CMS 3D CMS Logo

List of all members | Public Member Functions | Private Attributes
CMSEmStandardPhysicsXS Class Reference

#include <CMSEmStandardPhysicsXS.h>

Inheritance diagram for CMSEmStandardPhysicsXS:

Public Member Functions

 CMSEmStandardPhysicsXS (G4int ver)
 
void ConstructParticle () override
 
void ConstructProcess () override
 
 ~CMSEmStandardPhysicsXS () override
 

Private Attributes

G4int verbose
 

Detailed Description

Definition at line 7 of file CMSEmStandardPhysicsXS.h.

Constructor & Destructor Documentation

CMSEmStandardPhysicsXS::CMSEmStandardPhysicsXS ( G4int  ver)

Definition at line 81 of file CMSEmStandardPhysicsXS.cc.

81  :
82  G4VPhysicsConstructor("CMSEmStandardXS_opt1"), verbose(ver) {
83  G4EmParameters* param = G4EmParameters::Instance();
84  param->SetDefaults();
85  param->SetVerbose(verbose);
86  param->SetApplyCuts(true);
87  param->SetStepFunction(0.8, 1*CLHEP::mm);
88  param->SetMscRangeFactor(0.2);
89  param->SetMscStepLimitType(fMinimal);
90  param->SetFluo(true);
91  SetPhysicsType(bElectromagnetic);
92 }
CMSEmStandardPhysicsXS::~CMSEmStandardPhysicsXS ( )
override

Definition at line 94 of file CMSEmStandardPhysicsXS.cc.

94 {}

Member Function Documentation

void CMSEmStandardPhysicsXS::ConstructParticle ( )
override

Definition at line 96 of file CMSEmStandardPhysicsXS.cc.

References nanoDQM_cff::Electron, and Gamma.

96  {
97  // gamma
99 
100  // leptons
102  G4Positron::Positron();
103  G4MuonPlus::MuonPlus();
104  G4MuonMinus::MuonMinus();
105  G4TauMinus::TauMinusDefinition();
106  G4TauPlus::TauPlusDefinition();
107 
108  // mesons
109  G4PionPlus::PionPlusDefinition();
110  G4PionMinus::PionMinusDefinition();
111  G4KaonPlus::KaonPlusDefinition();
112  G4KaonMinus::KaonMinusDefinition();
113  G4DMesonMinus::DMesonMinusDefinition();
114  G4DMesonPlus::DMesonPlusDefinition();
115  G4BMesonMinus::BMesonMinusDefinition();
116  G4BMesonPlus::BMesonPlusDefinition();
117 
118  // barions
119  G4Proton::Proton();
120  G4AntiProton::AntiProton();
121  G4SigmaMinus::SigmaMinusDefinition();
122  G4AntiSigmaMinus::AntiSigmaMinusDefinition();
123  G4SigmaPlus::SigmaPlusDefinition();
124  G4AntiSigmaPlus::AntiSigmaPlusDefinition();
125  G4XiMinus::XiMinusDefinition();
126  G4AntiXiMinus::AntiXiMinusDefinition();
127  G4OmegaMinus::OmegaMinusDefinition();
128  G4AntiOmegaMinus::AntiOmegaMinusDefinition();
129  G4LambdacPlus::LambdacPlusDefinition();
130  G4AntiLambdacPlus::AntiLambdacPlusDefinition();
131  G4XicPlus::XicPlusDefinition();
132  G4AntiXicPlus::AntiXicPlusDefinition();
133 
134  // ions
135  G4Deuteron::Deuteron();
136  G4Triton::Triton();
137  G4He3::He3();
138  G4Alpha::Alpha();
139  G4GenericIon::GenericIonDefinition();
140 }
dbl * Gamma
Definition: mlp_gen.cc:38
void CMSEmStandardPhysicsXS::ConstructProcess ( )
override

Definition at line 142 of file CMSEmStandardPhysicsXS.cc.

References ecalTB2006H4_GenSimDigiReco_cfg::G4cout, kp, MeV, AnalysisDataFormats_SUSYBSMObjects::msc, HiggsValidation_cfi::particleName, EmParticleList::PartNames(), and createTree::pp.

142  {
143 
144  if(verbose > 0) {
145  G4cout << "### " << GetPhysicsName() << " Construct Processes " << G4endl;
146  }
147 
148  // This EM builder takes default models of Geant4 10 EMV.
149  // Multiple scattering by Urban for all particles
150  // except e+e- below 100 MeV for which the Urban93 model is used
151 
152  G4PhysicsListHelper* ph = G4PhysicsListHelper::GetPhysicsListHelper();
153 
154  // muon & hadron bremsstrahlung and pair production
155  G4MuBremsstrahlung* mub = nullptr;
156  G4MuPairProduction* mup = nullptr;
157  G4hBremsstrahlung* pib = nullptr;
158  G4hPairProduction* pip = nullptr;
159  G4hBremsstrahlung* kb = nullptr;
160  G4hPairProduction* kp = nullptr;
161  G4hBremsstrahlung* pb = nullptr;
162  G4hPairProduction* pp = nullptr;
163 
164  // muon & hadron multiple scattering
165  G4MuMultipleScattering* mumsc = nullptr;
166  G4hMultipleScattering* pimsc = nullptr;
167  G4hMultipleScattering* kmsc = nullptr;
168  G4hMultipleScattering* pmsc = nullptr;
169  G4hMultipleScattering* hmsc = nullptr;
170 
171  // muon and hadron single scattering
172  G4CoulombScattering* muss = nullptr;
173  G4CoulombScattering* piss = nullptr;
174  G4CoulombScattering* kss = nullptr;
175  G4CoulombScattering* pss = nullptr;
176 
177  // high energy limit for e+- scattering models and bremsstrahlung
178  G4double highEnergyLimit = 100*MeV;
179 
180  G4Region* aRegion =
181  G4RegionStore::GetInstance()->GetRegion("HcalRegion",false);
182  G4Region* bRegion =
183  G4RegionStore::GetInstance()->GetRegion("HGCalRegion",false);
184 
185  G4ParticleTable* table = G4ParticleTable::GetParticleTable();
186  EmParticleList emList;
187  for(const auto& particleName : emList.PartNames()) {
188  G4ParticleDefinition* particle = table->FindParticle(particleName);
189 
190  if (particleName == "gamma") {
191 
192  G4PhotoElectricEffect* photo = new G4PhotoElectricEffect();
193  photo->SetEmModel(new G4LivermorePhotoElectricModel());
194  ph->RegisterProcess(photo, particle);
195  G4ComptonScattering* compt = new G4ComptonScattering();
196  compt->SetEmModel(new G4KleinNishinaModel());
197  ph->RegisterProcess(compt, particle);
198  ph->RegisterProcess(new G4GammaConversion(), particle);
199 
200  } else if (particleName == "e-") {
201 
202  G4eIonisation* eioni = new G4eIonisation();
203 
204  G4eMultipleScattering* msc = new G4eMultipleScattering;
205  G4UrbanMscModel* msc1 = new G4UrbanMscModel();
206  G4WentzelVIModel* msc2 = new G4WentzelVIModel();
207  G4UrbanMscModel* msc3 = new G4UrbanMscModel();
208  msc3->SetLocked(true);
209  msc1->SetHighEnergyLimit(highEnergyLimit);
210  msc2->SetLowEnergyLimit(highEnergyLimit);
211  msc3->SetHighEnergyLimit(highEnergyLimit);
212  msc->SetEmModel(msc1);
213  msc->SetEmModel(msc2);
214  msc->AddEmModel(-1, msc3, aRegion);
215  if (bRegion) msc->AddEmModel(-1, msc3, bRegion);
216 
217  G4eCoulombScatteringModel* ssm = new G4eCoulombScatteringModel();
218  G4CoulombScattering* ss = new G4CoulombScattering();
219  ss->SetEmModel(ssm);
220  ss->SetMinKinEnergy(highEnergyLimit);
221  ssm->SetLowEnergyLimit(highEnergyLimit);
222  ssm->SetActivationLowEnergyLimit(highEnergyLimit);
223 
224  ph->RegisterProcess(msc, particle);
225  ph->RegisterProcess(eioni, particle);
226  ph->RegisterProcess(new G4eBremsstrahlung(), particle);
227  ph->RegisterProcess(ss, particle);
228 
229  } else if (particleName == "e+") {
230 
231  G4eIonisation* eioni = new G4eIonisation();
232 
233  G4eMultipleScattering* msc = new G4eMultipleScattering;
234  G4UrbanMscModel* msc1 = new G4UrbanMscModel();
235  G4WentzelVIModel* msc2= new G4WentzelVIModel();
236  G4UrbanMscModel* msc3 = new G4UrbanMscModel();
237  msc1->SetHighEnergyLimit(highEnergyLimit);
238  msc2->SetLowEnergyLimit(highEnergyLimit);
239  msc3->SetHighEnergyLimit(highEnergyLimit);
240  msc3->SetLocked(true);
241  msc->SetEmModel(msc1);
242  msc->SetEmModel(msc2);
243  msc->AddEmModel(-1, msc3, aRegion);
244  if (bRegion) msc->AddEmModel(-1, msc3, bRegion);
245 
246  G4eCoulombScatteringModel* ssm = new G4eCoulombScatteringModel();
247  G4CoulombScattering* ss = new G4CoulombScattering();
248  ss->SetEmModel(ssm);
249  ss->SetMinKinEnergy(highEnergyLimit);
250  ssm->SetLowEnergyLimit(highEnergyLimit);
251  ssm->SetActivationLowEnergyLimit(highEnergyLimit);
252 
253  ph->RegisterProcess(msc, particle);
254  ph->RegisterProcess(eioni, particle);
255  ph->RegisterProcess(new G4eBremsstrahlung(), particle);
256  ph->RegisterProcess(new G4eplusAnnihilation(), particle);
257  ph->RegisterProcess(ss, particle);
258 
259  } else if (particleName == "mu+" ||
260  particleName == "mu-" ) {
261 
262  if(nullptr == mub) {
263  mub = new G4MuBremsstrahlung();
264  mup = new G4MuPairProduction();
265  mumsc = new G4MuMultipleScattering();
266  mumsc->SetEmModel(new G4WentzelVIModel());
267  muss = new G4CoulombScattering();
268  }
269  ph->RegisterProcess(mumsc, particle);
270  ph->RegisterProcess(new G4MuIonisation(), particle);
271  ph->RegisterProcess(mub, particle);
272  ph->RegisterProcess(mup, particle);
273  ph->RegisterProcess(muss, particle);
274 
275  } else if (particleName == "alpha" ||
276  particleName == "He3" ) {
277 
278  ph->RegisterProcess(new G4hMultipleScattering(), particle);
279  ph->RegisterProcess(new G4ionIonisation(), particle);
280 
281  } else if (particleName == "GenericIon") {
282 
283  if(nullptr == hmsc) {
284  hmsc = new G4hMultipleScattering("ionmsc");
285  }
286  ph->RegisterProcess(hmsc, particle);
287  ph->RegisterProcess(new G4ionIonisation(), particle);
288 
289  } else if (particleName == "pi+" ||
290  particleName == "pi-" ) {
291 
292  if(nullptr == pib) {
293  pib = new G4hBremsstrahlung();
294  pip = new G4hPairProduction();
295  pimsc = new G4hMultipleScattering();
296  pimsc->SetEmModel(new G4WentzelVIModel());
297  piss = new G4CoulombScattering();
298  }
299  ph->RegisterProcess(pimsc, particle);
300  ph->RegisterProcess(new G4hIonisation(), particle);
301  ph->RegisterProcess(pib, particle);
302  ph->RegisterProcess(pip, particle);
303  ph->RegisterProcess(piss, particle);
304 
305  } else if (particleName == "kaon+" ||
306  particleName == "kaon-" ) {
307 
308  if(nullptr == kb) {
309  kb = new G4hBremsstrahlung();
310  kp = new G4hPairProduction();
311  kmsc = new G4hMultipleScattering();
312  kmsc->SetEmModel(new G4WentzelVIModel());
313  kss = new G4CoulombScattering();
314  }
315  ph->RegisterProcess(kmsc, particle);
316  ph->RegisterProcess(new G4hIonisation(), particle);
317  ph->RegisterProcess(kb, particle);
318  ph->RegisterProcess(kp, particle);
319  ph->RegisterProcess(kss, particle);
320 
321  } else if (particleName == "proton" ||
322  particleName == "anti_proton") {
323 
324  if(nullptr == pb) {
325  pb = new G4hBremsstrahlung();
326  pp = new G4hPairProduction();
327  pmsc = new G4hMultipleScattering();
328  }
329  pmsc->SetEmModel(new G4WentzelVIModel());
330  pss = new G4CoulombScattering();
331 
332  ph->RegisterProcess(pmsc, particle);
333  ph->RegisterProcess(new G4hIonisation(), particle);
334  ph->RegisterProcess(pb, particle);
335  ph->RegisterProcess(pp, particle);
336  ph->RegisterProcess(pss, particle);
337 
338  } else if (particleName == "B+" ||
339  particleName == "B-" ||
340  particleName == "D+" ||
341  particleName == "D-" ||
342  particleName == "Ds+" ||
343  particleName == "Ds-" ||
344  particleName == "anti_He3" ||
345  particleName == "anti_alpha" ||
346  particleName == "anti_deuteron" ||
347  particleName == "anti_lambda_c+" ||
348  particleName == "anti_omega-" ||
349  particleName == "anti_sigma_c+" ||
350  particleName == "anti_sigma_c++" ||
351  particleName == "anti_sigma+" ||
352  particleName == "anti_sigma-" ||
353  particleName == "anti_triton" ||
354  particleName == "anti_xi_c+" ||
355  particleName == "anti_xi-" ||
356  particleName == "deuteron" ||
357  particleName == "lambda_c+" ||
358  particleName == "omega-" ||
359  particleName == "sigma_c+" ||
360  particleName == "sigma_c++" ||
361  particleName == "sigma+" ||
362  particleName == "sigma-" ||
363  particleName == "tau+" ||
364  particleName == "tau-" ||
365  particleName == "triton" ||
366  particleName == "xi_c+" ||
367  particleName == "xi-" ) {
368 
369  if(nullptr == hmsc) {
370  hmsc = new G4hMultipleScattering("ionmsc");
371  }
372  ph->RegisterProcess(hmsc, particle);
373  ph->RegisterProcess(new G4hIonisation(), particle);
374  }
375  }
376  // Deexcitation
377  //
378  G4VAtomDeexcitation* de = new G4UAtomicDeexcitation();
379  G4LossTableManager::Instance()->SetAtomDeexcitation(de);
380 }
const std::vector< G4String > & PartNames() const
std::pair< ALIstring, ALIstring > pss
Definition: Fit.h:27
int kp
susybsm::MuonSegmentCollection msc
Definition: classes.h:32
const double MeV

Member Data Documentation

G4int CMSEmStandardPhysicsXS::verbose
private

Definition at line 17 of file CMSEmStandardPhysicsXS.h.