolation03Bc(nullptr), hadDepth1Isolation04Bc(nullptr),
236  hadDepth2Isolation03Bc(nullptr), hadDepth2Isolation04Bc(nullptr),
237  ecalBarrelIsol03(nullptr), ecalBarrelIsol04(nullptr),
238  ecalEndcapIsol03(nullptr), ecalEndcapIsol04(nullptr)
239  {
241  }
242 
244  {
245  delete hadDepth1Isolation03 ;
246  delete hadDepth1Isolation04 ;
247  delete hadDepth2Isolation03 ;
248  delete hadDepth2Isolation04 ;
249  delete hadDepth1Isolation03Bc ;
250  delete hadDepth1Isolation04Bc ;
251  delete hadDepth2Isolation03Bc ;
252  delete hadDepth2Isolation04Bc ;
253  delete ecalBarrelIsol03 ;
254  delete ecalBarrelIsol04 ;
255  delete ecalEndcapIsol03 ;
256  delete ecalEndcapIsol04 ;
257 
258  GsfElectronPtrCollection::const_iterator it ;
259  for ( it = electrons->begin() ; it != electrons->end() ; it++ )
260  { delete (*it) ; }
261  delete electrons ;
262  }
263 
265  ( const reco::TrackRef & ctfTrack, const reco::GsfTrackRef & gsfTrack )
266  {
267  if ((!originalCtfTrackCollectionRetreived)&&(ctfTrack.isNonnull()))
268  {
269  event->get(ctfTrack.id(),originalCtfTracks) ;
271  }
272  if ((!originalGsfTrackCollectionRetreived)&&(gsfTrack.isNonnull()))
273  {
274  event->get(gsfTrack.id(),originalGsfTracks) ;
276  }
277  }
278 
279 
280 //===================================================================
281 // GsfElectronAlgo::ElectronData
282 //===================================================================
283 
285  {
286  // Refs to subproducts
293 
294  // constructors
296  ( const reco::GsfElectronCoreRef & core,
297  const reco::BeamSpot & bs ) ;
298  ~ElectronData() ;
299 
300  // utilities
302  void computeCharge( int & charge, reco::GsfElectron::ChargeInfo & info ) ;
303  CaloClusterPtr getEleBasicCluster( const MultiTrajectoryStateTransform * ) ;
304  bool calculateTSOS( const MultiTrajectoryStateTransform *, GsfConstraintAtVertex * ) ;
305  void calculateMode( const MultiTrajectoryStateMode * mtsMode ) ;
306  Candidate::LorentzVector calculateMomentum() ;
307 
308  // TSOS
316 
317  // mode
318  GlobalVector innMom, seedMom, eleMom, sclMom, vtxMom, outMom ;
319  GlobalPoint innPos, seedPos, elePos, sclPos, vtxPos, outPos ;
321  } ;
322 
325  const reco::BeamSpot & bs )
326  : coreRef(core),
327  gsfTrackRef(coreRef->gsfTrack()),
328  superClusterRef(coreRef->superCluster()),
329  ctfTrackRef(coreRef->ctfTrack()), shFracInnerHits(coreRef->ctfGsfOverlap()),
330  beamSpot(bs)
331  {}
332 
334  {}
335 
337 {
338  if (!ctfTrackRef.isNull()) return ;
339 
340  // Code below from Puneeth Kalavase
341 
342  shFracInnerHits = 0 ;
343  const TrackCollection * ctfTrackCollection = currentCtfTracks.product() ;
344 
345  // get the Hit Pattern for the gsfTrack
346  const HitPattern &gsfHitPattern = gsfTrackRef->hitPattern() ;
347 
348  unsigned int counter ;
349  TrackCollection::const_iterator ctfTkIter ;
350  for (ctfTkIter = ctfTrackCollection->begin(), counter = 0;
351  ctfTkIter != ctfTrackCollection->end(); ctfTkIter++, counter++)
352  {
353  double dEta = gsfTrackRef->eta() - ctfTkIter->eta() ;
354  double dPhi = gsfTrackRef->phi() - ctfTkIter->phi() ;
355  double pi = acos(-1.);
356  if(std::abs(dPhi) > pi) dPhi = 2*pi - std::abs(dPhi) ;
357 
358  // dont want to look at every single track in the event!
359  if (sqrt(dEta*dEta + dPhi*dPhi) > 0.3) continue ;
360 
361  unsigned int shared = 0 ;
362  int gsfHitCounter = 0 ;
363  int numGsfInnerHits = 0 ;
364  int numCtfInnerHits = 0 ;
365 
366  // get the CTF Track Hit Pattern
367  const HitPattern &ctfHitPattern = ctfTkIter->hitPattern() ;
368 
369  trackingRecHit_iterator elHitsIt;
370  for (elHitsIt = gsfTrackRef->recHitsBegin();
371  elHitsIt != gsfTrackRef->recHitsEnd();
372  elHitsIt++, gsfHitCounter++)
373  {
374  if (!((**elHitsIt).isValid())) //count only valid Hits
375  { continue ; }
376 
377  // look only in the pixels/TIB/TID
378  uint32_t gsfHit = gsfHitPattern.getHitPattern(HitPattern::TRACK_HITS, gsfHitCounter) ;
379  if (!(HitPattern::pixelHitFilter(gsfHit)
380  || HitPattern::stripTIBHitFilter(gsfHit)
381  || HitPattern::stripTIDHitFilter(gsfHit))){
382  continue;
383  }
384 
385  numGsfInnerHits++ ;
386 
387  int ctfHitsCounter = 0 ;
388  numCtfInnerHits = 0 ;
389  trackingRecHit_iterator ctfHitsIt ;
390  for (ctfHitsIt = ctfTkIter->recHitsBegin();
391  ctfHitsIt != ctfTkIter->recHitsEnd();
392  ctfHitsIt++, ctfHitsCounter++ )
393  {
394  if(!((**ctfHitsIt).isValid())) //count only valid Hits!
395  { continue; }
396 
397  uint32_t ctfHit = ctfHitPattern.getHitPattern(HitPattern::TRACK_HITS, ctfHitsCounter);
398  if(!(HitPattern::pixelHitFilter(ctfHit)
399  || HitPattern::stripTIBHitFilter(ctfHit)
400  || HitPattern::stripTIDHitFilter(ctfHit)))
401  {
402  continue;
403  }
404 
405  numCtfInnerHits++ ;
406 
407  if((**elHitsIt).sharesInput(&(**ctfHitsIt), TrackingRecHit::all))
408  {
409  shared++ ;
410  break ;
411  }
412 
413  } //ctfHits iterator
414 
415  } //gsfHits iterator
416 
417  if ((numGsfInnerHits==0)||(numCtfInnerHits==0))
418  { continue ; }
419 
420  if ( static_cast<float>(shared)/min(numGsfInnerHits,numCtfInnerHits) > shFracInnerHits )
421  {
422  shFracInnerHits = static_cast<float>(shared)/min(numGsfInnerHits, numCtfInnerHits);
423  ctfTrackRef = TrackRef(currentCtfTracks,counter);
424  }
425  } //ctfTrack iterator
426 }
427 
430  {
431  // determine charge from SC
432  GlobalPoint orig, scpos ;
433  ele_convert(beamSpot.position(),orig) ;
434  ele_convert(superClusterRef->position(),scpos) ;
435  GlobalVector scvect(scpos-orig) ;
436  GlobalPoint inntkpos = innTSOS.globalPosition() ;
437  GlobalVector inntkvect = GlobalVector(inntkpos-orig) ;
438  float dPhiInnEle=normalized_phi(scvect.barePhi()-inntkvect.barePhi()) ;
439  if(dPhiInnEle>0) info.scPixCharge = -1 ;
440  else info.scPixCharge = 1 ;
441 
442  // flags
443  int chargeGsf = gsfTrackRef->charge() ;
444  info.isGsfScPixConsistent = ((chargeGsf*info.scPixCharge)>0) ;
445  info.isGsfCtfConsistent = (ctfTrackRef.isNonnull()&&((chargeGsf*ctfTrackRef->charge())>0)) ;
447 
448  // default charge
449  if (info.isGsfScPixConsistent||ctfTrackRef.isNull())
450  { charge = info.scPixCharge ; }
451  else
452  { charge = ctfTrackRef->charge() ; }
453  }
454 
456  ( const MultiTrajectoryStateTransform * mtsTransform )
457  {
458  CaloClusterPtr eleRef ;
459  TrajectoryStateOnSurface tempTSOS ;
460  TrajectoryStateOnSurface outTSOS = mtsTransform->outerStateOnSurface(*gsfTrackRef) ;
461  float dphimin = 1.e30 ;
462  for (CaloCluster_iterator bc=superClusterRef->clustersBegin(); bc!=superClusterRef->clustersEnd(); bc++)
463  {
464  GlobalPoint posclu((*bc)->position().x(),(*bc)->position().y(),(*bc)->position().z()) ;
465  tempTSOS = mtsTransform->extrapolatedState(outTSOS,posclu) ;
466  if (!tempTSOS.isValid()) tempTSOS=outTSOS ;
467  GlobalPoint extrap = tempTSOS.globalPosition() ;
468  float dphi = EleRelPointPair(posclu,extrap,beamSpot.position()).dPhi() ;
469  if (std::abs(dphi)<dphimin)
470  {
471  dphimin = std::abs(dphi) ;
472  eleRef = (*bc);
473  eleTSOS = tempTSOS ;
474  }
475  }
476  return eleRef ;
477  }
478 
480  ( const MultiTrajectoryStateTransform * mtsTransform, GsfConstraintAtVertex * constraintAtVtx )
481  {
482  //at innermost point
483  innTSOS = mtsTransform->innerStateOnSurface(*gsfTrackRef);
484  if (!innTSOS.isValid()) return false;
485 
486  //at vertex
487  // innermost state propagation to the beam spot position
488  GlobalPoint bsPos ;
489  ele_convert(beamSpot.position(),bsPos) ;
490  vtxTSOS = mtsTransform->extrapolatedState(innTSOS,bsPos) ;
491  if (!vtxTSOS.isValid()) vtxTSOS=innTSOS;
492 
493  //at seed
494  outTSOS = mtsTransform->outerStateOnSurface(*gsfTrackRef);
495  if (!outTSOS.isValid()) return false;
496 
497  // TrajectoryStateOnSurface seedTSOS
498  seedTSOS = mtsTransform->extrapolatedState(outTSOS,
499  GlobalPoint(superClusterRef->seed()->position().x(),
500  superClusterRef->seed()->position().y(),
501  superClusterRef->seed()->position().z()));
502  if (!seedTSOS.isValid()) seedTSOS=outTSOS;
503 
504  // at scl
505  sclTSOS = mtsTransform->extrapolatedState(innTSOS,GlobalPoint(superClusterRef->x(),superClusterRef->y(),superClusterRef->z()));
506  if (!sclTSOS.isValid()) sclTSOS=outTSOS;
507 
508  // constrained momentum
509  constrainedVtxTSOS = constraintAtVtx->constrainAtBeamSpot(*gsfTrackRef,beamSpot);
510 
511  return true ;
512  }
513 
515  {
516  mtsMode->momentumFromModeCartesian(innTSOS,innMom) ;
517  mtsMode->positionFromModeCartesian(innTSOS,innPos) ;
518  mtsMode->momentumFromModeCartesian(seedTSOS,seedMom) ;
519  mtsMode->positionFromModeCartesian(seedTSOS,seedPos) ;
520  mtsMode->momentumFromModeCartesian(eleTSOS,eleMom) ;
521  mtsMode->positionFromModeCartesian(eleTSOS,elePos) ;
522  mtsMode->momentumFromModeCartesian(sclTSOS,sclMom) ;
523  mtsMode->positionFromModeCartesian(sclTSOS,sclPos) ;
524  mtsMode->momentumFromModeCartesian(vtxTSOS,vtxMom) ;
525  mtsMode->positionFromModeCartesian(vtxTSOS,vtxPos) ;
526  mtsMode->momentumFromModeCartesian(outTSOS,outMom);
527  mtsMode->positionFromModeCartesian(outTSOS,outPos) ;
528  mtsMode->momentumFromModeCartesian(constrainedVtxTSOS,vtxMomWithConstraint);
529  }
530 
532  {
533  double scale = superClusterRef->energy()/vtxMom.mag() ;
535  ( vtxMom.x()*scale,vtxMom.y()*scale,vtxMom.z()*scale,
536  superClusterRef->energy() ) ;
537  }
538 
541 
542  const reco::CaloCluster & seedCluster = *(theClus->seed()) ;
543  DetId seedXtalId = seedCluster.seed();
544  int detector = seedXtalId.subdetId();
545  const EcalRecHitCollection* ecalRecHits = nullptr ;
546  if (detector==EcalBarrel)
547  ecalRecHits = eventData_->barrelRecHits.product() ;
548  else
549  ecalRecHits = eventData_->endcapRecHits.product() ;
550 
551  int nSaturatedXtals = 0;
552  bool isSeedSaturated = false;
553  const auto hitsAndFractions = theClus->hitsAndFractions();
554  for (auto&& hitFractionPair : hitsAndFractions) {
555  auto&& ecalRecHit = ecalRecHits->find(hitFractionPair.first);
556  if (ecalRecHit == ecalRecHits->end()) continue;
557  if (ecalRecHit->checkFlag(EcalRecHit::Flags::kSaturated)) {
558  nSaturatedXtals++;
559  if (seedXtalId == ecalRecHit->detid())
560  isSeedSaturated = true;
561  }
562  }
563  si.nSaturatedXtals = nSaturatedXtals;
564  si.isSeedSaturated = isSeedSaturated;
565 
566 }
567 
569  reco::GsfElectron::ShowerShape & showerShape )
570  {
571  const reco::CaloCluster & seedCluster = *(theClus->seed()) ;
572  // temporary, till CaloCluster->seed() is made available
573  DetId seedXtalId = seedCluster.hitsAndFractions()[0].first ;
574  int detector = seedXtalId.subdetId() ;
575 
578  const EcalRecHitCollection * recHits = nullptr ;
579  std::vector<int> recHitFlagsToBeExcluded ;
580  std::vector<int> recHitSeverityToBeExcluded ;
581  if (detector==EcalBarrel)
582  {
583  recHits = eventData_->barrelRecHits.product() ;
584  recHitFlagsToBeExcluded = generalData_->recHitsCfg.recHitFlagsToBeExcludedBarrel ;
585  recHitSeverityToBeExcluded = generalData_->recHitsCfg.recHitSeverityToBeExcludedBarrel ;
586  }
587  else
588  {
589  recHits = eventData_->endcapRecHits.product() ;
590  recHitFlagsToBeExcluded = generalData_->recHitsCfg.recHitFlagsToBeExcludedEndcaps ;
591  recHitSeverityToBeExcluded = generalData_->recHitsCfg.recHitSeverityToBeExcludedEndcaps ;
592  }
593 
594  std::vector<float> covariances = EcalClusterTools::covariances(seedCluster,recHits,topology,geometry) ;
595  std::vector<float> localCovariances = EcalClusterTools::localCovariances(seedCluster,recHits,topology) ;
596  showerShape.sigmaEtaEta = sqrt(covariances[0]) ;
597  showerShape.sigmaIetaIeta = sqrt(localCovariances[0]) ;
598  if (!edm::isNotFinite(localCovariances[2])) showerShape.sigmaIphiIphi = sqrt(localCovariances[2]) ;
599  showerShape.e1x5 = EcalClusterTools::e1x5(seedCluster,recHits,topology) ;
600  showerShape.e2x5Max = EcalClusterTools::e2x5Max(seedCluster,recHits,topology) ;
601  showerShape.e5x5 = EcalClusterTools::e5x5(seedCluster,recHits,topology) ;
602  showerShape.r9 = EcalClusterTools::e3x3(seedCluster,recHits,topology)/theClus->rawEnergy() ;
603 
604  if (pflow)
605  {
606  showerShape.hcalDepth1OverEcal = generalData_->hcalHelperPflow->hcalESumDepth1(*theClus)/theClus->energy() ;
607  showerShape.hcalDepth2OverEcal = generalData_->hcalHelperPflow->hcalESumDepth2(*theClus)/theClus->energy() ;
611  showerShape.invalidHcal = (showerShape.hcalDepth1OverEcalBc == 0 &&
612  showerShape.hcalDepth2OverEcalBc == 0 &&
614  }
615  else
616  {
617  showerShape.hcalDepth1OverEcal = generalData_->hcalHelper->hcalESumDepth1(*theClus)/theClus->energy() ;
618  showerShape.hcalDepth2OverEcal = generalData_->hcalHelper->hcalESumDepth2(*theClus)/theClus->energy() ;
622  showerShape.invalidHcal = (showerShape.hcalDepth1OverEcalBc == 0 &&
623  showerShape.hcalDepth2OverEcalBc == 0 &&
624  !generalData_->hcalHelper->hasActiveHcal(*theClus));
625  }
626 
627  // extra shower shapes
628  const float see_by_spp = showerShape.sigmaIetaIeta*showerShape.sigmaIphiIphi;
629  if( see_by_spp > 0 ) {
630  showerShape.sigmaIetaIphi = localCovariances[1] / see_by_spp;
631  } else if ( localCovariances[1] > 0 ) {
632  showerShape.sigmaIetaIphi = 1.f;
633  } else {
634  showerShape.sigmaIetaIphi = -1.f;
635  }
636  showerShape.eMax = EcalClusterTools::eMax(seedCluster,recHits);
637  showerShape.e2nd = EcalClusterTools::e2nd(seedCluster,recHits);
638  showerShape.eTop = EcalClusterTools::eTop(seedCluster,recHits,topology);
639  showerShape.eLeft = EcalClusterTools::eLeft(seedCluster,recHits,topology);
640  showerShape.eRight = EcalClusterTools::eRight(seedCluster,recHits,topology);
641  showerShape.eBottom = EcalClusterTools::eBottom(seedCluster,recHits,topology);
642 
643  showerShape.e2x5Left = EcalClusterTools::e2x5Left(seedCluster,recHits,topology);
644  showerShape.e2x5Right = EcalClusterTools::e2x5Right(seedCluster,recHits,topology);
645  showerShape.e2x5Top = EcalClusterTools::e2x5Top(seedCluster,recHits,topology);
646  showerShape.e2x5Bottom = EcalClusterTools::e2x5Bottom(seedCluster,recHits,topology);
647  }
648 
650  reco::GsfElectron::ShowerShape & showerShape )
651  {
652  const reco::CaloCluster & seedCluster = *(theClus->seed()) ;
653  // temporary, till CaloCluster->seed() is made available
654  DetId seedXtalId = seedCluster.hitsAndFractions()[0].first ;
655  int detector = seedXtalId.subdetId() ;
656 
659  const EcalRecHitCollection * recHits = nullptr ;
660  std::vector<int> recHitFlagsToBeExcluded ;
661  std::vector<int> recHitSeverityToBeExcluded ;
662  if (detector==EcalBarrel)
663  {
664  recHits = eventData_->barrelRecHits.product() ;
665  recHitFlagsToBeExcluded = generalData_->recHitsCfg.recHitFlagsToBeExcludedBarrel ;
666  recHitSeverityToBeExcluded = generalData_->recHitsCfg.recHitSeverityToBeExcludedBarrel ;
667  }
668  else
669  {
670  recHits = eventData_->endcapRecHits.product() ;
671  recHitFlagsToBeExcluded = generalData_->recHitsCfg.recHitFlagsToBeExcludedEndcaps ;
672  recHitSeverityToBeExcluded = generalData_->recHitsCfg.recHitSeverityToBeExcludedEndcaps ;
673  }
674 
675  std::vector<float> covariances = noZS::EcalClusterTools::covariances(seedCluster,recHits,topology,geometry) ;
676  std::vector<float> localCovariances = noZS::EcalClusterTools::localCovariances(seedCluster,recHits,topology) ;
677  showerShape.sigmaEtaEta = sqrt(covariances[0]) ;
678  showerShape.sigmaIetaIeta = sqrt(localCovariances[0]) ;
679  if (!edm::isNotFinite(localCovariances[2])) showerShape.sigmaIphiIphi = sqrt(localCovariances[2]) ;
680  showerShape.e1x5 = noZS::EcalClusterTools::e1x5(seedCluster,recHits,topology) ;
681  showerShape.e2x5Max = noZS::EcalClusterTools::e2x5Max(seedCluster,recHits,topology) ;
682  showerShape.e5x5 = noZS::EcalClusterTools::e5x5(seedCluster,recHits,topology) ;
683  showerShape.r9 = noZS::EcalClusterTools::e3x3(seedCluster,recHits,topology)/theClus->rawEnergy() ;
684 
685  if (pflow)
686  {
687  showerShape.hcalDepth1OverEcal = generalData_->hcalHelperPflow->hcalESumDepth1(*theClus)/theClus->energy() ;
688  showerShape.hcalDepth2OverEcal = generalData_->hcalHelperPflow->hcalESumDepth2(*theClus)/theClus->energy() ;
692  showerShape.invalidHcal = (showerShape.hcalDepth1OverEcalBc == 0 &&
693  showerShape.hcalDepth2OverEcalBc == 0 &&
695  }
696  else
697  {
698  showerShape.hcalDepth1OverEcal = generalData_->hcalHelper->hcalESumDepth1(*theClus)/theClus->energy() ;
699  showerShape.hcalDepth2OverEcal = generalData_->hcalHelper->hcalESumDepth2(*theClus)/theClus->energy() ;
703  showerShape.invalidHcal = (showerShape.hcalDepth1OverEcalBc == 0 &&
704  showerShape.hcalDepth2OverEcalBc == 0 &&
705  !generalData_->hcalHelper->hasActiveHcal(*theClus));
706  }
707 
708  // extra shower shapes
709  const float see_by_spp = showerShape.sigmaIetaIeta*showerShape.sigmaIphiIphi;
710  if( see_by_spp > 0 ) {
711  showerShape.sigmaIetaIphi = localCovariances[1] / see_by_spp;
712  } else if ( localCovariances[1] > 0 ) {
713  showerShape.sigmaIetaIphi = 1.f;
714  } else {
715  showerShape.sigmaIetaIphi = -1.f;
716  }
717  showerShape.eMax = noZS::EcalClusterTools::eMax(seedCluster,recHits);
718  showerShape.e2nd = noZS::EcalClusterTools::e2nd(seedCluster,recHits);
719  showerShape.eTop = noZS::EcalClusterTools::eTop(seedCluster,recHits,topology);
720  showerShape.eLeft = noZS::EcalClusterTools::eLeft(seedCluster,recHits,topology);
721  showerShape.eRight = noZS::EcalClusterTools::eRight(seedCluster,recHits,topology);
722  showerShape.eBottom = noZS::EcalClusterTools::eBottom(seedCluster,recHits,topology);
723 
724  showerShape.e2x5Left = noZS::EcalClusterTools::e2x5Left(seedCluster,recHits,topology);
725  showerShape.e2x5Right = noZS::EcalClusterTools::e2x5Right(seedCluster,recHits,topology);
726  showerShape.e2x5Top = noZS::EcalClusterTools::e2x5Top(seedCluster,recHits,topology);
727  showerShape.e2x5Bottom = noZS::EcalClusterTools::e2x5Bottom(seedCluster,recHits,topology);
728 
729  }
730 
731 
732 //===================================================================
733 // GsfElectronAlgo
734 //===================================================================
735 
737  ( const InputTagsConfiguration & inputCfg,
738  const StrategyConfiguration & strategyCfg,
739  const CutsConfiguration & cutsCfg,
740  const CutsConfiguration & cutsCfgPflow,
741  const ElectronHcalHelper::Configuration & hcalCfg,
742  const ElectronHcalHelper::Configuration & hcalCfgPflow,
743  const IsolationConfiguration & isoCfg,
744  const EcalRecHitsConfiguration & recHitsCfg,
747  const SoftElectronMVAEstimator::Configuration & mva_NIso_Cfg,
748  const ElectronMVAEstimator::Configuration & mva_Iso_Cfg,
749  const RegressionHelper::Configuration & regCfg,
750  const edm::ParameterSet& tkIsol03Cfg,
751  const edm::ParameterSet& tkIsol04Cfg
752 
753  )
754  : generalData_(new GeneralData(inputCfg,strategyCfg,cutsCfg,cutsCfgPflow,hcalCfg,hcalCfgPflow,isoCfg,recHitsCfg,superClusterErrorFunction,crackCorrectionFunction,mva_NIso_Cfg,mva_Iso_Cfg,regCfg)),
756  eventData_(nullptr), electronData_(nullptr),
757  tkIsol03Calc_(tkIsol03Cfg),tkIsol04Calc_(tkIsol04Cfg)
758  {}
759 
761  {
762  delete generalData_ ;
763  delete eventSetupData_ ;
764  delete eventData_ ;
765  delete electronData_ ;
766  }
767 
769  {
770  // get EventSetupRecords if needed
771  bool updateField(false);
773  updateField = true;
776  }
777 
778  bool updateGeometry(false);
780  updateGeometry = true;
783  }
784 
785  if ( updateField || updateGeometry ) {
786  delete eventSetupData_->mtsTransform ;
790  }
791 
793  eventSetupData_->cacheIDGeom=es.get<CaloGeometryRecord>().cacheIdentifier();
795  }
796 
798  eventSetupData_->cacheIDTopo=es.get<CaloTopologyRecord>().cacheIdentifier();
800  }
801 
806 
807 
812 
813  //if(eventSetupData_->cacheChStatus!=es.get<EcalChannelStatusRcd>().cacheIdentifier()){
814  // eventSetupData_->cacheChStatus=es.get<EcalChannelStatusRcd>().cacheIdentifier();
815  // es.get<EcalChannelStatusRcd>().get(eventSetupData_->chStatus);
816  //}
817 
819  eventSetupData_->cacheSevLevel = es.get<EcalSeverityLevelAlgoRcd>().cacheIdentifier();
821  }
822  }
823 
824 
826  {
827  GsfElectronPtrCollection::const_iterator it ;
828  for
829  ( it = eventData_->electrons->begin() ;
830  it != eventData_->electrons->end() ;
831  it++ )
832  { outEle.push_back(**it) ; }
833  }
834 
836  {
837  if (eventData_!=nullptr)
838  { throw cms::Exception("GsfElectronAlgo|InternalError")<<"unexpected event data" ; }
839  eventData_ = new EventData ;
840 
841  // init the handles linked to the current event
842  eventData_->event = &event ;
849  event.getByToken(generalData_->inputCfg.hcalTowersTag,eventData_->towers) ;
850  event.getByToken(generalData_->inputCfg.pfMVA,eventData_->pfMva) ;
851  event.getByToken(generalData_->inputCfg.seedsTag,eventData_->seeds) ;
855 
856  // get the beamspot from the Event:
857  edm::Handle<reco::BeamSpot> recoBeamSpotHandle ;
858  event.getByToken(generalData_->inputCfg.beamSpotTag,recoBeamSpotHandle) ;
859  eventData_->beamspot = recoBeamSpotHandle.product() ;
860 
861  // prepare access to hcal data
864 
865  // Isolation algos
866  float egHcalIsoConeSizeOutSmall=0.3, egHcalIsoConeSizeOutLarge=0.4;
867  float egHcalIsoConeSizeIn=generalData_->isoCfg.intRadiusHcal,egHcalIsoPtMin=generalData_->isoCfg.etMinHcal;
868  int egHcalDepth1=1, egHcalDepth2=2;
869  eventData_->hadDepth1Isolation03 = new EgammaTowerIsolation(egHcalIsoConeSizeOutSmall,egHcalIsoConeSizeIn,egHcalIsoPtMin,egHcalDepth1,eventData_->towers.product()) ;
870  eventData_->hadDepth2Isolation03 = new EgammaTowerIsolation(egHcalIsoConeSizeOutSmall,egHcalIsoConeSizeIn,egHcalIsoPtMin,egHcalDepth2,eventData_->towers.product()) ;
871  eventData_->hadDepth1Isolation04 = new EgammaTowerIsolation(egHcalIsoConeSizeOutLarge,egHcalIsoConeSizeIn,egHcalIsoPtMin,egHcalDepth1,eventData_->towers.product()) ;
872  eventData_->hadDepth2Isolation04 = new EgammaTowerIsolation(egHcalIsoConeSizeOutLarge,egHcalIsoConeSizeIn,egHcalIsoPtMin,egHcalDepth2,eventData_->towers.product()) ;
873  eventData_->hadDepth1Isolation03Bc = new EgammaTowerIsolation(egHcalIsoConeSizeOutSmall,0.,egHcalIsoPtMin,egHcalDepth1,eventData_->towers.product()) ;
874  eventData_->hadDepth2Isolation03Bc = new EgammaTowerIsolation(egHcalIsoConeSizeOutSmall,0.,egHcalIsoPtMin,egHcalDepth2,eventData_->towers.product()) ;
875  eventData_->hadDepth1Isolation04Bc = new EgammaTowerIsolation(egHcalIsoConeSizeOutLarge,0.,egHcalIsoPtMin,egHcalDepth1,eventData_->towers.product()) ;
876  eventData_->hadDepth2Isolation04Bc = new EgammaTowerIsolation(egHcalIsoConeSizeOutLarge,0.,egHcalIsoPtMin,egHcalDepth2,eventData_->towers.product()) ;
877 
878  float egIsoConeSizeOutSmall=0.3, egIsoConeSizeOutLarge=0.4, egIsoJurassicWidth=generalData_->isoCfg.jurassicWidth;
879  float egIsoPtMinBarrel=generalData_->isoCfg.etMinBarrel,egIsoEMinBarrel=generalData_->isoCfg.eMinBarrel, egIsoConeSizeInBarrel=generalData_->isoCfg.intRadiusEcalBarrel;
880  float egIsoPtMinEndcap=generalData_->isoCfg.etMinEndcaps,egIsoEMinEndcap=generalData_->isoCfg.eMinEndcaps, egIsoConeSizeInEndcap=generalData_->isoCfg.intRadiusEcalEndcaps;
881  eventData_->ecalBarrelIsol03 = new EgammaRecHitIsolation(egIsoConeSizeOutSmall,egIsoConeSizeInBarrel,egIsoJurassicWidth,egIsoPtMinBarrel,egIsoEMinBarrel,eventSetupData_->caloGeom,*(eventData_->barrelRecHits),eventSetupData_->sevLevel.product(),DetId::Ecal);
882  eventData_->ecalBarrelIsol04 = new EgammaRecHitIsolation(egIsoConeSizeOutLarge,egIsoConeSizeInBarrel,egIsoJurassicWidth,egIsoPtMinBarrel,egIsoEMinBarrel,eventSetupData_->caloGeom,*(eventData_->barrelRecHits),eventSetupData_->sevLevel.product(),DetId::Ecal);
883  eventData_->ecalEndcapIsol03 = new EgammaRecHitIsolation(egIsoConeSizeOutSmall,egIsoConeSizeInEndcap,egIsoJurassicWidth,egIsoPtMinEndcap,egIsoEMinEndcap,eventSetupData_->caloGeom,*(eventData_->endcapRecHits),eventSetupData_->sevLevel.product(),DetId::Ecal);
884  eventData_->ecalEndcapIsol04 = new EgammaRecHitIsolation(egIsoConeSizeOutLarge,egIsoConeSizeInEndcap,egIsoJurassicWidth,egIsoPtMinEndcap,egIsoEMinEndcap,eventSetupData_->caloGeom,*(eventData_->endcapRecHits),eventSetupData_->sevLevel.product(),DetId::Ecal);
901 
902  //Fill in the Isolation Value Maps for PF and EcalDriven electrons
903  std::vector<edm::InputTag> inputTagIsoVals;
905  inputTagIsoVals.push_back(generalData_->inputCfg.pfIsoVals.getParameter<edm::InputTag>("pfSumChargedHadronPt"));
906  inputTagIsoVals.push_back(generalData_->inputCfg.pfIsoVals.getParameter<edm::InputTag>("pfSumPhotonEt"));
907  inputTagIsoVals.push_back(generalData_->inputCfg.pfIsoVals.getParameter<edm::InputTag>("pfSumNeutralHadronEt"));
908 
909  eventData_->pfIsolationValues.resize(inputTagIsoVals.size());
910 
911  for (size_t j = 0; j<inputTagIsoVals.size(); ++j) {
912  event.getByLabel(inputTagIsoVals[j], eventData_->pfIsolationValues[j]);
913  }
914 
915  }
916 
918  inputTagIsoVals.clear();
919  inputTagIsoVals.push_back(generalData_->inputCfg.edIsoVals.getParameter<edm::InputTag>("edSumChargedHadronPt"));
920  inputTagIsoVals.push_back(generalData_->inputCfg.edIsoVals.getParameter<edm::InputTag>("edSumPhotonEt"));
921  inputTagIsoVals.push_back(generalData_->inputCfg.edIsoVals.getParameter<edm::InputTag>("edSumNeutralHadronEt"));
922 
923  eventData_->edIsolationValues.resize(inputTagIsoVals.size());
924 
925  for (size_t j = 0; j<inputTagIsoVals.size(); ++j) {
926  event.getByLabel(inputTagIsoVals[j], eventData_->edIsolationValues[j]);
927  }
928  }
929  }
930 
932  {
933  if (eventData_==nullptr)
934  { throw cms::Exception("GsfElectronAlgo|InternalError")<<"lacking event data" ; }
935  delete eventData_ ;
936  eventData_ = nullptr ;
937  }
938 
940  {
941  LogTrace("GsfElectronAlgo") << "========== " << title << " ==========";
942  LogTrace("GsfElectronAlgo") << "Event: " << eventData_->event->id();
943  LogTrace("GsfElectronAlgo") << "Number of electrons: " << eventData_->electrons->size() ;
944  GsfElectronPtrCollection::const_iterator it ;
945  for ( it = eventData_->electrons->begin(); it != eventData_->electrons->end(); it++ )
946  {
947  LogTrace("GsfElectronAlgo") << "Electron with charge, pt, eta, phi: " << (*it)->charge() << " , "
948  << (*it)->pt() << " , " << (*it)->eta() << " , " << (*it)->phi();
949  }
950  LogTrace("GsfElectronAlgo") << "=================================================";
951  }
952 
954  {
955  if (electronData_!=nullptr)
956  { throw cms::Exception("GsfElectronAlgo|InternalError")<<"unexpected electron data" ; }
957 
958  const GsfElectronCoreCollection * coreCollection = eventData_->coreElectrons.product() ;
959  for ( unsigned int i=0 ; i<coreCollection->size() ; ++i )
960  {
961  // check there is no existing electron with this core
963  bool coreFound = false ;
964  GsfElectronPtrCollection::const_iterator itrEle ;
965  for
966  ( itrEle = eventData_->electrons->begin() ;
967  itrEle != eventData_->electrons->end() ;
968  itrEle++ )
969  {
970  if ((*itrEle)->core()==coreRef)
971  {
972  coreFound = true ;
973  break ;
974  }
975  }
976  if (coreFound) continue ;
977 
978  // check there is a super-cluster
979  if (coreRef->superCluster().isNull()) continue ;
980 
981  // prepare internal structure for electron specific data
982  delete electronData_ ;
983  electronData_ = new ElectronData(coreRef,*eventData_->beamspot) ;
984 
985  // calculate and check Trajectory StatesOnSurface....
987 
988  createElectron(hoc) ;
989 
990  } // loop over tracks
991 
992  delete electronData_ ;
994  }
995 
997  {
998  const GsfElectronCollection * oldElectrons = eventData_->previousElectrons.product() ;
1000  GsfElectronCollection::const_iterator oldElectron ;
1001  for
1002  ( oldElectron = oldElectrons->begin() ;
1003  oldElectron != oldElectrons->end() ;
1004  ++oldElectron )
1005  {
1006  const GsfElectronCoreRef oldCoreRef = oldElectron->core() ;
1007  const GsfTrackRef oldElectronGsfTrackRef = oldCoreRef->gsfTrack() ;
1008  unsigned int icore ;
1009  for ( icore=0 ; icore<newCores->size() ; ++icore )
1010  {
1011  if (oldElectronGsfTrackRef==(*newCores)[icore].gsfTrack())
1012  {
1014  eventData_->electrons->push_back(new GsfElectron(*oldElectron,coreRef)) ;
1015  break ;
1016  }
1017  }
1018  }
1019  }
1020 
1021 
1022 // now deprecated
1024  {
1025  bool found ;
1026  const GsfElectronCollection * edElectrons = eventData_->previousElectrons.product() ;
1027  const GsfElectronCollection * pfElectrons = eventData_->pflowElectrons.product() ;
1028  GsfElectronCollection::const_iterator pfElectron, edElectron ;
1029  unsigned int edIndex, pfIndex ;
1030 
1031  GsfElectronPtrCollection::iterator el ;
1032  for
1033  ( el = eventData_->electrons->begin() ;
1034  el != eventData_->electrons->end() ;
1035  el++ )
1036  {
1037 
1038  // Retreive info from pflow electrons
1039  found = false ;
1040  for
1041  ( pfIndex = 0, pfElectron = pfElectrons->begin() ; pfElectron != pfElectrons->end() ; pfIndex++, pfElectron++ )
1042  {
1043  if (pfElectron->gsfTrack()==(*el)->gsfTrack())
1044  {
1045  if (found)
1046  {
1047  edm::LogWarning("GsfElectronProducer")<<"associated pfGsfElectron already found" ;
1048  }
1049  else
1050  {
1051  found = true ;
1052 
1053  // Isolation Values
1054  if( !(eventData_->pfIsolationValues).empty() )
1055  {
1057  pfElectronRef(eventData_->pflowElectrons, pfIndex);
1059  isoVariables.sumChargedHadronPt =(*(eventData_->pfIsolationValues)[0])[pfElectronRef];
1060  isoVariables.sumPhotonEt =(*(eventData_->pfIsolationValues)[1])[pfElectronRef];
1061  isoVariables.sumNeutralHadronEt =(*(eventData_->pfIsolationValues)[2])[pfElectronRef];
1062  (*el)->setPfIsolationVariables(isoVariables);
1063  }
1064 
1065 // (*el)->setPfIsolationVariables(pfElectron->pfIsolationVariables()) ;
1066  (*el)->setMvaInput(pfElectron->mvaInput()) ;
1067  (*el)->setMvaOutput(pfElectron->mvaOutput()) ;
1068  if ((*el)->ecalDrivenSeed())
1069  { (*el)->setP4(GsfElectron::P4_PFLOW_COMBINATION,pfElectron->p4(GsfElectron::P4_PFLOW_COMBINATION),pfElectron->p4Error(GsfElectron::P4_PFLOW_COMBINATION),false) ; }
1070  else
1071  { (*el)->setP4(GsfElectron::P4_PFLOW_COMBINATION,pfElectron->p4(GsfElectron::P4_PFLOW_COMBINATION),pfElectron->p4Error(GsfElectron::P4_PFLOW_COMBINATION),true) ; }
1072  double noCutMin = -999999999. ;
1073  if ((*el)->mva_e_pi()<noCutMin) { throw cms::Exception("GsfElectronAlgo|UnexpectedMvaValue")<<"unexpected MVA value: "<<(*el)->mva_e_pi() ; }
1074  }
1075  }
1076  }
1077 
1078  // Isolation Values
1079  // Retreive not found info from ed electrons
1080  if( !(eventData_->edIsolationValues).empty() )
1081  {
1082  edIndex = 0, edElectron = edElectrons->begin() ;
1083  while ((found == false)&&(edElectron != edElectrons->end()))
1084  {
1085  if (edElectron->gsfTrack()==(*el)->gsfTrack())
1086  {
1087  found = true ;
1088 
1089  // CONSTRUCTION D UNE REF dans le handle eventData_->previousElectrons avec l'indice edIndex,
1090  // puis recuperation dans la ValueMap ED
1091 
1093  edElectronRef(eventData_->previousElectrons, edIndex);
1095  isoVariables.sumChargedHadronPt =(*(eventData_->edIsolationValues)[0])[edElectronRef];
1096  isoVariables.sumPhotonEt =(*(eventData_->edIsolationValues)[1])[edElectronRef];
1097  isoVariables.sumNeutralHadronEt =(*(eventData_->edIsolationValues)[2])[edElectronRef];
1098  (*el)->setPfIsolationVariables(isoVariables);
1099  }
1100 
1101  edIndex++ ;
1102  edElectron++ ;
1103  }
1104  }
1105 
1106  // Preselection
1108 
1109  }
1110  }
1111 
1113  {
1114  bool passCutBased=ele->passingCutBasedPreselection();
1115  bool passPF=ele->passingPflowPreselection(); //it is worth nothing for gedGsfElectrons, this does nothing as its not set till GedGsfElectron finaliser, this is always false
1117  bool passmva=ele->passingMvaPreselection();
1118  if(!ele->ecalDrivenSeed()){
1120  return passmva && passCutBased;
1121  else
1122  return passmva;
1123  }
1124  else{
1125  return passCutBased || passPF || passmva;
1126  }
1127  }
1128  else{
1129  return passCutBased || passPF;
1130  }
1131 
1132  return true;
1133  }
1134 
1136  {
1137  GsfElectronPtrCollection::size_type ei = 1, emax = eventData_->electrons->size() ;
1138  GsfElectronPtrCollection::iterator eitr = eventData_->electrons->begin() ;
1139  while (eitr!=eventData_->electrons->end())
1140  {
1141  LogTrace("GsfElectronAlgo")<<"========== removed not preselected "<<ei<<"/"<<emax<<"==========" ;
1142  if (isPreselected(*eitr))
1143  { ++eitr ; ++ei ; }
1144  else
1145  { delete (*eitr) ; eitr = eventData_->electrons->erase(eitr) ; ++ei ; }
1146  }
1147  }
1148 
1149 
1151  {
1152  // default value
1153  ele->setPassCutBasedPreselection(false) ;
1154 
1155  // kind of seeding
1156  bool eg = ele->core()->ecalDrivenSeed() ;
1157  bool pf = ele->core()->trackerDrivenSeed() && !ele->core()->ecalDrivenSeed() ;
1158  bool gedMode = generalData_->strategyCfg.gedElectronMode;
1159  if (eg&&pf) { throw cms::Exception("GsfElectronAlgo|BothEcalAndPureTrackerDriven")<<"An electron cannot be both egamma and purely pflow" ; }
1160  if ((!eg)&&(!pf)) { throw cms::Exception("GsfElectronAlgo|NeitherEcalNorPureTrackerDriven")<<"An electron cannot be neither egamma nor purely pflow" ; }
1161 
1162  const CutsConfiguration * cfg = ((eg||gedMode)?&generalData_->cutsCfg:&generalData_->cutsCfgPflow);
1163 
1164  // Et cut
1165  double etaValue = EleRelPoint(ele->superCluster()->position(),bs.position()).eta() ;
1166  double etValue = ele->superCluster()->energy()/cosh(etaValue) ;
1167  LogTrace("GsfElectronAlgo") << "Et : " << etValue ;
1168  if (ele->isEB() && (etValue < cfg->minSCEtBarrel)) return ;
1169  if (ele->isEE() && (etValue < cfg->minSCEtEndcaps)) return ;
1170  LogTrace("GsfElectronAlgo") << "Et criteria are satisfied";
1171 
1172  // E/p cut
1173  double eopValue = ele->eSuperClusterOverP() ;
1174  LogTrace("GsfElectronAlgo") << "E/p : " << eopValue ;
1175  if (ele->isEB() && (eopValue > cfg->maxEOverPBarrel)) return ;
1176  if (ele->isEE() && (eopValue > cfg->maxEOverPEndcaps)) return ;
1177  if (ele->isEB() && (eopValue < cfg->minEOverPBarrel)) return ;
1178  if (ele->isEE() && (eopValue < cfg->minEOverPEndcaps)) return ;
1179  LogTrace("GsfElectronAlgo") << "E/p criteria are satisfied";
1180 
1181  // HoE cuts
1182  LogTrace("GsfElectronAlgo") << "HoE1 : " << ele->hcalDepth1OverEcal() << ", HoE2 : " << ele->hcalDepth2OverEcal();
1183  double had = ele->hcalOverEcal()*ele->superCluster()->energy() ;
1184  const reco::CaloCluster & seedCluster = *(ele->superCluster()->seed()) ;
1185  int detector = seedCluster.hitsAndFractions()[0].first.subdetId() ;
1186  bool HoEveto = false ;
1187  if (detector==EcalBarrel && (had<cfg->maxHBarrel || (had/ele->superCluster()->energy())<cfg->maxHOverEBarrel)) HoEveto=true;
1188  else if (detector==EcalEndcap && (had<cfg->maxHEndcaps || (had/ele->superCluster()->energy())<cfg->maxHOverEEndcaps)) HoEveto=true;
1189  if ( !HoEveto ) return ;
1190  LogTrace("GsfElectronAlgo") << "H/E criteria are satisfied";
1191 
1192  // delta eta criteria
1193  double deta = ele->deltaEtaSuperClusterTrackAtVtx() ;
1194  LogTrace("GsfElectronAlgo") << "delta eta : " << deta ;
1195  if (ele->isEB() && (std::abs(deta) > cfg->maxDeltaEtaBarrel)) return ;
1196  if (ele->isEE() && (std::abs(deta) > cfg->maxDeltaEtaEndcaps)) return ;
1197  LogTrace("GsfElectronAlgo") << "Delta eta criteria are satisfied";
1198 
1199  // delta phi criteria
1200  double dphi = ele->deltaPhiSuperClusterTrackAtVtx();
1201  LogTrace("GsfElectronAlgo") << "delta phi : " << dphi;
1202  if (ele->isEB() && (std::abs(dphi) > cfg->maxDeltaPhiBarrel)) return ;
1203  if (ele->isEE() && (std::abs(dphi) > cfg->maxDeltaPhiEndcaps)) return ;
1204  LogTrace("GsfElectronAlgo") << "Delta phi criteria are satisfied";
1205 
1206  // sigma ieta ieta
1207  LogTrace("GsfElectronAlgo") << "sigma ieta ieta : " << ele->sigmaIetaIeta();
1208  if (ele->isEB() && (ele->sigmaIetaIeta() > cfg->maxSigmaIetaIetaBarrel)) return ;
1209  if (ele->isEE() && (ele->sigmaIetaIeta() > cfg->maxSigmaIetaIetaEndcaps)) return ;
1210  LogTrace("GsfElectronAlgo") << "Sigma ieta ieta criteria are satisfied";
1211 
1212  // fiducial
1213  if (!ele->isEB() && cfg->isBarrel) return ;
1214  if (!ele->isEE() && cfg->isEndcaps) return ;
1215  if (cfg->isFiducial && (ele->isEBEEGap()||ele->isEBEtaGap()||ele->isEBPhiGap()||ele->isEERingGap()||ele->isEEDeeGap())) return ;
1216  LogTrace("GsfElectronAlgo") << "Fiducial flags criteria are satisfied";
1217 
1218  // seed in TEC
1219  edm::RefToBase<TrajectorySeed> seed = ele->gsfTrack()->extra()->seedRef() ;
1220  ElectronSeedRef elseed = seed.castTo<ElectronSeedRef>() ;
1221  if (eg && !generalData_->cutsCfg.seedFromTEC)
1222  {
1223  if (elseed.isNull())
1224  { throw cms::Exception("GsfElectronAlgo|NotElectronSeed")<<"The GsfTrack seed is not an ElectronSeed ?!" ; }
1225  else
1226  { if (elseed->subDet2()==6) return ; }
1227  }
1228 
1229  // transverse impact parameter
1230  if (std::abs(ele->gsfTrack()->dxy(bs.position()))>cfg->maxTIP) return ;
1231  LogTrace("GsfElectronAlgo") << "TIP criterion is satisfied" ;
1232 
1233  LogTrace("GsfElectronAlgo") << "All cut based criteria are satisfied" ;
1234  ele->setPassCutBasedPreselection(true) ;
1235  }
1236 
1238  {
1239  ele->setPassMvaPreselection(false) ;
1240 
1241  if (ele->core()->ecalDrivenSeed())
1242  { if (ele->mvaOutput().mva_e_pi>=generalData_->cutsCfg.minMVA) ele->setPassMvaPreselection(true) ; }
1243  else
1245 
1246  if (ele->passingMvaPreselection())
1247  { LogTrace("GsfElectronAlgo") << "Main mva criterion is satisfied" ; }
1248 
1250 
1251  }
1252 
1253 void GsfElectronAlgo::setMVAInputs(const std::map<reco::GsfTrackRef,reco::GsfElectron::MvaInput> & mvaInputs)
1254 {
1255  GsfElectronPtrCollection::iterator el ;
1256  for
1257  ( el = eventData_->electrons->begin() ;
1258  el != eventData_->electrons->end() ;
1259  el++ )
1260  {
1261  std::map<reco::GsfTrackRef,reco::GsfElectron::MvaInput>::const_iterator itcheck=mvaInputs.find((*el)->gsfTrack());
1262  (*el)->setMvaInput(itcheck->second);
1263  }
1264 }
1265 
1267  const std::map<reco::GsfTrackRef,reco::GsfElectron::MvaOutput> & mvaOutputs)
1268 {
1269  GsfElectronPtrCollection::iterator el ;
1270  for
1271  ( el = eventData_->electrons->begin() ;
1272  el != eventData_->electrons->end() ;
1273  el++ )
1274  {
1276  float mva_NIso_Value= hoc->sElectronMVAEstimator->mva( *(*el), *(eventData_->vertices));
1277  float mva_Iso_Value = hoc->iElectronMVAEstimator->mva( *(*el), eventData_->vertices->size() );
1278  GsfElectron::MvaOutput mvaOutput ;
1279  mvaOutput.mva_e_pi = mva_NIso_Value ;
1280  mvaOutput.mva_Isolated = mva_Iso_Value ;
1281  (*el)->setMvaOutput(mvaOutput);
1282  }
1283  else{
1284  std::map<reco::GsfTrackRef,reco::GsfElectron::MvaOutput>::const_iterator itcheck=mvaOutputs.find((*el)->gsfTrack());
1285  (*el)->setMvaOutput(itcheck->second);
1286  }
1287  }
1288 }
1289 
1291  {
1292  // eventually check ctf track
1295 
1296  // charge ID
1297  int eleCharge ;
1298  GsfElectron::ChargeInfo eleChargeInfo ;
1299  electronData_->computeCharge(eleCharge,eleChargeInfo) ;
1300 
1301  // electron basic cluster
1303 
1304  // Seed cluster
1305  const reco::CaloCluster & seedCluster = *(electronData_->superClusterRef->seed()) ;
1306 
1307  // seed Xtal
1308  // temporary, till CaloCluster->seed() is made available
1309  DetId seedXtalId = seedCluster.hitsAndFractions()[0].first ;
1310 
1312 
1313 
1314  //====================================================
1315  // Candidate attributes
1316  //====================================================
1317 
1319 
1320 
1321  //====================================================
1322  // Track-Cluster Matching
1323  //====================================================
1324 
1326  tcMatching.electronCluster = elbcRef ;
1327  tcMatching.eSuperClusterOverP = (electronData_->vtxMom.mag()>0)?(electronData_->superClusterRef->energy()/electronData_->vtxMom.mag()):(-1.) ;
1328  tcMatching.eSeedClusterOverP = (electronData_->vtxMom.mag()>0.)?(seedCluster.energy()/electronData_->vtxMom.mag()):(-1) ;
1329  tcMatching.eSeedClusterOverPout = (electronData_->seedMom.mag()>0.)?(seedCluster.energy()/electronData_->seedMom.mag()):(-1.) ;
1330  tcMatching.eEleClusterOverPout = (electronData_->eleMom.mag()>0.)?(elbcRef->energy()/electronData_->eleMom.mag()):(-1.) ;
1331 
1333  tcMatching.deltaEtaSuperClusterAtVtx = scAtVtx.dEta() ;
1334  tcMatching.deltaPhiSuperClusterAtVtx = scAtVtx.dPhi() ;
1335 
1336  EleRelPointPair seedAtCalo(seedCluster.position(),electronData_->seedPos,eventData_->beamspot->position()) ;
1337  tcMatching.deltaEtaSeedClusterAtCalo = seedAtCalo.dEta() ;
1338  tcMatching.deltaPhiSeedClusterAtCalo = seedAtCalo.dPhi() ;
1339 
1341  tcMatching.deltaEtaEleClusterAtCalo = ecAtCalo.dEta() ;
1342  tcMatching.deltaPhiEleClusterAtCalo = ecAtCalo.dPhi() ;
1343 
1344 
1345  //=======================================================
1346  // Track extrapolations
1347  //=======================================================
1348 
1357 
1358 
1359  //=======================================================
1360  // Closest Ctf Track
1361  //=======================================================
1362 
1364  ctfInfo.ctfTrack = electronData_->ctfTrackRef ;
1366 
1367 
1368  //====================================================
1369  // FiducialFlags, using nextToBoundary definition of gaps
1370  //====================================================
1371 
1372  reco::GsfElectron::FiducialFlags fiducialFlags ;
1373  int region = seedXtalId.det();
1374  int detector = seedXtalId.subdetId() ;
1375  double feta=std::abs(electronData_->superClusterRef->position().eta()) ;
1376  if (detector==EcalBarrel)
1377  {
1378  fiducialFlags.isEB = true ;
1379  EBDetId ebdetid(seedXtalId);
1380  if (EBDetId::isNextToEtaBoundary(ebdetid))
1381  {
1382  if (ebdetid.ietaAbs()==85)
1383  { fiducialFlags.isEBEEGap = true ; }
1384  else
1385  { fiducialFlags.isEBEtaGap = true ; }
1386  }
1387  if (EBDetId::isNextToPhiBoundary(ebdetid))
1388  { fiducialFlags.isEBPhiGap = true ; }
1389  }
1390  else if (detector==EcalEndcap)
1391  {
1392  fiducialFlags.isEE = true ;
1393  EEDetId eedetid(seedXtalId);
1394  if (EEDetId::isNextToRingBoundary(eedetid))
1395  {
1396  if (std::abs(feta)<2.)
1397  { fiducialFlags.isEBEEGap = true ; }
1398  else
1399  { fiducialFlags.isEERingGap = true ; }
1400  }
1401  if (EEDetId::isNextToDBoundary(eedetid))
1402  { fiducialFlags.isEEDeeGap = true ; }
1403  }
1404  else if ( region==DetId::Forward || region == DetId::Hcal )
1405  {
1406  fiducialFlags.isEE = true ;
1407  //HGCalDetId eeDetid(seedXtalId);
1408  // fill in fiducial information when we know how to use it...
1409  }
1410  else
1411  { throw cms::Exception("GsfElectronAlgo|UnknownXtalRegion")<<"createElectron(): do not know if it is a barrel or endcap seed cluster !!!!" ; }
1412 
1413 
1414  //====================================================
1415  // SaturationInfo
1416  //====================================================
1417 
1418  reco::GsfElectron::SaturationInfo saturationInfo;
1420 
1421  //====================================================
1422  // ShowerShape
1423  //====================================================
1424 
1425  reco::GsfElectron::ShowerShape showerShape;
1426  reco::GsfElectron::ShowerShape full5x5_showerShape;
1427  if( !(region==DetId::Forward || region == DetId::Hcal) ) {
1428  calculateShowerShape(electronData_->superClusterRef,!(electronData_->coreRef->ecalDrivenSeed()),showerShape) ;
1429  calculateShowerShape_full5x5(electronData_->superClusterRef,!(electronData_->coreRef->ecalDrivenSeed()),full5x5_showerShape) ;
1430  }
1431 
1432  //====================================================
1433  // ConversionRejection
1434  //====================================================
1435 
1437 
1438  ConversionFinder conversionFinder ;
1439  double BInTesla = eventSetupData_->magField->inTesla(GlobalPoint(0.,0.,0.)).z() ;
1441  if (!ctfTracks.isValid()) { ctfTracks = eventData_->currentCtfTracks ; }
1442 
1443  // values of conversionInfo.flag()
1444  // -9999 : Partner track was not found
1445  // 0 : Partner track found in the CTF collection using
1446  // 1 : Partner track found in the CTF collection using
1447  // 2 : Partner track found in the GSF collection using
1448  // 3 : Partner track found in the GSF collection using the electron's GSF track
1449  ConversionInfo conversionInfo = conversionFinder.getConversionInfo
1450  (*electronData_->coreRef,ctfTracks,eventData_->originalGsfTracks,BInTesla) ;
1451 
1453  conversionVars.flags = conversionInfo.flag() ;
1454  conversionVars.dist = conversionInfo.dist() ;
1455  conversionVars.dcot = conversionInfo.dcot() ;
1456  conversionVars.radius = conversionInfo.radiusOfConversion() ;
1457  if ((conversionVars.flags==0)or(conversionVars.flags==1))
1458  conversionVars.partner = TrackBaseRef(conversionInfo.conversionPartnerCtfTk()) ;
1459  else if ((conversionVars.flags==2)or(conversionVars.flags==3))
1460  conversionVars.partner = TrackBaseRef(conversionInfo.conversionPartnerGsfTk()) ;
1461 
1462 
1463  //====================================================
1464  // Go !
1465  //====================================================
1466 
1467  GsfElectron * ele = new
1468  GsfElectron
1469  ( eleCharge,eleChargeInfo,electronData_->coreRef,
1470  tcMatching, tkExtra, ctfInfo,
1471  fiducialFlags,showerShape, full5x5_showerShape,
1472  conversionVars, saturationInfo ) ;
1473  // Will be overwritten later in the case of the regression
1475  ele->setP4(GsfElectron::P4_FROM_SUPER_CLUSTER,momentum,0,true) ;
1476 
1477  //====================================================
1478  // brems fractions
1479  //====================================================
1480 
1481  if (electronData_->innMom.mag()>0.)
1483 
1484  // the supercluster is the refined one The seed is not necessarily the first cluster
1485  // hence the use of the electronCluster
1486  SuperClusterRef sc = ele->superCluster() ;
1487  if (!(sc.isNull()))
1488  {
1489  CaloClusterPtr cl = ele->electronCluster() ;
1490  if (sc->clustersSize()>1)
1491  {
1492  float pf_fbrem =( sc->energy() - cl->energy() ) / sc->energy();
1493  ele->setSuperClusterFbrem( pf_fbrem ) ;
1494  }
1495  else
1496  {
1497  ele->setSuperClusterFbrem(0) ;
1498  }
1499  }
1500 
1501  //====================================================
1502  // classification and corrections
1503  //====================================================
1504  // classification
1505  ElectronClassification theClassifier ;
1506  theClassifier.classify(*ele) ;
1507  theClassifier.refineWithPflow(*ele) ;
1508  // ecal energy
1511  {
1516  }
1517  else // original implementation
1518  {
1519  if( region!=DetId::Forward && region != DetId::Hcal ) {
1520  if (ele->core()->ecalDrivenSeed())
1521  {
1523  { theEnCorrector.classBasedParameterizationEnergy(*ele,*eventData_->beamspot) ; }
1525  { theEnCorrector.classBasedParameterizationUncertainty(*ele) ; }
1526  }
1527  else
1528  {
1530  { theEnCorrector.simpleParameterizationUncertainty(*ele) ; }
1531  }
1532  }
1533  }
1534 
1535  // momentum
1536  // Keep the default correction running first. The track momentum error is computed in there
1537  if (ele->core()->ecalDrivenSeed())
1538  {
1539  ElectronMomentumCorrector theMomCorrector;
1540  theMomCorrector.correct(*ele,electronData_->vtxTSOS);
1541  }
1543  {
1545  }
1546 
1547  //====================================================
1548  // now isolation variables
1549  //====================================================
1550 
1554 
1555  if( !(region==DetId::Forward || region == DetId::Hcal) ) {
1568  }
1569  ele->setIsolation03(dr03);
1570  ele->setIsolation04(dr04);
1571 
1572 
1573  //====================================================
1574  // preselection flag
1575  //====================================================
1576 
1578  //setting mva flag, currently GedGsfElectron and GsfElectron pre-selection flags have desynced
1579  //this is for GedGsfElectrons, GsfElectrons (ie old pre 7X std reco) resets this later on
1580  //in the function "addPfInfo"
1581  //yes this is awful, we'll fix it once we work out how to...
1582  float mvaValue = hoc->sElectronMVAEstimator->mva( *(ele),*(eventData_->vertices));
1584 
1585  //====================================================
1586  // Pixel match variables
1587  //====================================================
1589 
1590  LogTrace("GsfElectronAlgo")<<"Constructed new electron with energy "<< ele->p4().e() ;
1591 
1592  eventData_->electrons->push_back(ele) ;
1593  }
1594 
1595 
1596 //=======================================================================================
1597 // Ambiguity solving
1598 //=======================================================================================
1599 
1600 //bool better_electron( const reco::GsfElectron * e1, const reco::GsfElectron * e2 )
1601 // { return (std::abs(e1->eSuperClusterOverP()-1)<std::abs(e2->eSuperClusterOverP()-1)) ; }
1602 
1603 void GsfElectronAlgo::setAmbiguityData( bool ignoreNotPreselected )
1604  {
1605  GsfElectronPtrCollection::iterator e1, e2 ;
1610  else
1611  { throw cms::Exception("GsfElectronAlgo|UnknownAmbiguitySortingStrategy")<<"value of generalData_->strategyCfg.ambSortingStrategy is : "<<generalData_->strategyCfg.ambSortingStrategy ; }
1612 
1613  // init
1614  for
1615  ( e1 = eventData_->electrons->begin() ;
1616  e1 != eventData_->electrons->end() ;
1617  ++e1 )
1618  {
1619  (*e1)->clearAmbiguousGsfTracks() ;
1620  (*e1)->setAmbiguous(false) ;
1621  }
1622 
1623  // get ambiguous from GsfPfRecTracks
1625  {
1626  for
1627  ( e1 = eventData_->electrons->begin() ;
1628  e1 != eventData_->electrons->end() ;
1629  ++e1 )
1630  {
1631  bool found = false ;
1632  const GsfPFRecTrackCollection * gsfPfRecTrackCollection = eventData_->gsfPfRecTracks.product() ;
1633  GsfPFRecTrackCollection::const_iterator gsfPfRecTrack ;
1634  for ( gsfPfRecTrack=gsfPfRecTrackCollection->begin() ;
1635  gsfPfRecTrack!=gsfPfRecTrackCollection->end() ;
1636  ++gsfPfRecTrack )
1637  {
1638  if (gsfPfRecTrack->gsfTrackRef()==(*e1)->gsfTrack())
1639  {
1640  if (found)
1641  {
1642  edm::LogWarning("GsfElectronAlgo")<<"associated gsfPfRecTrack already found" ;
1643  }
1644  else
1645  {
1646  found = true ;
1647  const std::vector<reco::GsfPFRecTrackRef> & duplicates(gsfPfRecTrack->convBremGsfPFRecTrackRef()) ;
1648  std::vector<reco::GsfPFRecTrackRef>::const_iterator duplicate ;
1649  for ( duplicate = duplicates.begin() ; duplicate != duplicates.end() ; duplicate ++ )
1650  { (*e1)->addAmbiguousGsfTrack((*duplicate)->gsfTrackRef()) ; }
1651  }
1652  }
1653  }
1654  }
1655  }
1656  // or search overlapping clusters
1657  else
1658  {
1659  for
1660  ( e1 = eventData_->electrons->begin() ;
1661  e1 != eventData_->electrons->end() ;
1662  ++e1 )
1663  {
1664  if ((*e1)->ambiguous()) continue ;
1665  if ( ignoreNotPreselected && !isPreselected(*e1) ) continue ;
1666 
1667  SuperClusterRef scRef1 = (*e1)->superCluster();
1668  CaloClusterPtr eleClu1 = (*e1)->electronCluster();
1669  LogDebug("GsfElectronAlgo")
1670  << "Blessing electron with E/P " << (*e1)->eSuperClusterOverP()
1671  << ", cluster " << scRef1.get()
1672  << " & track " << (*e1)->gsfTrack().get() ;
1673 
1674  for
1675  ( e2 = e1, ++e2 ;
1676  e2 != eventData_->electrons->end() ;
1677  ++e2 )
1678  {
1679  if ((*e2)->ambiguous()) continue ;
1680  if ( ignoreNotPreselected && !isPreselected(*e2) ) continue ;
1681 
1682  SuperClusterRef scRef2 = (*e2)->superCluster();
1683  CaloClusterPtr eleClu2 = (*e2)->electronCluster();
1684 
1685  // search if same cluster
1686  bool sameCluster = false ;
1688  { sameCluster = (scRef1==scRef2) ; }
1690  {
1691  float eMin = 1. ;
1692  float threshold = eMin*cosh(EleRelPoint(scRef1->position(),eventData_->beamspot->position()).eta()) ;
1693  sameCluster =
1695  (EgAmbiguityTools::sharedEnergy(&(*scRef1->seed()),&(*eleClu2),eventData_->barrelRecHits,eventData_->endcapRecHits)>=threshold) ||
1697  (EgAmbiguityTools::sharedEnergy(&(*scRef1->seed()),&(*scRef2->seed()),eventData_->barrelRecHits,eventData_->endcapRecHits)>=threshold) ) ;
1698  }
1699  else
1700  { throw cms::Exception("GsfElectronAlgo|UnknownAmbiguityClustersOverlapStrategy")<<"value of generalData_->strategyCfg.ambClustersOverlapStrategy is : "<<generalData_->strategyCfg.ambClustersOverlapStrategy ; }
1701 
1702  // main instructions
1703  if (sameCluster)
1704  {
1705  LogDebug("GsfElectronAlgo")
1706  << "Discarding electron with E/P " << (*e2)->eSuperClusterOverP()
1707  << ", cluster " << scRef2.get()
1708  << " and track " << (*e2)->gsfTrack().get() ;
1709  (*e1)->addAmbiguousGsfTrack((*e2)->gsfTrack()) ;
1710  (*e2)->setAmbiguous(true) ;
1711  }
1712  else if ((*e1)->gsfTrack()==(*e2)->gsfTrack())
1713  {
1714  edm::LogWarning("GsfElectronAlgo")
1715  << "Forgetting electron with E/P " << (*e2)->eSuperClusterOverP()
1716  << ", cluster " << scRef2.get()
1717  << " and track " << (*e2)->gsfTrack().get() ;
1718  (*e2)->setAmbiguous(true) ;
1719  }
1720  }
1721  }
1722  }
1723  }
1724 
1726  {
1727  GsfElectronPtrCollection::size_type ei = 1, emax = eventData_->electrons->size() ;
1728  GsfElectronPtrCollection::iterator eitr = eventData_->electrons->begin() ;
1729  while (eitr!=eventData_->electrons->end())
1730  {
1731  LogTrace("GsfElectronAlgo")<<"========== remove ambiguous "<<ei<<"/"<<emax<<"==========" ;
1732  if ((*eitr)->ambiguous())
1733  { delete (*eitr) ; eitr = eventData_->electrons->erase(eitr) ; ++ei ; }
1734  else
1735  { ++eitr ; ++ei ; }
1736  }
1737  }
1738 
1739 
1740 // Pixel match variables
1742  int sd1 = 0 ;
1743  int sd2 = 0 ;
1744  float dPhi1 = 0 ;
1745  float dPhi2 = 0 ;
1746  float dRz1 = 0 ;
1747  float dRz2 = 0 ;
1748  edm::RefToBase<TrajectorySeed> seed = ele->gsfTrack()->extra()->seedRef();
1749  ElectronSeedRef elseed = seed.castTo<ElectronSeedRef>();
1750  if(seed.isNull()){}
1751  else{
1752  if(elseed.isNull()){}
1753  else{
1754  sd1 = elseed->subDet1() ;
1755  sd2 = elseed->subDet2() ;
1756  dPhi1 = (ele->charge()>0) ? elseed->dPhi1Pos() : elseed->dPhi1() ;
1757  dPhi2 = (ele->charge()>0) ? elseed->dPhi2Pos() : elseed->dPhi2() ;
1758  dRz1 = (ele->charge()>0) ? elseed->dRz1Pos () : elseed->dRz1 () ;
1759  dRz2 = (ele->charge()>0) ? elseed->dRz2Pos () : elseed->dRz2 () ;
1760  }
1761  }
1762  ele->setPixelMatchSubdetectors(sd1,sd2) ;
1763  ele->setPixelMatchDPhi1(dPhi1) ;
1764  ele->setPixelMatchDPhi2(dPhi2) ;
1765  ele->setPixelMatchDRz1 (dRz1 ) ;
1766  ele->setPixelMatchDRz2 (dRz2 ) ;
1767 }
#define LogDebug(id)
TrajectoryStateOnSurface constrainAtBeamSpot(const reco::GsfTrack &, const reco::BeamSpot &) const
(multi)TSOS after including the beamspot
CaloClusterPtr electronCluster() const
Definition: GsfElectron.h:244
ElectronHcalHelper * hcalHelperPflow
void setPixelMatchInfomation(reco::GsfElectron *)
edm::Handle< reco::TrackCollection > originalCtfTracks
T getParameter(std::string const &) const
GsfTrackRef gsfTrack() const override
reference to a GsfTrack
Definition: GsfElectron.h:185
unsigned long long cacheIdentifier() const
edm::Handle< reco::ElectronSeedCollection > seeds
bool empty() const
Definition: ParameterSet.h:218
const MultiTrajectoryStateMode * mtsMode
bool isPreselected(reco::GsfElectron *ele)
const math::XYZPoint & position() const
cluster centroid position
Definition: CaloCluster.h:131
void applyCombinationRegression(reco::GsfElectron &ele) const
void setMVAOutputs(const gsfAlgoHelpers::HeavyObjectCache *, const std::map< reco::GsfTrackRef, reco::GsfElectron::MvaOutput > &mvaOutputs)
void setTrackFbrem(float fbrem)
Definition: GsfElectron.h:764
edm::Handle< edm::ValueMap< float > > pfMva
std::unique_ptr< const SoftElectronMVAEstimator > sElectronMVAEstimator
void setP4(P4Kind kind, const LorentzVector &p4, float p4Error, bool setCandidate)
Definition: GsfElectron.cc:199
GeneralData * generalData_
const CutsConfiguration cutsCfgPflow
GeneralData(const InputTagsConfiguration &, const StrategyConfiguration &, const CutsConfiguration &cutsCfg, const CutsConfiguration &cutsCfgPflow, const ElectronHcalHelper::Configuration &hcalCfg, const ElectronHcalHelper::Configuration &hcalCfgPflow, const IsolationConfiguration &, const EcalRecHitsConfiguration &, EcalClusterFunctionBaseClass *superClusterErrorFunction, EcalClusterFunctionBaseClass *crackCorrectionFunction, const SoftElectronMVAEstimator::Configuration &mva_NIso_Cfg, const ElectronMVAEstimator::Configuration &mva_Iso_Cfg, const RegressionHelper::Configuration &)
static bool isNextToEtaBoundary(EBDetId id)
Definition: EBDetId.cc:125
EgammaTowerIsolation * hadDepth1Isolation04Bc
reco::GsfTrackRef conversionPartnerGsfTk() const
static const TGPicture * info(bool iBackgroundIsBlack)
void setPassCutBasedPreselection(bool flag)
Definition: GsfElectron.h:717
bool isNonnull() const
Checks for non-null.
Definition: Ref.h:253
bool positionFromModeCartesian(const TrajectoryStateOnSurface tsos, GlobalPoint &position) const
void setPixelMatchDRz2(float dRz2)
Definition: GsfElectron.h:892
static float e2x5Bottom(const reco::BasicCluster &cluster, const EcalRecHitCollection *recHits, const CaloTopology *topology)
edm::EDGetTokenT< reco::GsfElectronCoreCollection > gsfElectronCores
bool isEBEtaGap() const
Definition: GsfElectron.h:357
void readEvent(const edm::Event &)
EgammaTowerIsolation * hadDepth1Isolation03Bc
double radiusOfConversion() const
static std::vector< float > covariances(const reco::BasicCluster &cluster, const EcalRecHitCollection *recHits, const CaloTopology *topology, const CaloGeometry *geometry, float w0=4.7)
bool hasActiveHcal(const reco::SuperCluster &sc)
void clonePreviousElectrons()
const LorentzVector & p4(P4Kind kind) const
Definition: GsfElectron.cc:225
float eSuperClusterOverP() const
Definition: GsfElectron.h:245
bool isBetter(const reco::GsfElectron *, const reco::GsfElectron *)
CaloTopology const * topology(0)
void retreiveOriginalTrackCollections(const reco::TrackRef &, const reco::GsfTrackRef &)
void setPixelMatchDPhi1(float dPhi1)
Definition: GsfElectron.h:889
bool isEBEEGap() const
Definition: GsfElectron.h:355
bool getByToken(EDGetToken token, Handle< PROD > &result) const
Definition: Event.h:579
float hcalDepth2OverEcal() const
Definition: GsfElectron.h:443
static float eMax(const reco::BasicCluster &cluster, const EcalRecHitCollection *recHits)
edm::EDGetTokenT< reco::GsfElectronCollection > previousGsfElectrons
double getEtSum(const reco::Candidate *emObject) const
const IsolationConfiguration isoCfg
edm::EDGetTokenT< reco::VertexCollection > vtxCollectionTag
void calculateShowerShape(const reco::SuperClusterRef &, bool pflow, reco::GsfElectron::ShowerShape &)
void beginEvent(edm::Event &)
Definition: __init__.py:1
TrajectoryStateOnSurface sclTSOS
const EcalRecHitsConfiguration recHitsCfg
EventSetupData * eventSetupData_
Global3DPoint GlobalPoint
Definition: GlobalPoint.h:10
std::vector< Track > TrackCollection
collection of Tracks
Definition: TrackFwd.h:14
edm::Handle< EcalRecHitCollection > endcapRecHits
double hcalESumDepth2BehindClusters(const std::vector< CaloTowerDetId > &towers)
double dist() const
double pt() const final
transverse momentum
std::vector< CaloTowerDetId > hcalTowersBehindClusters(const reco::SuperCluster &sc)
const std::vector< std::pair< DetId, float > > & hitsAndFractions() const
Definition: CaloCluster.h:197
int charge() const final
electric charge
Definition: LeafCandidate.h:91
void checkSetup(const edm::EventSetup &)
void setMVAInputs(const std::map< reco::GsfTrackRef, reco::GsfElectron::MvaInput > &mvaInputs)
bool isEERingGap() const
Definition: GsfElectron.h:361
bool passingCutBasedPreselection() const
Definition: GsfElectron.h:709
bool passingMvaPreselection() const
Definition: GsfElectron.h:725
edm::EDGetTokenT< EcalRecHitCollection > endcapRecHitCollection
void computeCharge(int &charge, reco::GsfElectron::ChargeInfo &info)
GsfElectronAlgo(const InputTagsConfiguration &, const StrategyConfiguration &, const CutsConfiguration &cutsCfg, const CutsConfiguration &cutsCfgPflow, const ElectronHcalHelper::Configuration &hcalCfg, const ElectronHcalHelper::Configuration &hcalCfgPflow, const IsolationConfiguration &, const EcalRecHitsConfiguration &, EcalClusterFunctionBaseClass *superClusterErrorFunction, EcalClusterFunctionBaseClass *crackCorrectionFunction, const SoftElectronMVAEstimator::Configuration &mva_NIso_Cfg, const ElectronMVAEstimator::Configuration &mva_Iso_Cfg, const RegressionHelper::Configuration &regCfg, const edm::ParameterSet &tkIsol03Cfg, const edm::ParameterSet &tkIsol04Cfg)
bool momentumFromModeCartesian(const TrajectoryStateOnSurface tsos, GlobalVector &momentum) const
void checkCtfTrack(edm::Handle< reco::TrackCollection > currentCtfTracks)
void completeElectrons(const gsfAlgoHelpers::HeavyObjectCache *)
double hcalESumDepth1BehindClusters(const std::vector< CaloTowerDetId > &towers)
const InputTagsConfiguration inputCfg
#define nullptr
edm::ESHandle< EcalSeverityLevelAlgo > sevLevel
TrajectoryStateOnSurface innTSOS
uint16_t size_type
bool isEEDeeGap() const
Definition: GsfElectron.h:360
std::vector< GsfElectron > GsfElectronCollection
collection of GsfElectron objects
EgammaTowerIsolation * hadDepth1Isolation03
edm::EDGetTokenT< reco::GsfElectronCollection > pflowGsfElectronsTag
const StrategyConfiguration strategyCfg
bool isEE() const
Definition: GsfElectron.h:353
ProductID id() const
Accessor for product ID.
Definition: Ref.h:259
bool isEB() const
Definition: GsfElectron.h:352
TrajectoryStateOnSurface outerStateOnSurface(const reco::GsfTrack &tk) const
void setPixelMatchSubdetectors(int sd1, int sd2)
Definition: GsfElectron.h:888
edm::EDGetTokenT< EcalRecHitCollection > barrelRecHitCollection
edm::ESHandle< CaloTopology > caloTopo
void doFlagChecks(const std::vector< int > &v)
static float e2x5Top(const reco::BasicCluster &cluster, const EcalRecHitCollection *recHits, const CaloTopology *topology)
edm::EDGetTokenT< reco::GsfPFRecTrackCollection > gsfPfRecTracksTag
return((rh^lh)&mask)
reco::TrackRef conversionPartnerCtfTk() const
const Double_t pi
void createElectron(const gsfAlgoHelpers::HeavyObjectCache *)
void setSuperClusterFbrem(float fbrem)
Definition: GsfElectron.h:765
EgammaRecHitIsolation * ecalBarrelIsol04
TrajectoryStateOnSurface constrainedVtxTSOS
const RegressionHelper::Configuration regCfg
T barePhi() const
Definition: PV3DBase.h:68
EgammaTowerIsolation * hadDepth2Isolation03
EgammaTowerIsolation * hadDepth1Isolation04
edm::EDGetTokenT< reco::BeamSpot > beamSpotTag
virtual float getValue(const reco::BasicCluster &, const EcalRecHitCollection &) const =0
void setUseNumCrystals(bool b=true)
float deltaEtaSuperClusterTrackAtVtx() const
Definition: GsfElectron.h:249
void setCorrectedEcalEnergyError(float newEnergyError)
Definition: GsfElectron.cc:179
T mag() const
Definition: PV3DBase.h:67
float sigmaIetaIeta() const
Definition: GsfElectron.h:436
bool isNotFinite(T x)
Definition: isFinite.h:10
void calculateShowerShape_full5x5(const reco::SuperClusterRef &, bool pflow, reco::GsfElectron::ShowerShape &)
uint16_t hitPattern[ARRAY_LENGTH]
Definition: HitPattern.h:473
void simpleParameterizationUncertainty(reco::GsfElectron &)
TrajectoryStateOnSurface extrapolatedState(const TrajectoryStateOnSurface tsos, const GlobalPoint &point) const
void setCutBasedPreselectionFlag(reco::GsfElectron *ele, const reco::BeamSpot &)
std::vector< GsfPFRecTrack > GsfPFRecTrackCollection
collection of GsfPFRecTrack objects
edm::RefToBase< reco::Track > TrackBaseRef
persistent reference to a Track, using views
Definition: TrackFwd.h:32
EgammaRecHitIsolation * ecalEndcapIsol03
float sharedEnergy(const reco::CaloCluster *, const reco::CaloCluster *, edm::Handle< EcalRecHitCollection > &barrelRecHits, edm::Handle< EcalRecHitCollection > &endcapRecHits)
EgammaTowerIsolation * hadDepth2Isolation03Bc
RealType normalized_phi(RealType phi)
T sqrt(T t)
Definition: SSEVec.h:18
GsfConstraintAtVertex * constraintAtVtx
static bool isNextToPhiBoundary(EBDetId id)
Definition: EBDetId.cc:130
The Signals That Services Can Subscribe To This is based on ActivityRegistry and is current per Services can connect to the signals distributed by the ActivityRegistry in order to monitor the activity of the application Each possible callback has some defined which we here list in angle e< void, edm::EventID const &, edm::Timestamp const & > We also list in braces which AR_WATCH_USING_METHOD_ is used for those or
Definition: Activities.doc:12
float sumPhotonEt
sum pt of PF photons // old float photonIso ;
Definition: GsfElectron.h:631
edm::Handle< EcalRecHitCollection > barrelRecHits
float deltaPhiSuperClusterTrackAtVtx() const
Definition: GsfElectron.h:252
T z() const
Definition: PV3DBase.h:64
std::vector< GsfElectronCore > GsfElectronCoreCollection
void correct(reco::GsfElectron &, TrajectoryStateOnSurface &)
static float e2nd(const reco::BasicCluster &cluster, const EcalRecHitCollection *recHits)
float hcalOverEcal() const
Definition: GsfElectron.h:444
constexpr int subdetId() const
get the contents of the subdetector field (not cast into any detector&#39;s numbering enum) ...
Definition: DetId.h:41
void setPassMvaPreselection(bool flag)
Definition: GsfElectron.h:724
IsolationValueMaps pfIsolationValues
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
std::vector< CaloTowerDetId > hcalTowersBehindClusters
Definition: GsfElectron.h:396
const MultiTrajectoryStateTransform * mtsTransform
static bool isNextToRingBoundary(EEDetId id)
Definition: EEDetId.cc:375
std::list< reco::GsfElectron * > GsfElectronPtrCollection
static float e2x5Max(const reco::BasicCluster &cluster, const EcalRecHitCollection *recHits, const CaloTopology *topology)
double hcalESumDepth2(const reco::SuperCluster &, const std::vector< CaloTowerDetId > *excludeTowers=0)
static float eBottom(const reco::BasicCluster &cluster, const EcalRecHitCollection *recHits, const CaloTopology *topology)
double energy() const
cluster energy
Definition: CaloCluster.h:126
const CutsConfiguration cutsCfg
static float e2x5Right(const reco::BasicCluster &cluster, const EcalRecHitCollection *recHits, const CaloTopology *topology)
ElectronHcalHelper * hcalHelper
float sumNeutralHadronEt
sum pt of neutral hadrons // old float neutralHadronIso ;
Definition: GsfElectron.h:630
double calIsolPt(Args &&...args) const
T const * get() const
Returns C++ pointer to the item.
Definition: Ref.h:245
edm::EDGetTokenT< reco::ElectronSeedCollection > seedsTag
const reco::BeamSpot * beamspot
T min(T a, T b)
Definition: MathUtil.h:58
edm::ESHandle< MagneticField > magField
GsfElectronPtrCollection * electrons
CaloClusterPtr getEleBasicCluster(const MultiTrajectoryStateTransform *)
static bool isNextToDBoundary(EEDetId id)
Definition: EEDetId.cc:367
edm::EDGetTokenT< edm::ValueMap< float > > pfMVA
bool isValid() const
Definition: HandleBase.h:74
bool isNull() const
Checks for null.
Definition: Ref.h:250
void setIsolation04(const IsolationVariables &dr04)
Definition: GsfElectron.h:574
#define LogTrace(id)
void doSeverityChecks(const EcalRecHitCollection *const recHits, const std::vector< int > &v)
virtual GlobalVector inTesla(const GlobalPoint &gp) const =0
Field value ad specified global point, in Tesla.
edm::EDGetTokenT< CaloTowerCollection > hcalTowersTag
void classify(reco::GsfElectron &)
EgammaTowerIsolation * hadDepth2Isolation04Bc
const_iterator end() const
edm::EDGetTokenT< reco::TrackCollection > ctfTracks
edm::Handle< reco::GsfElectronCollection > previousElectrons
float hcalDepth1OverEcal() const
Definition: GsfElectron.h:442
void setPixelMatchDPhi2(float dPhi2)
Definition: GsfElectron.h:890
std::vector< edm::Handle< edm::ValueMap< double > > > IsolationValueMaps
static float eTop(const reco::BasicCluster &cluster, const EcalRecHitCollection *recHits, const CaloTopology *topology)
Definition: DetId.h:18
void classBasedParameterizationEnergy(reco::GsfElectron &, const reco::BeamSpot &bs)
edm::Handle< reco::VertexCollection > vertices
EgammaRecHitIsolation * ecalBarrelIsol03
edm::Handle< reco::GsfElectronCollection > pflowElectrons
DetId seed() const
return DetId of seed
Definition: CaloCluster.h:207
int flag() const
void calculateSaturationInfo(const reco::SuperClusterRef &, reco::GsfElectron::SaturationInfo &)
T const * product() const
Definition: Handle.h:81
EcalClusterFunctionBaseClass * superClusterErrorFunction
REF castTo() const
Definition: RefToBase.h:286
bool isNull() const
Checks for null.
Definition: RefToBase.h:328
edm::Ref< TrackCollection > TrackRef
persistent reference to a Track
Definition: TrackFwd.h:20
void setPflowPreselectionFlag(reco::GsfElectron *ele)
const MvaOutput & mvaOutput() const
Definition: GsfElectron.h:683
const reco::GsfTrackRef gsfTrackRef
static float e2x5Left(const reco::BasicCluster &cluster, const EcalRecHitCollection *recHits, const CaloTopology *topology)
void ele_convert(const Type1 &obj1, Type2 &obj2)
bool calculateTSOS(const MultiTrajectoryStateTransform *, GsfConstraintAtVertex *)
math::XYZTLorentzVector LorentzVector
Lorentz vector.
Definition: Candidate.h:37
virtual GsfElectronCoreRef core() const
Definition: GsfElectron.cc:8
math::XYZVectorF momentumAtVtxWithConstraint
Definition: GsfElectron.h:285
TrajectoryStateOnSurface innerStateOnSurface(const reco::GsfTrack &tk) const
TrajectoryStateOnSurface seedTSOS
void refineWithPflow(reco::GsfElectron &)
void setIsolation03(const IsolationVariables &dr03)
Definition: GsfElectron.h:573
edm::EventID id() const
Definition: EventBase.h:60
iterator find(key_type k)
fixed size matrix
edm::Handle< reco::GsfTrackCollection > originalGsfTracks
HLT enums.
void applyEcalRegression(reco::GsfElectron &electron, const edm::Handle< reco::VertexCollection > &vertices, const edm::Handle< EcalRecHitCollection > &rechitsEB, const edm::Handle< EcalRecHitCollection > &rechitsEE) const
EgammaTowerIsolation * hadDepth2Isolation04
void setVetoClustered(bool b=true)
static std::atomic< unsigned int > counter
const reco::GsfElectronCoreRef coreRef
T get() const
Definition: EventSetup.h:63
bool isEBPhiGap() const
Definition: GsfElectron.h:358
edm::Handle< reco::TrackCollection > currentCtfTracks
EleTkIsolFromCands tkIsol04Calc_
double getTowerEtSum(const reco::Candidate *cand, const std::vector< CaloTowerDetId > *detIdToExclude=0) const
edm::ESHandle< CaloGeometry > caloGeom
EcalClusterFunctionBaseClass * crackCorrectionFunction
SuperClusterRef superCluster() const override
reference to a SuperCluster
Definition: GsfElectron.h:184
void removeAmbiguousElectrons()
double hcalESumDepth1(const reco::SuperCluster &, const std::vector< CaloTowerDetId > *excludeTowers=0)
void displayInternalElectrons(const std::string &title) const
void setPassPflowPreselection(bool flag)
Definition: GsfElectron.h:718
EgammaRecHitIsolation * ecalEndcapIsol04
static float eRight(const reco::BasicCluster &cluster, const EcalRecHitCollection *recHits, const CaloTopology *topology)
void removeNotPreselectedElectrons()
const reco::SuperClusterRef superClusterRef
TrajectoryStateOnSurface eleTSOS
const Point & position() const
position
Definition: BeamSpot.h:62
EventData * eventData_
static float e3x3(const reco::BasicCluster &cluster, const EcalRecHitCollection *recHits, const CaloTopology *topology)
double dcot() const
TrajectoryStateOnSurface outTSOS
RegressionHelper * regHelper
ElectronData(const reco::GsfElectronCoreRef &core, const reco::BeamSpot &bs)
void copyElectrons(reco::GsfElectronCollection &)
ElectronData * electronData_
uint16_t getHitPattern(HitCategory category, int position) const
Definition: HitPattern.h:516
edm::ESHandle< TrackerGeometry > trackerHandle
void setAmbiguityData(bool ignoreNotPreselected=true)
IsolationValueMaps edIsolationValues
float sumChargedHadronPt
sum-pt of charged Hadron // old float chargedHadronIso ;
Definition: GsfElectron.h:629
virtual void init(const edm::EventSetup &es)=0
EleTkIsolFromCands tkIsol03Calc_
edm::Handle< reco::GsfElectronCoreCollection > coreElectrons
int ietaAbs() const
get the absolute value of the crystal ieta
Definition: EBDetId.h:49
void classBasedParameterizationUncertainty(reco::GsfElectron &)
T const * product() const
Definition: ESHandle.h:86
static float eLeft(const reco::BasicCluster &cluster, const EcalRecHitCollection *recHits, const CaloTopology *topology)
static std::vector< float > localCovariances(const reco::BasicCluster &cluster, const EcalRecHitCollection *recHits, const CaloTopology *topology, float w0=4.7)
void checkSetup(const edm::EventSetup &)
void setPixelMatchDRz1(float dRz1)
Definition: GsfElectron.h:891
static float e1x5(const reco::BasicCluster &cluster, const EcalRecHitCollection *recHits, const CaloTopology *topology)
edm::Handle< CaloTowerCollection > towers
std::unique_ptr< const ElectronMVAEstimator > iElectronMVAEstimator
void calculateMode(const MultiTrajectoryStateMode *mtsMode)
Definition: event.py:1
math::PtEtaPhiELorentzVectorF LorentzVector
Global3DVector GlobalVector
Definition: GlobalVector.h:10
void checkSetup(const edm::EventSetup &)
edm::Handle< reco::GsfPFRecTrackCollection > gsfPfRecTracks
TrajectoryStateOnSurface vtxTSOS
static float e5x5(const reco::BasicCluster &cluster, const EcalRecHitCollection *recHits, const CaloTopology *topology)
bool ecalDrivenSeed() const
Definition: GsfElectron.h:188
constexpr Detector det() const
get the detector field from this detid
Definition: DetId.h:39
Candidate::LorentzVector calculateMomentum()
bool passingPflowPreselection() const
Definition: GsfElectron.h:710
const reco::BeamSpot beamSpot